INFLUENCE OF SURFACE CURRENTS ON POST-NESTING MIGRATION OF GREEN SEA TURTLES NESTING ON WAN-AN ISLAND, PENGHU ARCHIPELAGO, TAIWAN

I-Jiunn Cheng
Institute of Marine Biology, National Taiwan Ocean University, Keelung, 202-24, Taiwan, R.O.C.

Yu-Huai Wang
Institute of Applied Marine Physics and Undersea Technology, National Sun Yat-Sen University, Kaoshiung, Taiwan, R.O.C., yhwang@nsysu.edu.tw

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal
Part of the Marine Biology Commons

Recommended Citation
DOI: 10.51400/2709-6998.1987
Available at: https://jmstt.ntou.edu.tw/journal/vol17/iss4/8

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and Technology.
INFLUENCE OF SURFACE CURRENTS ON POST-NESTING MIGRATION OF GREEN SEA TURTLES NESTING ON WAN-AN ISLAND, PENGHU ARCHIPELAGO, TAIWAN

Acknowledgements
Ms. Y. R. Cai helped process the data, which is much appreciated. The field data collections were supported by the National Science Council of Taiwan, the Council of Agriculture, the Quanta Education Foundation. YHW appreciated support from the Aim for the Top University Plan.
INFLUENCE OF SURFACE CURRENTS ON POST-NESTING MIGRATION OF GREEN SEA TURTLES NESTING ON WAN-AN ISLAND, PENGHU ARCHIPELAGO, TAIWAN

I-Jiunn Cheng* and Yu-Huai Wang**

Key words: turtle migration, satellite telemetry, swimming speed, Taiwan Strait.

ABSTRACT

The relationships between ambient flows and the migration corridors of green turtles (Chelonia mydas) nesting at Wan-an Island, Penghu Archipelago in Taiwan Strait were determined. Six turtles deployed with Argos-linked satellite tags from 1996 to 2004 were used. The ambient flows were derived from the combination of ship board measurements, a global tidal model, and the geostrophic flows derived from sea surface height anomalies. The results showed that there were, basically, three migrating patterns. Turtles that migrated northeastward rode the main surface currents, traveling 2000 km in a month. The swimming speeds along the track were less than 0.5 m s\(^{-1}\). More than half of their migration energy was spent in adjusting their headings against the tidal currents. Turtles that travel southward against the current had swimming speeds over 1 m s\(^{-1}\). These turtles corrected their headings and increased swimming speeds when they encountered oceanic eddies that deflected them from their destination. For the third migration pattern, turtles used the coast landmarks as migration guides, swimming constantly at 0.7 m s\(^{-1}\). Their migration distance was proportional to the swimming speed with little influence from the flows in shallow coastal waters. All three patterns showed very good compass sense in migration orientation and the swimming speeds were related to the ambient current.

I. INTRODUCTION

Adult sea turtles are known to cover long distances between their nesting and foraging grounds [8, 18, 32]. Since the early 1980s, satellite telemetry has provided detailed information on the life history traits of sea turtles, especially the ocean phases [9, 10, 15]. These data indicate that satellite telemetry is a powerful tool to study the ecology and promote the conservation of sea turtles [25, 38].

Experimental studies suggest that a regional map of the geomagnetic field intensity and inclination plays a major role in the open-ocean navigation of sea turtles [27, 28]. Inheritance of a magnetic biocoordinate map, coupled with learning of coastal landscape features, enables the turtles to stay within the major current systems [30]. Windborne and current-transported chemical signatures from the destination site may also play an important role in the mechanism of migration [19, 32], or both [29, 30, 31]. Alerstan et al. [1] suggested that the physical features in the ocean can have positive or negative influence on the long-distance migration of sea turtles. Sea turtles also may use currents as a guide to reach their destinations. Gaspar et al. [13] demonstrated that by use of satellite-derived current estimates and leatherback turtle (Dermochelys coriacea) tracking data, neglecting ocean currents can substantially lead to the wrong track. Consequently, this may affect the identification of foraging areas and the energy budget of the animals. In reviewing 10 years of satellite telemetry data, Luschi et al. [33] found that the post-nesting migratory behaviors of leatherback and loggerhead turtles (Caretta caretta) were very different. The loggerheads undertook a true migration, actively swimming from the nesting ground to specific foraging grounds along the coast, while the leatherbacks made prolonged sojourns across a vast feeding area in the open ocean. The difference is probably due to the different food requirements of the two species.

