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ABSTRACT 

The variation in the accuracy of the calculated natural fre-
quencies of pre-twisted beams solved with spline collocation 
method is investigated in this study.  The spline collocation 
method is used to formulate the eigenvalue problems of 
pre-twisted beams.  Three types of boundary conditions are 
considered.  Numerical results indicate that the accuracy of the 
calculated natural frequencies is significantly dependent upon 
the pre-twisted angle of the non-uniform beam.  Results that 
show that spline collocation method is very competitive for 
the vibration analysis of pre-twisted beams are presented. 

I. INTRODUCTION 

Speaking of many kinds of design, dynamic characteristics 
of pre-twisted beams absolutely play a vital role.  In the field 
of turbo or compressor engineering, for simplicity, the beam is 
frequently approximated as a pre-twisted beam.  At the design 
stage, accurate prediction of national frequencies of non- 
uniform pre-twisted beam is of considerable importance at the 
design stage.  The coupled natural frequencies of a pre-twisted 
beam were also investigated using a number of different me-
thods.  Abrate [1] studied the vibration of a pre-twisted blade 
using the Rayleigh-Ritz method.  Anderson [2] studied the 
flexural vibration of rotating bars.  Dawson [4, 5] studied the 
vibration of a pre-twisted blade using the Rayleigh-Ritz me-
thod.  Gupa and Rao [8] applied the finite element method for 
finding the variation of natural frequencies of doubly tapered 
and twisted Timoshenko beams.  Hodges et al. [9] used the 
transfer matrices to compute the fundamental frequencies and 
corresponding modal displacements along the non-uniform 
rotating beams.  They displayed that a blade has a complex 
geometry that makes an exact investigation of its characteris-
tics somewhat complex.  Kuang and Hsu [10, 11] presented 
that the blade is frequently approximated as a pre-twisted 

beam for simplicity in the field of turbo or compressor engi-
neering.  Lin et al. [12] presented the accurate modified 
transfer matrix method for studying the dynamic behavior of a 
non-uniform pre-twisted Timoshenko beam.  Rao [15, 16] 
studied the natural frequency of pre-twisted beam to consider 
the complex shape of beam.  They presented the vibration 
problems of wind blades and turbo blades are crucial parts of 
the design.  Storti and Aboelnaga [19] studied the transverse 
deflections of a straight tapered symmetric beam attached to a 
rotating hub as a model for the bending vibration of blades in 
turbomachinery.  Subrahmanyam et al. [20] showed coupled 
bending-bending vibrations of pre-twisted cantilever blading 
allowing for shear deflection and rotary inertia by the Reissner 
method.  Subrahmanyam and Rao [21] presented coupled 
bending-bending vibrations of pre-twisted tapered cantilever 
beams treated by the Reissner method.  Swaminathan and Rao 
[22] solved the vibrations of rotating, pre-twisted and tapered 
blades.  Young [27] dealt with the dynamics of a pre-twisted 
beam using Rao's comparison functions.  In this work, the 
spline collocation method is implemented to formulate the 
eigenvalue problem of a pre-twisted beam in the discrete form.  
The integrity and computational efficiency of spline colloca-
tion method in this problem will be demonstrated through a 
series of case studies. 

II. SPLINE COLLOCATION METHOD 

The solutions to numerous complex pre-twisted beam 
problems have been efficiently obtained as the use of fast 
computers and range of available numerical methods, in-
cluding the Galerkin method, differential quadrature method, 
finite element technique, differential transform, boundary 
element method, and Rayleigh-Ritz method.  In this study, 
spline collocation method is employed to formulate the dis-
crete eigenvalue problems of various pre-twisted beams.  
Prenter et al. [7, 14, 18] investigated spline and variation 
methods.  Bert and Sheu [3] presented static analysis of beams 
and plates using spline collocation method.  El-Hawary et al. 
[6] discussed quartic spline collocation methods for solving 
linear elliptic partial differential equations.  They derived 
optimal quartic spline approximations to generated high order 
perturbations of partial differential equations.  Patlashenko 
and Weller [13] applied the spline collocation method to solve 
two-dimensional problems, and determined the postbucking 
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behavior of laminated panels subjected to mechanical and 
heating induced loadings.  Viswanathan and Navaneethakrish-
nan [23] studied the free vibration of circular cylindrical thin 
shells using point collocation method.  Rao and Kumar [17] 
presented a B-spline collocation method of higher order for a 
class of self-adjoint singularly pertured boundary value prob-
lems.  Wu et al. [24, 25, 26] displayed the application of the 
spline collocation method to analysis of rigid frame structures 
under various loading conditions.  Their results from the spline 
collocation method are compared with those obtained from the 
differential quadrature method, the finite element method, and 
other available analytical methods.  The spline function can be 
derived from backward or central finite difference.  In this 
work, we consider the knots zi  as follows. 

 iz a ih= +   for 2, 1,0, ..., 1, 2i N N= − − + +  (1) 

where z0, z1, z2, …, zN–1, zN are the abscissas of knots and z–2, 
z–1, zN+1, zN+2 are the abscissas of extended fictitious knots. 

