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ABSTRACT 

The present paper investigates the problem of robustly de-

centralized H∞
 output feedback controller design for a class of 

stochastic large-scale uncertain systems with time-delays. The 

considered time-delay parameters appear in the interconnec-

tions between individual subsystems and uncertainties are al-

lowed to be unstructured but time-varying and norm-bounded. 

The sufficient conditions of the desired output feedback con-

troller are based on the Lyapunov-Krasovskii stability theory 

and utilizing the decentralized scheme to be derived in terms of 

linear matrix inequalities (LMIs). The effectiveness of the 

proposed approach is illustrated by a numerical example. 

 

I. INTRODUCTION 

Large-scale systems, consisting of a set of interconnected 

lower-dimension subsystems, are frequently encountered in the 

real world and include power systems, digital communication 

networks, flexible manufacturing systems and so on. Owing to 

the existence of interconnections among subsystems, the con-

troller design of a large-scale system is in general much more 

difficult than that of individual subsystem. These difficulties 

motivates the development of decentralized control theory 

where each subsystem is controlled independently base on its 
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locally available information. Because the advantage of this 

scheme in controller design is able to reduce complexity and 

allows the control implementation to be feasible, the problem of 

decentralized control of large-scale interconnected systems 

therefore became an attractive topic and many applications have 

been extensively reported in the literatures [7, 5]. 

As many of the disturbances acting on the systems are ran-

dom in nature, the performance analysis must directly address 

the stochastic aspect of the problem. Stochastic systems have 

received much attention since stochastic modeling has become 

to play an important role in many branches of science and en-

gineering applications. Many fundamental results for stochastic 

large-scale systems have been investigated [13, 2]. On the other 

hand, delays are generally inherent in many physical systems 

due to transportation or computation time and uncertainties are 

unavoidably occurred in many processes, such as plant model-

ing errors, linearization approximations, exogenous perturba-

tions, and measured noises. Since delay and uncertainty often 

cause deterioration of system performance and may be a source 

of instability. Therefore, some significant results including 

robust stability analysis and decentralized stabilization for 

uncertain stochastic large-scale time-delay systems have been 

proposed in [15]. Furthermore, in the recent reports [14, 12], 

extending to advance the performance of H∞
 controllers design 

via decentralized state feedback have been considered.  

Since the state feedback controller design required the com-

plete access to the state vector of the systems. Usually, this is not 

the case and the state vector cannot be accessed for many rea-

sons well-known in control community. In the case of the state 

vector not completely accessible, an alternate approach by 

designing an output feedback controller to stabilize the studied 

class of systems is considered. Therefore, over the past few 

years, increasing attention has been given to the problem of 

constructing H∞
 controller with output feedback design. For 

instance, an overview of linear matrix inequality (LMI) ap-

proach to the multi-objective synthesis of linear output feedback 

controllers for nominal multi-input/multi-output (MIMO) linear 

time-invariant systems have been investigated in [8]. As is well 

known, LMI approach due to its computational advantage and 

simplicity in solving the multi-objective problems such that it 
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has become as a powerful formulation and design technique for 

a variety of linear control problems. Indeed, the controller 

parameters which satisfy the multi-objective constraint LMIs 

can be easily found by various efficient convex optimization 

algorithms. In addition, exploring the Riccati-equation-based 

approach to design robust observer-based feedback H∞
 con-

troller for linear uncertain time-delay systems without inter-

connections has been proposed in [3]. In [16], an explicit con-

struction of decentralized output feedback H∞
 controller is 

presented using LMI approach for the interconnected 

time-delay system without uncertainties. Applying generalized 

inverse theory to design a satisfying multi-objective output 

feedback control law for the uncertain systems with no inter-

connections are also addressed in [11]. So far, however, still 

very few robustly decentralized H∞
 output feedback controller 

(RDHOFC) designs, via LMI approach, are available for the 

stochastic large-scale uncertain systems with time-delay prop-

erty. 