Because sea turtles are large nektonic organisms capable of controlling their swimming speed and direction, the relationship between turtle migration and surface currents is not straightforward. Previous studies have indicated that several patterns occur. Turtles may swim actively with the currents or, in the case of strong currents, drift with it [3, 27, 32]. Alternately, turtles may swim against weak currents [37], using them as guides to the foraging grounds [33]. Turtles may be disoriented by currents when encountering strong eddies [37], even with the ability to adjust it [14].
The instantaneous flow reaches its maximum speed in the summer, when it can exceed 1.5 m s\(^{-1}\). The reason is because the current velocity in Taiwan Strait from 1996 to 2004 were analyzed (Fig. 1). Sizes of the nesting turtles and their post-migration departure dates, migration distances and durations are given as Table 1. Three types of PTTs (platform terminal transmitter), the ST-6, ST-3, and ST-14 (Telonics; Mesa, Arizona, USA) were used. The PTTs were attached to the carapaces of six turtles by using methods described in Cheng [8]. The data (position in longitude, x, and latitude, y, times) were screened through a series of criteria to remove the outliers, defined as outside 3 standard deviations of 5-point moving average values. Occasionally, the data showed repeated time records which were also removed. The migration velocities (i.e. u and v) of each turtle were then computed from the distance (i.e. \(\delta x\) and \(\delta y\)) between two valid consecutive positions divided by the elapsed time (i.e. \(\delta t\)). Migration speeds greater than the assumed maximum long-distance travel rate for green sea turtles were rejected. Pelletier et al. [36] indicated a maximum migration speed of 3 km/hr (0.8 m s\(^{-1}\)) for sea turtles in the open ocean. We relaxed the criterion of rejection to a maximum speed of 3 m s\(^{-1}\) (10.8 km/hr). The reason is because the current velocity in Taiwan Strait can reach 2 m s\(^{-1}\) that we don’t want to exclude any feasible data points. The initial position (star in Fig. 1) is the first position in the Argos tracking record.

Table 1. Sizes of the six satellite tagged green sea turtles (Chelonia mydas) and their post-migration departure dates, migration distances and durations in the Taiwan Strait from 1996 to 2004.

<table>
<thead>
<tr>
<th>Turtle label</th>
<th>SCL (cm)</th>
<th>CCL (cm)</th>
<th>DD</th>
<th>IMD</th>
<th>TDA (days)</th>
<th>MDK (km)</th>
<th>RDTS (days)</th>
<th>PVD (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>199806635</td>
<td>95</td>
<td>102</td>
<td>8/20</td>
<td>N</td>
<td>33</td>
<td>1975</td>
<td>4</td>
<td>1427</td>
</tr>
<tr>
<td>200321891</td>
<td>94</td>
<td>98</td>
<td>8/27</td>
<td>N</td>
<td>34</td>
<td>2267</td>
<td>4</td>
<td>1390</td>
</tr>
<tr>
<td>199804240</td>
<td>99.5</td>
<td>103</td>
<td>8/27</td>
<td>S</td>
<td>10</td>
<td>735</td>
<td>4</td>
<td>481</td>
</tr>
<tr>
<td>200421899</td>
<td>93.5</td>
<td>97</td>
<td>8/22</td>
<td>S</td>
<td>16</td>
<td>972</td>
<td>6</td>
<td>372</td>
</tr>
<tr>
<td>199608352</td>
<td>94</td>
<td>100</td>
<td>8/25</td>
<td>NW</td>
<td>14</td>
<td>585</td>
<td>3</td>
<td>753</td>
</tr>
<tr>
<td>200307128</td>
<td>102</td>
<td>109</td>
<td>8/26</td>
<td>NW</td>
<td>13</td>
<td>690</td>
<td>5</td>
<td>635</td>
</tr>
</tbody>
</table>

Label: year and tag label number. CCL: curved carapace length. SCL: straight carapace length. DD: departure date. IMD: initial migration compass direction (N = north, S = south, W = west). TDA: tracking days by ARGOS. MDK: migration distance in km. RDTS: Residence days in Taiwan Strait. PVD: drifting distance by progressive vector diagram.

