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ABSTRACT 

In this study, we strive to combine the advantages of fuzzy 
logic control (FLC), genetic algorithms (GA), H∞ tracking 
control schemes, smooth control and adaptive laws to design 
an adaptive fuzzy sliding model controller for the rapid and 
efficient stabilization of complex and nonlinear systems.  First, 
we utilize a reference model and a fuzzy model (both involv-
ing FLC rules) to describe and well-approximate an uncertain, 
nonlinear plant.  The FLC rules and the consequent parameter 
are decided on via GA.  A boundary-layer function is intro-
duced into these updated laws to cover modeling errors and to 
guarantee that the state errors converge into a specified error 
bound.  After this, a H∞ tracking problem is characterized.  We 
solve an eigenvalue problem (EVP), and derive a modified 
adaptive neural network controller (MANNC) to simultane-
ously stabilize and control the system and achieve H∞ control 
performance.  Furthermore, a stability criterion is derived 
utilizing Lyapunov’s direct method to ensure the stability of 
the nonlinear system.  Finally, the control methodology is dem- 
onstrated via a numerical simulation. 

I. INTRODUCTION 

Over the past few years, there has been significant research 
efforts devoted to the analysis and control designs of fuzzy 
systems (see [2], [32], [34] and the references therein).  The 
main motivation for this development has been applications to 
practical nonlinear systems and engineering problems (see [4, 
10, 13, 15, 17, 24, 25, 27, 29, 30, 31, 37] and the references 

therein).  Undoubtedly, the Lyapunov theory is one of the most 
common approaches for dealing with the stability analysis of 
systems.  However to overcome the conservatism that arises 
from the use of Lyapunov methods it has been necessary to 
develop a number of more effective methods, for example, 
fuzzy Lyapunov functions [8], [35].  There are also many 
important issues that have required studied for T-S fuzzy 
control systems, such as time delays [4, 7, 9, 26, 42], H∞ 
performance [11, 20], robustness [23, 41], neural networks 
(NN) and genetic algorithms (GA) [5, 14, 18, 28].  It should be 
noted that most of the aforementioned research efforts have 
been focused on PDC laws.  Until now, how to integrate con-
trol theory and non-PDCs law into practical engineering com-
putations has been an open question. 

As has been explored in previous research, an adaptive 
algorithm can be adopted to find the best high-performance 
parameters for the fuzzy sliding mode controller (FSMC) [39], 
[40] for nonlinear control problems [19], [39].  Adaptive laws 
are devised afterwards to adjust the parameters of the fuzzy 
models, including the design of the adaptive fuzzy sliding 
mode controller (AFSMC) [43].  This is a powerful and robust 
control strategy for dealing with uncertainties and external 
disturbances. 

Aside from the above, it is also very important to decide on 
the fuzzy rules and the initial values of the parameter vector 
values for the AFSMC.  A GA [16], [22] is usually used as an 
optimization technique in the self-learning or training strategy 
for deciding on the fuzzy control rules and the initial values of 
the parameter vector.  Using this GA-based AFSMC improves 
the immediate response, stability, and robustness of the control 
system.  A new Lyapunov stability criterion needs to be de-
veloped for the H∞ tracking performance throughout all the 
system states to be considered in the proposed control strategy 
[3].  Based on the Lyapunov theory [33], it can be be shown 
that the proposed controller guarantees good H∞ tracking 
performance throughout the entire system states. 

Another common problem encountered when switching the 
control input of the sliding model system is the so-called 
“chattering” phenomenon [38].  The smoothing of control dis- 
continuity inside a thin boundary layer essentially acts as a 
low-pass filter structure for the local dynamics.  This elimi-
nates chattering, to guarantee that the state errors converge 
within a specified error bound. 
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This study focuses on designing a robust tracking control 
for a class of nonlinear system involving plant uncertainties 
and external disturbances.  To achieve this task, H∞ tracking 
control is incorporated into the AFSMC, to produce the pro-
posed H∞ AFSMC design.  It is shown that the proposed con-
troller can guarantee H∞ tracking performance throughout the 
entire system states, based on the Lyapunov theory [33].  The 
Lyapunov stability condition is transformed into the form of a 
certain linear matrix inequality (LMI) problem [1, 21, 36] 
which allows one to efficiently obtain the parameters of the 
controller by using the convex optimization techniques to 
solve either the EVP or the LMI problem. 

II. REFERENCE MODELING FOR NONLINEAR 
DYNAMIC SYSTEMS 

The plant is a single-input/single-out nth-order system with 
n ≥ 1. 