As the controller design presented in this paper, base on the 

Lyaunov-Krasovskii functional stability theory [6] and utilizing 

the decentralized scheme and LMI approach [1, 9, 4], we in-

vestigate the problem of developing a RDHOFC for the sto-

chastic large-scale uncertain systems with time-delays. The 

considered time-delay parameters appear in the interconnec-

tions between individual subsystems and uncertainties are al-

lowed to be unstructured but time-varying and norm-bounded. 

Eventually, the resulting decentralized output feedback con-

trollers can ensure the corresponding overall closed-loop un-

certain time-delay systems to achieve the addressed H∞
 per-

formance constraint. 

This paper is organized as follows. In Section II, gives the 

problem statement and constraint formulation. In Section III, an 

algorithm for constructing RDHOFC is developed by using 

Lyapunov-Krasovskii functional stability theory, decentralized 

scheme and LMI approach. The effectiveness of the current 

work is illustrated by a numerical example in Section IV. Finally, 

some conclusions are given in Section V. 

Notation: Throughout this paper, nR denotes the 

n -dimensional Euclidean space; n mR ×  is the set of n m×  real 

matrices. I  is the identity matrix with appropriate dimensions; 

{ }diag   stands for the diagonal matrix; The notation ( )T⋅ de-

notes the transpose of the vector or matrix ( )⋅ ; ⋅  refers to the 

Euclidean vector norm; 
2

⋅  represents the usual 
2[0, )L ∞  norm; 

2[0, )L ∞  is the space of square-integrable vector functions 

over[0, )∞ . If both A  and B  are square matrices with the same 

dimensions, by A B>  (respectively, A B≥ ) we mean A B−  is 

positive definite (respectively, non-negative definite). Moreover, 

let ( )( )   
∈

Ω   
    be a complete probability space with a 

filtration ( )
∈   

  satisfying the usual conditions (i.e., the fil-

tration contains all  -null sets and is right continuous); [ ]⋅E  is 

the expectation operator with respect to some probability 

measure  . 

 

II. PROBLEM STATEMENT AND FORMULATION 

Consider the stochastic large-scale uncertain time-delay 

systems which consist of the interconnection of N  linear sub-

systems of the form:  

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ),

( ) ( ),

( ) ( ), [ ,0],

0, , 1, 2, , , ,

i i i i i i i

N

ij ij j ij i i

j
j i

i i i

i i i

i i ij

ij

x t A A x t B B u t

A A x t D w t

z t F x t

y t C x t

x

i j N j i

τ

θ φ θ θ τ

τ

=
≠

= + ∆ + + ∆

+ + ∆ − +

=

=

= ∀ ∈ −

> = ≠







           (1) 

where ( ) ,in

ix t R∈  ( ) ,im

iu t R∈  ( ) ,ip

i
z t R∈  and ( ) ,iq

iy t R∈  

i=1, 2, , N, are the state , control input, controlled output and 

measurement output of the thi  subsystem, respectively; 

( ) ,ir

iw t R∈  i=1, 2, , N, is the white noise input defined on a 

filtered probability space ( )( )   
∈

Ω   
    and satisfies the 

following properties: 

[ ( )] 0, [ (0) ( )] 0,

[ ( ) ( )] , [ ( ) ( )] 0,

, 1, 2, , , .

T

i i i

T T

i i i j

w t x w t

w t w t I w t w t

i j N j i

= =

= =

= ≠

E E

E E



                          (2) 

Furthermore, in equation (1), 0≥ijτ , i, j=1, 2, , N, j i≠ , is 

the time-delay existing in the interconnection and 

( ) [ , 0]ijφ θ τ∈ −C  is the initial condition, where [ , 0]ijτ−C  

stands for a space of continuous functions defined on [ , 0]
ij

τ− . 

iA , 
iB , 

iD , 
iF , 

iC  and 
ij

A , i, j=1, 2, , N, j i≠ , are the known 

real constant matrices with appropriate dimensions, and 
ij

A  are 

interconnection matrices between the thi  and thj  subsystem. 