II. MATERIALS AND METHODS

1. Migration Tracks of Satellite Tagged Sea Turtles

Based on Argos positioning system, results from six green sea turtles post-nesting migration tracks in the Taiwan Strait from 1996 to 2004 were analyzed (Fig. 1). Sizes of the nesting turtles and their post-migration departure dates, migration distances and durations are given as Table 1. Three types of PTTs (platform terminal transmitter), the ST-6, ST-3, and ST-14 (Telonics; Mesa, Arizona, USA) were used. The PTTs were attached to the carapaces of six turtles by using methods described in Cheng [8]. The data (position in longitude, x, and latitude, y, times) were screened through a series of criteria to remove the outliers, defined as outside 3 standard deviations of 5-point moving average values. Occasionally, the data showed repeated time records which were also removed. The migration velocities (i.e. u and v) of each turtle were then computed from the distance (i.e. \(\delta x\) and \(\delta y\)) between two valid consecutive positions divided by the elapsed time (i.e. \(\delta t\)). Migration speeds greater than the assumed maximum long-distance travel rate for green sea turtles were rejected. Pelletier et al. [36] indicated a maximum migration speed of 3 km/hr (0.8 m s\(^{-1}\)) for sea turtles in the open ocean. We relaxed the criterion of rejection to a maximum speed of 3 m s\(^{-1}\) (10.8 km/hr). The reason is because the current velocity in Taiwan Strait can reach 2 m s\(^{-1}\) that we don’t want to exclude any feasible data points. The initial position (star in Fig. 1) is the first position in the Argos tracking record.

Seven location classes (LC) with different accuracies are used by Argos. LC3 is the most accurate location class with errors < 150 m. The other classes are relatively less accurate, with LC2 having an estimated accuracy range from 150 m to 350 m, LC1 from 350 m to 1000 m, and LC0 > 1000 m. The location accuracies of LC A and LC B were not estimated, and LC Z has an unknown accuracy. We verified the LCs and migration tracks as well as migration velocities of each turtle.
The filtered migration tracks of these 6 turtles are reported here. There were 4 more turtle tracks recorded during the study period, but their migration times and distances were too short that only a few positions were available inside the Straits, and therefore they were not included in the analyses.

The Argos data were Lagrangian, a series of positions marking the combined current and swimming activity of the PTT-tagged turtle. The positions were provided via Argos satellites passing overhead at discrete but variable time intervals. In our analyses, the real Argos tracks were compared with computed drift tracks based on flow predictions.

2. Flow Predictions

The surface current in Taiwan Strait is composed mainly of tidal currents superimposed on a mean northward ocean current. The mean current is mostly due to intrusion of the Kuroshio, plus wind driven currents from monsoons [40, 41]. The flows varied with time and space along the migration tracks. We applied a Lagrangian drifter technique [34] to estimate the turtle drifting tracks (apart from swimming) for comparison with the Argos derived migration tracks. The drift track is the PVD (progressive vector diagram) of the computed flow along the migration tracks. This approach is often referred to pseudo-Lagrangian. The PVD is constructed by drawing the first displacement vector in a Cartesian co-ordinate grid based on the local predicted instantaneous current. The second vector is then added to the first vector, its tail sitting at the head of the first vector, and so on.

The computed flows include both the tidal current and the ocean current at the same time and location as the migrating turtles. We have been concerned that the flows in the coastal area may not be accurately represented by satellite data (such as Aviso). Therefore, tidal currents were predicted using a global tidal model [12] and validated with the predicted tidal currents from the analysis of historical ship board ADCP measurements [41]. The tidal currents in the Taiwan Strait calculated by these two methods were within 5% of error. The global tidal model is a medium-resolution, 0.25 degree, calculated by these two methods were within 5% of error. The model covers 118°E-124°E and 21°N-27°N. A total of over 18000 points of 30-minute averaged data from 1996 to 2003 were used to extract the ocean currents along the migration tracks. The resultant currents were mostly to the north, with a maximum speed of 0.59 m s⁻¹ and averaged speed of 0.19 m s⁻¹. An objective optimal interpolation technique [4] was applied to combine the data derived from the sbADCP with those from the T/P SSHA as a composite ocean current along the migration tracks. The total flow is the sum of tidal current and ocean current. Figure 2 shows a typical example of derived flows along the track of a northeasterly traveling turtle (label number 199806635). The inserts show that the tidal currents oscillate in the NE-SW direction in the Taiwan Strait, but in the NW-SE direction in the East China Sea region.