 ( ) ( ) ( )
( )n

y f x g x u d t= + ⋅ +  (1) 

The system is said to have a relative degree n, if g(x) is 
bounded away from zero. 

 
Assumption 1: g(x) is bounded away from zero over a compact 
set ζ ⊂ Rn, |g(x)| ≥ b > 0, ∀ x ∈ ζ. 

 
( ) ( )1 2( )

1 2 1 0

n nn

r n r n r r rr y y y y yα α α α
− −

− −= + + + + +�…  (2) 

where α n−1, …, α1, α0 are chosen such that the polynomial �n + 
α n−1

 
�

n−1 + … + α1� + α 0 is Hurwitz; and � here denotes the 
Laplace variable.  If f(x), g(x) are known, and Assumption 1 is 
satisfied, the control law can defined by 

 

( ) ( )
( )

( )

1

1 1 0

,

n

nf x d x y y y r

u
g x

α α α
−

−

 
− − − + + + + 

 =

�…

 

x S∀ ∈   (3) 

Substituting (3) into (1), the linearized system becomes 

 
( ) ( ) ( )1( 1)

1 1 0( ) ( ) ( ) ( ) 0
n n nn

r n r r ry y y y y y y yα α α
−−

−− + − + + − + − =� �…   

  (4) 

If we define e = yr − y as the tracking error, then the refer-
ence control input (2) results in the following error equation: 

 
( ) ( )1

1 1 0 0
n n

ne e e eα α α
−

−+ + + + =�…  (5) 

III. GA-BASED H∞ MAFSMC FOR NONLINEAR 
SYSTEMS 

The control objective can be achieved by the control law 

 eq du u u= +  (6) 

where ueq is equivalent control.  Now let 

 ( ) 1 1
( / )du g x S sat S

ρ
−= − ⋅ Φ  (7) 

The thin boundary layer function ( )Ssat Φ  is defined as 

 ( )
( )

( ) ( )
( )

1 , 1

, 1 1

1 , 1

Sif

S S Ssat if

Sif

 >Φ


= − ≤ ≤Φ Φ Φ

− < −Φ

 

We can utilize the certainty equivalent control approach [40] 
to design an FLC (8) to approximate ueq 

 ( ) 2

1

( ( ) )
m

k
eq k k

k

S C
u Rθ θ

β=

−
= − ⋅∑  (8) 

where m is the sum of the fuzzy rules; kθ  , i.e, . maxkθ θ≤  are 

adjustable consequent parameters of FLC; and R(S) = [R1(S), 
R2(S), …, Rm(S)]T is the vector of the fuzzy basis function [31] 
defined as 

 
( )

( )
1

k k
k m

k k
k

S C
R

S C

µ

µ
=

−
=

−∑
, 

 ( )
2

exp k
k k

S C
S Cµ

β

  −
 − = −     

 (9) 

Assumption 2: 
For x ∈ ζ ⊂ Rn, there exists an adjustable parameter vector 

1 2, , ,
T

nθ θ θ θ =  �  such that the fuzzy system ( ),u S θ =  

( )T R Sθ  can approximate the continuous function u with 

accuracy εmax over the set ζ, that is, θ∃  such that 

 ( ) ( ) maxsup , ,eq equ S u S Sθ ε ζ− ≤ ∀ ∈  (10) 

Let θ̂  denote the estimative of θ  at time t.  Then, define 

the estimative control output ( )ˆˆ ,equ S θ  as 
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 ( ) ( ) ( )
1

ˆ ˆ ˆˆ ,
m

T
eq k k

k

u S R S R Sθ θ θ
=

= ⋅ =∑  (11) 

If the parameter error vector at time t is ˆ,θ θ θ= −�  then, 

 ( ) ( ) ( )ˆˆ, ,T
eq eqR S u S u Sθ θ θ= −�  (12) 

From Assumption 2, define the modeling error as follows: 

 ( ), ,eq equ u Sε θ= −  where |ε | ≤ εmax (13) 

We can now say 

 ( ) ( )ˆˆ , T
eq equ u S R Sθ θ ε= + +�  (14) 

Then, substituting (7) and (14) into (3), we can obtain the 
error dynamic equation from 

( ) ( )1

1 1 0

n n

ne e e eα α α
−

−+ + + +�…   

( ) ( )( ) 1
( / )Tg x R S S sat Sθ ε

ρ
= ⋅ + − ⋅ Φ�  (15) 

Define the augmented error as 

 
( 1)

1 1 0

n

nS e e eβ β β
−

−= + + +�…  (16) 

where β n−1, …, β 1, β 0 in (15); and αn−1, …, α1, α0 in (14) are 
chosen such that 

 ( ) ( )
( )

1
1 1 0

1
1 1 0

ˆ
n

n
n n

n

N
M

D

β β β
α α α

−
−

−
−

+ + +
= =

+ + + +
�� … �

�
�� � … �

 (17) 

is SPR (strictly positive real) transfer function, and N(�) and  
D(�) are coprime. 