 
b a

h
N

−=  (2) 

where distance h between two adjacent knots keep constant.  
Spline function is given as follows [3, 6, 13]. 
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where Bu,–2(z), Bu,–1(z), Bu,0(z), …, Bu,N+1(z), Bu,N+2(z), and 
Bv,–2(z), Bv,–1(z), Bv,0(z), …, Bv,N+1(z), Bv,N+2(z) form a basis for 

the function defined over the region .a z b≤ ≤   The values at 
the knots are given by the following equations. 
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where aui and avi are coefficients to be determined.  There are 
N + 5 collocation points in the domain.  The spline functions 
should be at least one order higher than that of the governing 
differential equation so that accuracy and smoothness of the 
approximate solution can be guaranteed [24, 25, 26]. 
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Fig. 1.  Geometry of a pre-twisted beam. 

 

III. FORMATION OF THE EIGENVALUE 
PROBLEM 

The spline collocation method is employed to formulate the 
eigenvalue problems for pre-twisted beams.  The pre-twisted 
beam is shown in Fig. 1.  

The length of the pre-twisted beam is L.  b0 and t0 denote the 
width and thickness of the pre-twisted beam at z = 0, respec-
tively.  b1 and t1 denote the width and thickness of the pre- 
twisted beam at z = L, respectively.  The deflection compo-
nents u and v are the transverse flexible deflections of the 
pre-twisted beam.  The kinetic energy of the beam, due to the 
lateral bending vibration [2, 10, 11], is 

 
2 2

0

1

2

L u v
T A dz

t t
ρ

    ∂ ∂
 = +    ∂ ∂    

∫  (6) 

Consider the cross sectional area of the pre-twisted beam 
material at position z to be  

 ( ) 0 0 1 1
z z

A z b t
L L

α β  = + +  
  

 (7) 

where ρ is the density of the pre-twisted beam, and the tapered 
angles of the pre-twisted beam are 

 1 0

0

b b

b
α −

=  (8) 

 1 0

0

t t

t
β −

=  (9) 

The strain energy of the pre-twisted beam is [2, 10, 11] 

2 22 2 2 2
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       ∂ ∂ ∂ ∂
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∫0     

  (10) 

In this equation, Ixx, Iyy and Ixy are the area moments of in-
ertia.  Consider the tapered beam to be pre-twisted with a 
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uniform pre-twisted angle θt and the moments of cross sec-
tional area at the position z can be derived as 

 ( ) 2 2cos sinxx XX t YY t

z z
I z I I

L L
θ θ   = +   

   
 (11) 

 ( ) 2 2sin cosyy XX t YY t

z z
I z I I

L L
θ θ   = +   

   
 (12) 

 ( ) ( )sin cosxy YY XX t t

z z
I z I I

L L
θ θ   = −    

   
 (13) 

where L is the length of the pre-twisted beam and the area 
moments of inertia with respect to the axes X and Y are 

 ( )
33

0 0 1 1
12XX

b t z z
I z

L L
α β  = + +  

  
 (14) 

 ( )
33
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12YY

b t z z
I z
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 (15) 

Hamilton’s principle of motion is 

 ( )2

1

0
t

t
T U W dtδ δ δ− + =∫  (16) 

where δW, δT and δU are the virtual work, the variation of 
kinetic energy and the variation of strain energy, respectively.  
By using Hamilton principle, the equations of motion of this 
pre-twisted beam can be derived as: 
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The corresponding boundary conditions of the clamped- 
free beam are  

 u = 0      at   z = 0 (19a) 

 0
u

z

∂ =
∂

  at   z = 0 (19b) 

 v = 0  at   z = 0 (19c) 

 0
v

z
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  at   z = 0 (19d) 
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The corresponding boundary conditions of the simply sup- 
ported beam are  

 u = 0  at  z = 0 (20a) 
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 v = 0  at  z = 0 (20c) 
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2 2

2 2
0yy xy

u v
EI EI

z z

∂ ∂+ =
∂ ∂

  at  z = L (20f) 

 v = 0  at  z = L (20g) 
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The corresponding boundary conditions of the clamped- 
clamped beam are  

 u = 0  at  z = 0 (21a) 

 0
u

z

∂ =
∂

  at  z = 0 (21b) 

 v = 0  at  z = 0 (21c) 

 0
v

z

∂ =
∂

  at  z = 0 (21d) 

 u = 0  at  z = L (21e) 

 0
u

z

∂ =
∂

  at  z = L (21f) 

 v = 0  at  z = L (21g) 

 0
v

z

∂ =
∂

  at  z = L (21h) 

The system is composed of eight boundary conditions and 
two coupled governing equations.  With the solution assumed 
to be of the form u = U exp (iωt) and v = V exp (iωt), Eqs. (17) 
and (18) can then be simplified to 
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where ω is the angular frequency of vibration.  The corres-
ponding boundary conditions of the clamped-free beam are: 

 U = 0  for  z = 0 (24a) 