The predicted flow velocity (total flow) and migration velocity (based of Argos positions and time gaps) were computed at each position of the six turtles. The drifting track is defined as the PVD of the predicted total flow for each turtle. The swimming velocity at each position is defined as the migration velocity subtracts the predicted flow.

III. RESULTS AND DISCUSSION

Our data showed that the six tagged turtles migrated to three different destinations (Fig. 1). The northward migrating turtles (199806635 and 200321891) swam to the northern Taiwan Strait and then to the East China Sea towards Japan. They spent over a month to migrate total distances of 1975 km and 2267 km, respectively. The overall migration speeds (mean of
local speeds, not the total distance divided by time) were 0.75 m s\(^{-1}\) and 0.88 m s\(^{-1}\) respectively. These turtles basically swam with the ocean current (Fig. 3). The swimming speeds over the entire corridors were 0.62 m s\(^{-1}\) and 0.8 m s\(^{-1}\) for these two turtles respectively. If we only considered the ambient flow, the drifting distances (circles in Fig. 3) were 1427 km and 1390 km for these two turtles, which accounted for 72% and 61% of the total migration distance for each turtle.

The northeastward tracks indicate that the drift (upper left insert in Fig. 3) was almost parallel to that of the migration. In this area, the ocean currents had the same orientation as the tracks, while tidal currents oscillated across the track. Therefore, the parallel tracks of drifting and migration suggested that the turtles might swim to adjust for the deflection of tidal currents while riding along with the ocean currents. The distances between the drifting and the migration tracks at each time interval (lower right insert in Fig. 3) were computed. This can be used as an indicator of the swimming efforts by the turtle to reach their destination. For example, turtle 200321891 swam hard during the first 10 days, as indicated by the steep initial slope of the separation distance curve. The computed swimming speeds in that initial interval were 0.7 m s\(^{-1}\) and 0.9 m s\(^{-1}\) (speeds for the entire corridors were 0.62 m s\(^{-1}\) and 0.8 m s\(^{-1}\)). The separation distance also provided information on the swimming effort devoted to control the migration orientation. We used the separation distance divided by the travel time as indication of the along-track effective swimming speeds (efforts to reach destination), which were 0.33 m s\(^{-1}\) and 0.49 m s\(^{-1}\) in the first 10 days for turtles 199806635 (280 km) and 200321891 (420 km), respectively. This means that due to the variations in surface flow caused by the tidal current, the turtles spent nearly half of their effort, likely, to adjust their headings. Similar behaviors of turtles riding along the ocean current were observed in the post-nesting migrations of green turtles nest at Ascension Island [22] and olive ridley turtles (Lepidochelys olivacea) in the North Pacific Ocean [37]. Our analysis suggested that the green sea turtle might spend substantial amount of energy in adjustment of their headings, in additional to energy consumed by vertical moving and diving.

In contrast, two turtles (199804240 and 200421899) migrated initially southward against the ocean currents, traveled in a clockwise circle and then moved to the vicinity of Dongsha Atoll (Fig. 4). The overall swimming speeds were 0.98 and 0.8 m s\(^{-1}\) for turtles 199804240 and 200421899, respectively. The rapid swimming speed suggested that these two turtles spent great effort to swim against the ocean current in order to reach their final destinations. The distances of swimming and drifting were very different as shown in Fig. 4 (upper left insert). In contrast to the northeastward migrating turtles that took advantage of the current drift, the southward migrating turtles spent 65% and 38% more energy to travel.