( )iA t∆ , ( )iB t∆  and ( )ijA t∆ , i, j=1, 2, , N, j i≠ , are matrices 

representing system time-varying parameter uncertainties which 

are assumed to be of the form  

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

i ia ia ia

i ib ib ib

ij ij ij ij

A t H S t E

B t H S t E

A t H S t E

∆ =

∆ =

∆ =

                         (3) 

where 
iaH , 

ibH , 
ijH , 

iaE , 
ibE , and 

ijE , are known constant 

matrices; ( )iaS t , ( )ibS t , and ( )
ij

S t , are unknown real 

time-varying matrix functions with Lebesgue measurable ele-

ments satisfying the following norm-bounded conditions: 
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( ) ( ) ,

( ) ( ) ,

( ) ( ) , .

T

ia ia

T

ib ib

T

ij ij

S t S t I

S t S t I

S t S t I t

≤

≤

≤ ∀

                             (4) 

Then, ( )iA t∆ , ( )iB t∆  and ( )
ij

A t∆  are said to be admissible if 

both conditions (3) and (4) hold. 

Before formulating the problem to be dealt in this paper, we 

first introduce the following concepts of robustly stochastic 

stability in probability for the th
i  subsystem (1). 

Definition 2.1 [17]: The equilibrium ( ) 0
i
x t =  of the th

i  no-

minal stochastic subsystem (1) is said to be mean-square as-

ymptotically stablizable in probability, via designed decentral-

ized dynamic controller ui(t), if for any scalar 0ε >  and initial 

condition xi(t0) > 0, there exists a ( )δ δ ε=  such that 

2

0( )ix t δ  < E  is satisfied, then both probabilities 

{ }
0 0

2

( ) 0lim sup ( ) 0x t t t ix t ε→ ≥ > =E  and 

{ }2
lim ( ) 0 1

t i
x t→∞

  = = E  hold. Furthermore, if the th
i  

nominal stochastic subsystem (1) is mean-square asymptotically 

stabilizable in probability, via designed decentralized dynamic 

controller ui(t), for any time-delays and all admissible uncer-

tainties as defined in both (3) and (4), then the subsystem (1) is 

said to be robustly stochastically stabilizable in probability. 

We now consider a full order dynamic decentralized output 

feedback control law 
i i i
u G y=  which can be represented as the 

following state-space realization form in (5) for the th
i  subsys-

tem [8]: 

( ) ( ) ( )

( ) ( ) ( ), 1, 2, , .

i ik i ik i

i ik i ik i

t A t B y t

u t C t D y t i N

ξ ξ

ξ

= +

= + =




         (5) 

Applying the designed control law (5) to the system (1), then, 

the corresponding closed-loop system is given by 

1

ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

i i i i i i

N

ij ij i ij

j
j i

i i i

x t A A x t D w t

A A x t

z t F x t

τ
=
≠

= + ∆ +

+ + ∆ −

=





                      (6) 

where ˆ ( ) ( ) ( )
T

T T

i i i
x t x t tξ =   , and 

[ ]

ˆ ,

ˆ ,
0 0

0 0
ˆ ˆ, ,

0 0 0 0

ˆ ˆ, 0 .
0

i i ik i i ik

i

ik i ik

i i ik i i ik

i

ij ij

ij ij

i

i i i

A B D C BC
A

B C A

A B D C BC
A

A A
A A

D
D F F

+ 
=  
 

∆ + ∆ ∆ 
∆ =  

 
∆   

= ∆ =   
   
 

= = 
 

              (7) 

In control law (5), ( ) in

i t Rξ ∈  denotes the controller state and 

in equation (7), 
ik
A , 

ik
B , 

ik
C  and 

ik
D , , 1, 2, ,i j N=  , are 

unknown controller parameters with appropriate dimensions to 

be determined. 

The purpose of the current paper is based on the decentral-

ized scheme to design a decentralized output feedback control 

law (5) for the thi  subsystem such that the overall closed-loop 

system (6) is robustly stochastically stabilizable in probability 

as defined in Definition 2.1 and satisfies the following H∞
 

norm performance constraint [16, 17], 

2 2
1 1

( ) ( ) , 1, 2, , ,
N N

i i i

i i

z t w t i Nγ
= =

  ≤ =  E        (8) 

where  

( )
1/ 2

2 0
( ) = ( ) ( ) ,

T

i i iz t z t z t dt
∞       E E                (9) 

and the performance level upper bound 0
i

γ >  can be imple-

mented as a parameter to be minimized during the controller 

construction. 