Define 
( 1)

, , ,
Tn

me e e e
− =  

 
� �  as the states for (16) which can 

be realized as 

 ( ) ( ) ( ) ( )( ) 1
( / )T

m me t e t b g x R S S sat Sθ ε
ρ

 
= Λ ⋅ + ⋅ ⋅ + − ⋅ Φ 

 

��  

  (18) 

 ( ) ( )T
mS t c e t=  (19) 

Where 

0 1 2 2 1 1

0 1 0 0 0 0

0 0 1 0 0 0

,
0 0 0 1 0 0

0 0 0 0 1 0

1n n nn n

b

α α α α α− − ××

   
   
   
   

Λ = =   
   
   
   
− − − − −      

�

�

� � � � � � �

�

�

�

, 

0 1 1 1, let 1.
T

n nc β β β β− −= =  �  

Observing (19), it is clear that the lumped uncertainty ω = 
g(x) · ε  directly affects the tracking error.  To achieve the con- 
trol objective, the following H∞ tracking performance related 
to the tracking error vector em is requested [36]: 

 ( ) ( ) ( ) ( ) 2 2
110 0

1
0 0 0 0

T TT T T
m m m me Qe dt e Pe H dtθ θ ρ ω

γ
≤ + +∫ ∫� �  

  (20) 

for all ω ∈ L2[0, T], ∀T ∈ [0, ∞), where Q and P are symmetric 
positive definite weighting matrices; and 0 < ρ < 1 is a pre-
scribed attenuation level. 

It is seen that if the system starts with the initial conditions 

( ) ( )0 0, 0 0,me θ= =�  then the H∞ tracking performance of (21) 

becomes 

 2 2

0 0

T TT
m me Qe dt dtρ ω≤∫ ∫  (21) 

That is, the L2-gain from ω to em must be equal to or less 
than a prescribed value ρ [36].  The following results can be 
obtained: 

 

Theorem 1: Consider the nonlinear uncertain system 
( )n

y =  

( ) ( )f x g x u d+ ⋅ +  that satisfies Assumptions ˆ( , )θ θ .  Sup-

pose that the unknown control input u which is approximated 

by ( )ˆˆ ,equ S θ  by (11), S is given by (17), Q is a symmetric 

positive definite weighting matrix, and 0 < ρ < 1 is the design 
constant serving as an attenuation level. 

Let K = KT > 0 be the solution of the following LMI: 

 
1 1 1

0T T TK K Kbb K cc Q
ρ ρ ρ

Λ + Λ + − + ≤  (22) 

and define P = ccT + K.  The control law chosen is ( )ˆ,equ S θ  

and the modified adaptive laws are given by 

 ˆ ( / ) T
mS sat S R b Ke Rθ γ γ= ⋅ ⋅ Φ + ⋅�

 (23) 
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in which γ > 0 is the adaptive gain.  The H∞ tracking per-
formance of (21) for the overall system can be guaranteed. 
 
Proof: 

The time derivative of S can be obtained by 

( ) ( ) ( ) ( )( ){ [T T T
m mS c e t c e t b g x R Sθ ε= = Λ ⋅ + ⋅ ⋅ +� ��  

1
( / ) ] }S sat S

ρ
− ⋅ Φ  (24) 

Now, we shall investigate the stability of the origin using 
Lyapunov function candidates.  The Lyapunov function can-
didate of the state is defined as follows: 

 
1 1

2 2
T T
m mV e Pe Hθ θ

γ
= + � �  (25) 

where γ  is a positive constant representing the learning rate, 

 ( )1 2 ,
T

m m mH g xθ θ θ θ × = = ⋅ Ι 
� � � �� , 

because P = ccT + K, (26) can be expressed as 

 
2

1 1
( )

2 2

1 1
( )

2 2

T T T
m m

T T
m m

V e cc K e H

S e Ke H

θ θ
γ

θ θ
γ

= + +

= + +

� �

� �

 

The time derivative of V can be described as 

 
( ) ( ) ( )

( ) ( )( )

2

1 1 1

2 2

1
[ ] [ ]

1
( ) [

2
1 1 ˆ( / ) ] ( )