In addition, both turtles migrated on a ‘detour’ route, likely influenced by the eddies in the South China Sea, before reaching the vicinity of Dongsha Atoll. There is a permanent anticyclonic eddy in that region [5, 26]. The coral reefs within the Dongsha Atoll might be their foraging sites. The detour route had an interesting turning point. The swimming speeds reached 1.12 m s\(^{-1}\) and 1.01 m s\(^{-1}\) on the 4th and 6th day for turtles 199804240 and 200421899, respectively. The increases of swimming speed also indicated in the large slopes of separation distance (days 4-7 and 6-10 in the lower insert of Fig. 4). These data suggest that the turtles may sense the ocean currents carrying them away from their destination. We found that the southward migrating green turtles persistently contributed a large effort to swim against the current and adjust their headings to reach Dongsha Atoll. Similar results were found for the post-nesting migration of one green turtle departing from Tortuguero, Costa Rica [39]. Despite having only data set for one turtle, Gaspar et al. [13] suggested that a leatherback turtle tended to maintain a stable heading with remarkable compass sense even in the presence of strong currents.

Two turtles (199608352 and 200307128) migrated northwest across the Taiwan Strait, then swim southwest along the
Fig. 5. Two green sea turtles that migrated northwest across the Taiwan Strait and then swam southwest along the coast of southeast China. Symbols and insets as in Fig. 3. The initial migration direction across the straits appeared to be related to the flow direction. After reaching coastal waters, flow had little influence on their migration routes.

cost of China toward Hainan Island (Fig. 5). Their initial headings were deflected to the northwest by the cross-path flow. However, these two turtles managed to reach the southwest coast of China after some displacement to the northeast in Taiwan Strait. The coastline seemed to direct the subsequent migration route. After reaching the coastal water, the flows had little influence on their migration route. The turtles swam through the whole course with steady speeds of 0.62 m s\(^{-1}\) and 0.76 m s\(^{-1}\), respectively. The current velocities were low near the coast, and therefore the turtles neither rode the current (like those moving north) nor fought against it (like those moving south). The swimming distance simply reflected the required effort.

Results of this study indicate that the migrating green sea turtles were able to adjust their swimming speeds and orientations in response to the ambient flow conditions in order to reach their foraging sites. However, they were unable to remove these influential factors completely as indicated by the model studies of Girard et al. [14]. In spite of this, the final destinations are set regardless of the flow conditions. They might use the geomagnetic map of the earth, coastal landmark features, mesoscale oceanographic features, geomorphology of ocean basins, airborne and/or waterborne chemicals from the destination as the cues for migration [2, 16, 29]. Based on the physical measurements (curved carapace length and straight carapace length) of the six female adult turtles, we found no obvious size effect on the swimming or initial orientation of migrations.

Animals migrate long distances to exploit different resources temporarily or spatially, or avoid depletion local resource, or reproduction [1, 11]. They spend a lot of energy during the migration to enhance the fitness of the population. Like most marine megafauna, sea turtles fast or reduce feeding level during their reproductive migration [17]. Thus, it is important to delineate the influence of hydrodynamic regimes to the migration behavior of sea turtles, especially in the region with strong surface current systems like Taiwan Straits. Then, one can understand the adaptive strategies of sea turtles in different marine environments.

One of the difficulties in comparing ambient flow with the swimming ability of sea turtles is the time scale of motion. The tidal variations are mainly due to semidiurnal (12 hr) and diurnal (24 hr) periods, so that the flow changes in direction and magnitude within a few hours. This is especially significant in Taiwan Strait, because the tidal flow (on the order of 1 m s\(^{-1}\)) is much stronger than the mean flow (0.5 m s\(^{-1}\)). However, the time elapsed between satellite data records along the migration tracks may range from a few minutes to several days. In order to study the influence of flow on the swimming behavior of turtles, we combined flow data from tidal predictions, geostrophic flow derived from satellite-measured SSHA and shipboard ADCP measurements. The errors from these combined calculations are difficult to estimate. High frequency data on the migration track are needed for more detailed study of the influence of flow. The actual trajectories may take zig-zag patterns caused by tidal oscillation. In addition, the turtles may spend long hours diving, when no tracking data were received by Argos [20, 24]. The swimming speed computations based on migration tracks should be 3-dimensional (i.e. x y and depth), which would be more representative of actual turtle behavior. We need detailed information for the diving behavior (e.g. depth, time and pattern).

ACKNOWLEDGMENTS

Ms. Y. R. Cai helped process the data, which is much appreciated. The field data collections were supported by the National Science Council of Taiwan, the Council of Agriculture, the Quanta Education Foundation. YHW appreciated support from the Aim for the Top University Plan.

REFERENCES