 

III. CONTROLLER DESIGN 

In this section, based on Lyapunov-Krasovskii stability the-

ory, an algorithm for solving the problem of constructing the 

RDHOFC will be developed by using LMI approach for the 

stochastic large-scale uncertain systems with time-delays. It can 

be also considered as designing a robustly stochastic stabiliza-

tion subject to H∞
 norm performance constraint. Before pro-

ceeding further, we give the following useful lemma for the 

proof of this work. 

Lemma 3.1 [10]: Let U, V, W, and ( )S t  be real matrices of 

appropriate dimensions, with ( )S t  satisfying the norm- 

bounded condition ( ) ( ) ,TS t S t I t≤ ∀ . Then for any matrix 

0Q >  and scalar 0,α >  such that the following results both (10) 

and (11) are hold. 

1( ( ) ) ( ( ) ) ,T T T TQ US t V US t V Q Q UU Q V Vα α−+ ≤ +        (10) 

1 .T T T T
U V V U U U V Vα α−+ ≤ +                 (11) 

We now define the Lyapunov-Krasvoskii functionnal candi-

date for the overall interconnected closed-loop system (6) in the 

following form [15]: 

1 1

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ,
ij

N N t
T T

i icl i j jcl j
t

i j
j i

V x x t P x t x P x d
τ

θ θ θ
−

= =
≠

 
 

= + 
  

       (12) 

where 
icl
P  and 

jcl
P , , 1, 2, , ,i j N=   j i≠ , are some positive 

definite matrices such that ˆ( ) 0V x > . Taking expectation of the 

time derivative of equation (12), we then have 
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( )

( )

( ){

1

1

ˆ( )

ˆ ˆˆ ˆ( ) ( )

ˆ ˆˆ ˆ( ) ( )

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆˆ ˆ( ) (

N
T T

i i icl icl i i

i

T T

i i icl icl i i

T T T

i icl i i i i icl i

N
T T T

i icl ij j ij j ij ij icl i

j
j i

T

i icl ij j i

d
V x

dt

x t A P P A x t

x t A P P A x t

x P Dw w D P x

x t P A x t x t A P x t

x t P A x t

τ τ

τ

=

=
≠

 
  

= +

+ ∆ + ∆

+ +

+ − + −

+ ∆ −





E

E

( )}

( )
N

1

1

ˆˆ ˆ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( ) ( )

T T

j j ij ij icl i

T T

j jcl j j ij jcl j ij

j
j i

N

i

i

x t A P x t

x t P x t x t P x t

V

τ

τ τ
=
≠

=

+ − ∆


+ − − − 






 



       (13) 

By Lemma 3.1 and assumption (3), we obtain 

1

1

ˆ ˆˆ ˆ( )( ) ( )

ˆ ( )(

ˆ) ( ),

T T

i i icl icl i i

T T T

i ia icl ia ia icl ia ia ia

T T

ib icl ib ib icl ib ib ib i

x t A P P A x t

x t P H H P E E

P H H P E E x t

α α

α α

−

−

∆ + ∆

≤ +

+ +

   

   

                (14) 

1

ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( ),

T T T

i icl ij j ij j ij ij icl i

T T

ij i icl ij ij icl i

T T

ij j ij ij ij j ij

x t P A x t x t A P x t

x t P H H P x t

x t E E x t

τ τ

α

α τ τ−

∆ − + − ∆

≤

+ − −

 

 

         (15) 

and for any some symmetric positive matrices 0
T

ij ij
R R= > , 

, 1, 2, , ,i j N=   j i≠ , it is always truth that 

1

ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ),

T T T

i icl ij j ij j ij ij icl i

T T T

i icl ij ij ij icl i j ij ij j ij

x t P A x t x t A P x t

x t P A R A P x t x t R x t

τ τ

τ τ−

− + −

≤ + − −

    (16) 

where 
ia

α , 
ib

α  and 
ijα  are positive real numbers and 

[ ] [ ]

, ,
0 0

0 , ,

0
ˆ0 , , .