T T T
m m m m

T

T T T
m m

T T
m

V SS e Ke e Ke H

S g x R S S g x S

e K K e g x R S

S sat S b Ke H

θ θ
γ

θ ε
ρ

θ ε

θ θ
ρ γ

= + + +

= ⋅ ⋅ + ⋅ ⋅ −

+ Λ + Λ + ⋅ +

− ⋅ Φ ⋅ + −

�� � �� � �

�

�

�
�

 (26) 

Substituting the adaptive laws (24) into (27), and when  
|S| > Φ, we derive 

21 1
( )

2

1

T T T
m m m

T
m

V S S e K K e b Ke

S b Ke

ω ω
ρ

ρ

= ⋅ − + Λ + Λ + ⋅

− ⋅

�

 (27) 

(27) can now be rewritten as 

2

2 2

2 2

2 2

2

2

1 1 1
( ) ( )

2

1 1 1
[ ( )]

22 2

1 1 1
( ) ( )

2 2

1

1 1 1
[ ( )]

22 2

1
( 2 )

2

1 1 1
( )

2

T T T T
m m m m

T
m

T T T
m m m

T
m

T
m

T T T
m m m

T T
m m

V S b Ke S e K K e S b Ke

S b Ke

S b Ke S e K K e

S b Ke

S b Ke

S Sb Ke e Kbb Ke

S e K K e S

ω
ρ ρ

ρ ω ρω
ρ

ρ ρ

ρ

ρ ω ρω
ρ

ρ

ρ ρ

= ⋅ + − + Λ + Λ − ⋅

= − ⋅ − + +

+ + − + Λ + Λ

− ⋅

= − ⋅ − + +

+ + +

− + Λ + Λ −

�

T
mb Ke⋅

 

2 2

2

1 1 1 1
( )

2 2 2

1 1 1 1
( )

2 2

T T T
m m

T T T T
m m

e K K Kbb K e S

e K K Kbb K cc e

ρω
ρ ρ

ρω
ρ ρ

≤ Λ + Λ + − +

= Λ + Λ + − +
 (28) 

From (22), 

 21 1

2 2
T
m mV e Qe ρω

ρ
≤ − +�  (29) 

Integrating both sides of (28) yields 

 2

0 0

1
( ) (0)

2 2

f ft tT
f m mV t V e Qe dt dt

ρ ω
ρ

− ≤ − +∫ ∫  (30) 

Thus, 

 2 2

0 0
2 (0) 2 ( )

f ft tT
m m fe Qe dt V V t dtρ ρ ρ ω≤ − +∫ ∫  

Since 0 < ρ < 1 and V ≥ 0, (31) can be rewritten as 

 2 2

0 0
2 (0)

f ft tT
m me Qe dt V dtρ ω≤ +∫ ∫  

With (25), the following result can be obtained: 

 2 2
110 0

1
(0) (0) (0) (0)

f ft tT T T
m m m me Qe dt e Pe H dtθ θ ρ ω

γ
≤ + +∫ ∫� �  

  (31) 

So, the H∞ tracking performance in (18) is achieved.  This 
completes the proof. 
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Note that the matrix inequalities in (22) can be transformed 
into a certain form of LMI.  That is, by the Schur complements 
[1], (22) is equivalent to 

 

1/ 2

1
1/ 2

1

1

0 0

( ) 0

T T

T
n

T
n n n

K K cc Kb Q

b K

Q

ρ
ρ

ρ
×

× ×

 Λ + Λ − 
 

− ≤ 
 − ⋅ Ι 
  

 (32) 

where (Q1/2)T Q1/2 = Q.  Therefore, the minimization problem 
can be formulated as the following eigenvalue problem (EVP): 

subject to 0T
i iK K= >  and (32). 

IV. NUMERICAL SIMULATION 

The active TMD mounted on a shear structure is modeled 
as a Four-degree-of freedom structure-ATMD system, as 
shown in Fig. 1 ATMD System.  The parameters with ATMD: 
md = 50 (kg), cd = 14.05 (N-s/m), and kd = 9875.18 (N/m) 
represent mass, damping, and stiffness, and the parameter 
vectors: MST (kg), CST(t) (N-s/m), and KST(t) (N/m) represent 
the mass, uncertain damping, and uncertain stiffness vectors, 
respectively, (t = t + ∆t, ∆t = 0.02 sec) of this dilapidated- 
simulation structure with ATMD shown below.  F and u rep-
resent the external force and control input.  The dynamic 
equations of motion of the pendulum are given below. 