0 0 0

ia ib

ia ib

ia ia ib ib ik i ib ik

ij ij

ij ij ij ij

H H
H H

E E E E D C E C

H R
E E H R

   
= =   
   

= =

    = = =        

 

 

 

      (17) 

Let 1 1ˆT

jcl ij ij ij ij
P E E Rα− −= +   . Then, follows from (13) to (16), a 

sufficient condition of robustly asymptotical stabilization can be 

directly obtained with Lyapunov theory as the following quad-

ratic inequality (18), when ( ) 0iw t ≡ , 

1 1

ˆ ˆ[ ( ) ( )] 0,
N N

T

i i icl i

i i

V x t J x t
= =

≤ < E                     (18) 

which implies the following inequality hold, 

1

1

1

1

1

ˆ ˆ

ˆ ˆˆ ˆ(

) 0.

T T T

icl i icl icl i ia icl ia ia icl ia ia ia

T T

ib icl ib ib icl ib ib ib

N
T

icl ij ij ij icl ji

j
j i

T T

ij icl ij ij icl ji ji ji

J A P P A P H H P E E

P H H P E E

P A R A P R

P H H P E E

α α

α α

α α

−

−

−

=
≠

−

= + + +

+ +

+ +

+ + <



   

   

   

      (19) 

Obviously, the resulting sufficient condition of robustly 

asymptotical stabilization (18) is not capable of rejecting white 

noise disturbance. On the other hand, based on the result in (19), 

we will apply the H∞
 technique, which is still one of the most 

popular ways to eliminate the external disturbance in the re-

cently literatures, to solve the problem of designing RDHOFC 

as presented in the following proposition. 

Proposition 3.1: Consider the stochastic large-scale uncertain 

time-delay systems (1) satisfying the assumption (3). Then the 

system is robustly stochastically stabilizable in probability with 

H∞
 performance level 0

i
γ > , via output feedback controller 

(5), for all admissible uncertainties and any time-delays 0
ij

τ ≥ , 

if there exist matrices 0
T

icl iclP P= >  such that the following 

inequality (20) is satisfied, 

2

ˆ ˆ

ˆ 0 0,

ˆ 0

T

icl icl i i

T

i icl i

i

J P D F

D P I

F I

γ

 
 

− < 
 

−  

                      (20) 

where 
icl

J  and ˆ
iD , ˆ

iF  are previously defined in (19) and (7), 

respectively. 

Proof: The H∞
 performance constraint (8) can be rewritten as 

follows: 

2

0
1

( ( ) ( ) ( ) ( )) 0.
N

T T

i i i i i

i

z t z t w t w t dt
κ

γ
=

 − <   E        (21) 

Define  

{ }
[ ]

2

0 0
1

( ) ( ( ) ( ) ( ) ( ))

ˆ ˆ( ( )) ( (0))

N
T T

i i i i i i

i

t z t z t w t w t dt V dt

V x V x

κ κ

γ

κ

=

 Γ = − +  

− −

  E

E


  (22) 

subject to the zero initial condition ˆ (0) 0ix = , we have 

[ ]
0

1

ˆ ˆ( ( )) ( (0))
N

i

i

V x V x V dt
κ

κ
=

− =E                  (23) 

such that inequality (24) can be hold by ˆ( ) 0V x > , 

 { }2

0 0
1

( ) ( ( ) ( ) ( ) ( ))
N

T T

i i i i i i

i

t z t z t w t w t dt Vdt
κ κ

γ
=

 Γ ≤ − +    E      (24) 

Substituting the expression of 

1

N

i

i

V
=

   as defined in (13) into (24) 

and combining the condition (21), then the following inequality 
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(25) can be obtained by letting κ → ∞ , 

20
1

ˆ ˆ ˆˆ ˆ( ) ( )
0.

ˆ( ) ( )

T TN
i icl i i icl i i

T
i i ii icl i

x t J F F P D x t
dt

w t w tD P Iγ

∞

=

   +    
<      

−         
 E  (25) 

It ensures that  

2

ˆ ˆ ˆ
0.

ˆ

T

icl i i icl i

T

i icl i

J F F P D

D P Iγ

 +
< 

−  
                     (26) 

Hence, the proof is completed by applying Schur Complement 

to equation (26). 

Note that in the resulting inequality (20), the controller pa-

rameters ,
ik

A  ,
ik

B  ,
ik

C  and 
ik

D  are unknown and occur in 

nonlinear form, thus the condition (20) cannot be considered as 

an LMI problem. In the sequel, we shall use a method of 

changing variables such that (20) is reduced to two LMIs [8]. 

Therefore, the controller parameters can be solved by LMI 

approach.  

First , partition 
icl
P  and its inverse as 

1, ,
i i i i

icl iclT T

i i i i

S N T M
P P

N W M U

−   
= =   
   

               (27) 

where 
i
S  and 

i
T  are i in n

R
×  and symmetric. Note that the iden-

tity 1

icl iclP P I− =  gives  

,T

i i i iM N I T S= −                                (28) 

and also infers  

0

i

icl T

i

T I
P

M

   
=   
  

                                 (29) 

which leads to 

,
iT T

i icl i i i

i

T I
P

I S
ϕ ϕ η ϕ

 
= =  

 
                     (30) 

where  

, .
0 0

i i

i iT T

i i

T I I S

M N
ϕ η

   
= =   
   

               (31) 

Define the new controller variables as 

ˆ ( ) T T

ik i i i ik i i i ik i i i i ik i i ik iA S A BD C T N B CT S BC M N A M= + + + +  

(32) 

ˆ
ik i i ik i ikB S BD N B= +                                (33) 

ˆ T

ik ik i i ik iC D CT C M= +                              (34) 

ˆ
ik ikD D=                                         (35) 

Then, we can summarize the above derivation for RDHOFC 

design into the following main theorem. 

Main theorem: Consider the system (1) satisfying the as-

sumption (3). Then the system is robustly stochastically stabi-

lizable in probability with H∞
 performance level 0iγ > , via 

output feedback controller (5), for all admissible uncertainties 

and any time-delays 0,ijτ ≥  if there exist some matrices 

0,T

ij ijR R= >  0,
T

i iT T= >  0,
T

i iS S= >  ˆ ,ikA  ,ikB  ,ikC  ,ikD  

and some positive real numbers 
iaα , 

ibα , 
ijα , , 1, 2, , ,i j N=   

j i≠ , such that the following LMI conditions (36) and (37) are 

satisfied, 

0
i

i

T I

I S

 
> 

 
.                               (36) 

11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 33

0,

T

T T

T T T

Θ Θ Θ Θ 
 Θ Θ Θ Θ  <
Θ Θ Θ Θ 
 
Θ Θ Θ Θ 

            (37) 

where 

11

12 13

14

ˆ ˆ ˆ+ ( )
,

ˆ ˆ ˆ+( ) +

ˆ
, ,

( )

(

T T T T

i i i ik i i ik i ik i i ik i

T T T T

ik i i ik i i i ik i i i i ik

T T T

i i ia ib i ia ik ib

T T

i i i ia i ib ia ib ik i

T

i i i i i

AT BC T A C B A A B D C

A A BD C S A B C A S C B

T A H H T E C E

I S A S H S H E E D C

H T E D FT

 + + + +
Θ =  

+ + +  
  

Θ = Θ =   
   

Θ =




 
)

,
T

i

T T

i i i i i iS H E S D F

 
 
 

 

 

(38) 

22 1

1

1

33

1

44 2

0
,

0

0 0 0

0 0 0
,

0 0 0

0 0 0

0 0 0

0 0 0
,

0 0 0

0 0 0

i

ir

ia

ib

ia

ib

ir

i

i

I

I

I

I

I

I

α

α

α

α

γ

−

−

−

−

−Π 
Θ =  −Π 

 −
 

− Θ =
 −
 

−  
 −ϒ
 

−ϒ Θ =
 −
 

− 





            (39) 

23 24 2 4 34 4 40 , 0 ,× ×Θ = Θ = Θ =                    (40) 

[ ]

[ ] [ ]
{ }

{ }

{ }

{ }

1 1

1 1

1

1

1

1

, ,

, ,

,

,

,

,

, , 1, 2, , , , .