 

1

2

31

2 1 1
4 4 4 4

33 1

2

3

0

0

1( ) ( )

1

d
ST ST

d
d

d

x

x

xx

x x
M K M C u

mx x

x x
m

x

x

− −
× ×

 
 
   
    
    
      −= − − + ⋅     
    −     
   
 
  

��

��

�� �

�� �

�

�

 

1

2

3

1

1

1

1
d

m

m
F

m

m

− 
 
 −
 

+ ⋅ 
− 
 
 −
  

  (33) 

where 

980.71 0 0 0

0 980.71 0 0
,

0 0 980.71 0

0 0 0 50

STM

 
 
 =
 
 
 

 

 

x3

xd 

m3, c3, k3 

F

kd 

cd 

md 

m2, c2, k2

m1, c1, k1

x2

x1

u

 
Fig. 1.  Four-DOF structure-ATMD system. 

 

2740599(1 0.3 ) 1640938(1 0.3 ) 368992(1 0.3 ) 0

1640938(1 0.3 ) 3020937(1 0.3 ) 1624126(1 0.3 ) 0
( )

368992(1 0.3 ) 1624126(1 0.3 ) 1333065(1 0.3 ) 9875.2 9875.2

0 0 9875.2 9875.2

ST

t t t

t t t
K t

t t t

− − − − 
 − − − − − =
 − − − − + −
 − 

 

382.65(1 0.1 ) 57.27(1 0.1 ) 61.64(1 0.1 ) 0

57.27(1 0.1 ) 456.73(1 0.1 ) 2.63(1 0.1 ) 0
( )

61.64(1 0.1 ) 2.63(1 0.1 ) 437.29(1 0.1 ) 14.05 14.05

0 0 14.05 14.05

ST

t t t

t t t
C t

t t t

+ − + + 
 − + + − + =
 + − + + + −
 − 

 

The design procedure for the GA-based H∞-MAFSMC ana- 
lyzed above can be summarized as follows: 

 
[Step 1]  In the simulation we set the sensor on the top floor of 
a dilapidated structure.  Using the procedure discussed above, 
we specify the response of the control system by defining 
suitable sliding surface 3 330 ,T

mS c e e e= = + �  then, construct 

the structure of the MAFSMC based on GA and the initial 

values of the consequent parameter vector θ̂  chosen as fol-
lows: [ 1  0.9  0.65  0.30  0.05  0  -0.06  -0.25  -0.33  -0.7  
-0.95]’. 

 
[Step 2]  Let Q = I2×2, with the specified attenuation level ρ = 
0.5.  Now we use the LMI optimization toolbox in Matlab [21] 

to solve the EVP in (32), to obtain 
232.4346 13.2239

13.2239 2.7998
K

− 
=  − 

 

and 
1132.4346 16.7761

.
16.7761 3.7998

TP cc K
 

= + =  
 

 

 
[Step 3]  Apply the controller, as given in (7) and (14), to con- 
trol the nonlinear system (1).  Next, we let γ = 0.05, Φ = 0.2, 

and adjust θ̂  by the adaptive law, as given by (23). 
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Fig. 2.  Acceleration of the El Centro earthquake. 
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Fig. 3.  Top floor response of the structure in the El Centro earthquake. 

 

An examination of the simulation results for the El Centro 
earthquake disturbances, illustrated in Figs. 2-3, shows an im- 
provement in the performance of the system in all respects 
while retaining the advantage of robustness in the presence of 
bounded disturbances. 

Figures 2-3 show that the dilapidated structure simulation is 
rapidly stable and the GA-based H∞-MAFSMC can be derived 
to stabilize and control the system. 

V. CONCLUSIONS 

A GA-based H∞ modified adaptive fuzzy sliding model 
controller for the handling the nonlinear systems is described 
in this paper.  We first track the reference trajectory to ap-
proximate an uncertain and nonlinear plant via fuzzy model 
involving FLC rules.  Then, we utilize a GA to decide on the 

initial values of the consequent parameter vector ˆ.θ   The H∞ 
tracking problem is characterized in terms of solving an ei-
genvalue problem.  The smoothing of control discontinuities 
inside a thin boundary layer, essentially as a low-pass filter 
structure, is introduced into these updated laws for the elimi-
nation of chattering and to guarantee that the state errors 

converge within a specified error bound.  Next, an MAFSMC 
is proposed to stabilize the system, and achieve H∞ control 
performance at the same time.  A stability criterion is also 
derived from Lyapunov’s direct method to ensure the stability 
of the nonlinear system.  The stability analysis can thus be 
reduced into LMI problems.  Finally, we discuss an example, a 
numerical simulation.  We demonstrate that the control meth-
odology can rapidly and efficiently control an uncertain and 
nonlinear system. 
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