T T

i i i i i N

i i iN i i iN

ir i iN

i i Ni

ir i iN

i i Ni

T T T E E E

A A A H H H

diag R R

diag R R

diag I I

diag I I

i r N r i

α α

α α

 = =  
= =

Π =

Π =

ϒ =

ϒ =

= ≠





 
 

 
 








  

        (41) 
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Moreover, the controller parameters 
ik

A , 
ik

B , 
ik

C  and 
ik

D  can 

be computed using (32) to (35). 

Proof: Pre- and post-multiplying { } ,T

i
diag I Iϕ  

{ }idiag I Iϕ , respectively, for the both sides of (20) and 

considering the change of controller variables (32) to (35), then 

(37) can be obtained by applying Schur Complement to (20). 

Hence, the proof is complete.  

 

IV. NUMERICAL EXAMPLE  

A numerical example to demonstrate the effectiveness of the 

proposed RDHOFC design for the stochastic large-scale un-

certain time-delay systems is given in this section. Consider the 

stochastic uncertain time-delay system consisting of two sub-

systems as follows: 

The 1st  subsystem: 

1 1 1 1 1 1 1

12 12 2 12 1 1

1 1 1

1 1 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ),

( ) ( ),

( ) ( ),

x t A A x t B B u t

A A x t D w t

z t F x t

y t C x t

τ

= + ∆ + +∆

+ + ∆ − +

=

=



           (42) 

The 2nd  subsystem: 

2 2 2 2 2 2 2

21 21 1 21 2 2

2 2 2

2 2 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ),

( ) ( ),

( ) ( ),

x t A A x t B B u t

A A x t D w t

z t F x t

y t C x t

τ

= + ∆ + + ∆

+ + ∆ − +

=

=



         (43) 

where the states [ ]1 11 12( ) ( ) ( )
T

x t x t x t= , 

[ ]2 21 22( ) ( ) ( )
T

x t x t x t=  and the system matrices 
1

0 1

2 3
A

 
=  − 

, 

1

1

( ) 0

0 0

r t
A

 
∆ =  

 
, 

1

0

1
B

 
=  
 

, 
1

1

0

( )
B

tν

 
∆ =  

 
, 

1

0.1

0
D

 
=  
 

, 

12

0 0

0.2 1
A

 
=  
 

, 12

12

0 ( )

0 0

t
A

µ 
∆ =  

 
, 

1

1

0

T
F

 
=  
 

, 
1

1

1

T
C

 
=  
 

, 

2

0 1

4 5
A

 
=  − 

, 2

2

( ) 0

0 0

r t
A

 
∆ =  

 
, 

2

1

0
B

 
=  
 

, 2

2

( )

0

t
B

ν 
∆ =  

 
, 

2

0.25

0.5
D

 
=  
 

, 
21

1 0.3

0 0
A

 
=  
 

, 
21

21

0 0

( ) 0
A

tµ

 
∆ =  

 
, 

2

1

0

T
F

 
=  
 

, 

2

1

1

T
C

 
=  
 

, in which ( ) 1ir t ≤ , ( ) 1i tν ≤  and ( ) 1
ij
tµ ≤ , respec-

tively. 

Suppose that [ ]1(0) 4, 7
T

x = , [ ]2 (0) 5, 8
T

x = , the white 

noises 
1( ),w t  

2 ( )w t  satisfying the properties (2), and the 

time-delay parameters given as 
12 21 5τ τ= = . Then, the desired 

output feedback controller parameters ,
ik

A  ,
ik

B  ,
ik

C  and 
ik

D   

can be carried out as follows: 

Step 1: From assumption (3), the various known matrices are: 

1 12 2 2

1 0

0 0
a a bH H H H

 
= = = =  

 
, 

21 1

0 0

0 1
bH H

 
= =  

 
, 

21

0 0

1 0
E

 
=  
 

, 
1

0

1
bE

 
=  
 

, 
2

1

0
bE

 
=  
 

, 
12

0 1

0 0
E

 
=  
 

, 

1 2

1 0

0 1
a aE E

 
= =  

 
, { }( ) ( )ia iS t diag r t= , { }( ) ( )ib iS t diag tν= , 

{ }( ) ( )
ij ij

S t diag tµ= , , 1, 2,i j j i= ≠ . 

Step 2: The LMI optimization matrix variables 
i

T  and ,
i

S  

1, 2,i =  that achieve the addressed H∞
 performance constraint 

for the closed-loop systems of (42) and (43) can be solved by 

using GEVP method in the MATLAB LMI control toolbox 

subject to the LMI conditions (36) and (37) as 

1

1

2

3

2

0.4154 0.1310
,

0.1310 0.9156

4.9937 0.6265
;

0.6265 13.9144

2.3195 1.3474
,

1.3474 0.9485

0.0048 0.0205
10 ,

0.0205 3.1760

T

S

T

S

− 
=  − 
 

=  
 
 

=  
 

 
= ×  

 

                    (44) 

1 min 2 min

with optimal performance values 

( ) 0.2231, ( ) 0.5927.γ γ= =

                  (45) 

Step 3: The matrices 
i

M  and 
i

N , 1, 2,i =  can be solved by 

applying the singular value decomposition method to compute 

matrices 
i iI T S− . Thus, using equations (32) to (35), the de-

sired output feedback controller parameters 
ik
A , 

ik
B , 

ik
C  and 

ik
D , 1, 2,i =  for the closed-loop systems of (42) and (43) can 

be respectively obtained as 

[ ]

1 1

1 1

780.4068 82.9767 607.5679
, ,

125.5511 13.1220 87.7334

10.0646 0.1539 , 0.1659;

k k

k k

A B

C D

− −   
= =   − −   
= − − =

     (46) 

[ ]

4 4

2 2

2 2

0.1882 0.0109 0.3270
10 , 10 ,

2.2976 2.8069 2.5759

0.2068 9.5669 , 0.3023.

k k

k k

A B

C D

− −   
= × = ×   − −   
= − = −

   (47) 

Step 4: The complete dynamic output feedback control laws for 

each subsystem are then 

[ ]

1 1 1

1 1 1

780.4068 82.9767 607.5679
( ) ( ) ( ),

125.5511 13.1220 87.7334

( ) 10.0646 0.1539 ( ) 0.1659 ( ),

t t y t

u t t y t

ξ ξ

ξ

− −   
= +   − −   
= − − +


  (48) 
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[ ]

4

2 2

4

2

2 2 2

0.1882 0.0109
( ) 10 ( )

2.2976 2.8069

0.3270
10 ( ),

2.5759

( ) 10.0646 0.1539 ( ) 0.3023 ( ).

t t

y t

u t t y t

ξ ξ

ξ

− 
= ×  − − 

− 
+ ×  

 
= − − −



 (49) 

Substituting the control laws (48) and (49) into the corre-

sponding subsystems (42) and (43). Then, the frequency re-

sponses of each subsystem are shown in Fig. 1 to Fig. 2, re-

spectively. In which the dotted lines denote the designed upper 

bounds and solid lines denote the actual value of H∞
 norm 

subject to frequency changed. From Figs. 1 and 2, one knows 

that the H∞
 norm performance specifications (45) are well 

satisfied. Furthermore, the time responses of each subsystem are 

shown in Figs. 3 and 4 where the dotted lines are the zero mean, 

unitary variance noise input sequences 
1( )w t  and 

2 ( )w t  gener-

ated by the MATLAB randn command, and solid lines stand for 

the states 
1( )x t  and 

2 ( )x t  response. 

 

V. CONCLUSION 

The present paper has studied the problem of RDHOFC de-

sign for the stochastic large-scale uncertain systems with 

time-delays. It has been shown that the RDHOFC is developed 

via a set of linear matrix inequalities is solvable. Ultimately, a 

numerical example has shown the effectiveness of the proposed 

approach. In the further study, the result of the current paper 

therefore can be considered as a useful foundation for solving 

some stochastic multi-objective control problems.  
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