 0
dU

dz
=  for  z = 0 (24b) 

 V = 0  for  z = 0 (24c) 

 0
dV

dz
=   for  z = 0 (24d) 
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  for  z = L (24h) 

The corresponding boundary conditions of the simple 
supported beam can be shown as 

 U = 0  for  z = 0 (25a) 
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dz dz
+ =   for  z = 0 (25b) 

 V = 0  for  z = 0 (25c) 
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 U = 0  for  z = L (25e) 
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 V = 0  for  z = L (25g) 
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d V d U
EI EI
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The corresponding boundary conditions of the clamped- 
clamped beam may be presented as stated below: 

 U = 0  for  z = 0 (26a) 

 0
dU

dz
=  for  z = 0 (26b) 

 V = 0  for  z = 0 (26c) 

 0
dV

dz
=   for  z = 0 (26d) 

 U = 0  for  z = L (26e) 

 0
dU

dz
=   for  z = L (26f) 

 V = 0  for  z = L (26g) 

 0
dV

dz
=   for  z = L (26h) 

In seeking an efficient discretization technique to acquire 
an accurate numerical solution with very small number of 
knots, the spline collocation method is utilized to solve nu-
merically these partial differential equations.  By applying the 
spline collocation method, Eqs. (4) and (5) are substituted into 
(22) and (23).  The equation of motion of a pre-twisted beam 
can be rearranged into the spline collocation method formula.  
This leads to 
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Using the spline collocation method, the boundary condi-
tions of the clamped-free beam can be rearranged into the 
matrix forms as 
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− −




  

( ) ( )2
, 2

2

u N N
yy N

d B z
EI z

dz
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, 2 , 1 , 2...
T

u u u Na a a− − +   +  

( ) ( ) ( ) ( )2 2
, 2 , 1

2 2
....v N v N
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d B z d B z
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( ) ( )2
, 2

2

v N N
xy N

d B z
EI z
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, 2 , 1 , 2...
T

v v v Na a a− − +   = [0] 

  (29e) 
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  (29h) 

Using the spline collocation method, the boundary condi-
tions of the simple supported beam can be rearranged into the 
matrix forms as 

( ) ( ) ( ), 2 0 , 1 0 , 2 0...u u u NB z B z B z− − +    

, 2 , 1 , 2...
T

u u u Na a a− − +   = [0] (30a) 

( ) ( ) ( ) ( )2 2
, 2 0 , 1 0

0 02 2

u u
yy yy

d B z d B z
EI z EI z

dz dz
− −




 

( ) ( )2
, 2 0

0 2
... u N
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d B z
EI z

dz
+ 




, 2 , 1 , 2...
T

u u u Na a a− − +   + 

( ) ( ) ( ) ( )2 2
, 2 0 , 1 0

0 02 2

v v
xy xy

d B z d B z
EI z EI z

dz dz
− −




 

( ) ( )2
, 2 0

0 2
... v N

xy

d B z
EI z

dz
+ 




, 2 , 1 , 2...
T

v v v Na a a− − +   = [0] 

  (30b) 

( ) ( ) ( ), 2 0 , 1 0 , 2 0...v v v NB z B z B z− − +    

, 2 , 1 , 2...
T

v v v Na a a− − +   = [0] (30c) 

( ) ( ) ( ) ( )2 2
, 2 0 , 1 0

0 02 2

v v
xx xx

d B z d B z
EI z EI z

dz dz
− −
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( ) ( )2
, 2 0

0 2
... v N

xx
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EI z
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, 2 , 1 , 2...
T

v v v Na a a− − +   + 

( ) ( ) ( ) ( )2 2
, 2 0 , 1 0

0 02 2

u u
xy xy
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, 2 , 1 , 2...
T
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  (30d) 

( ) ( ) ( ), 2 , 1 , 2...u N u N u N NB z B z B z− − +    

, 2 , 1 , 2...
T
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( ) ( )2
, 2
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... v N N

xy N
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+ 




, 2 , 1 , 2...
T

v v v Na a a− − +   = [0]
 

  (30f) 

( ) ( ) ( ), 2 , 1 , 2...v N v N v N NB z B z B z− − +    

, 2 , 1 , 2...
T

v v v Na a a− − +   = [0] (30g) 
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− −
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dz dz
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( ) ( )2
, 2

2
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xy N
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EI z
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, 2 , 1 , 2...
T

u u u Na a a− − +   = [0]
 

  (30h) 

Using the spline collocation method, the boundary condi-
tions of the clamped-clamped beam can be rearranged into the 
matrix forms as 

( ) ( ) ( ), 2 0 , 1 0 , 2 0...u u u NB z B z B z− − +    

, 2 , 1 , 2...
T

u u u Na a a− − +   = [0] (31a) 

( ) ( ) ( ), 2 0 , 1 0 , 2 0...u u u NdB z dB z dB z

dz dz dz
− − + 

 
 

 

, 2 , 1 , 2...
T

u u u Na a a− − +   = [0] (31b) 

( ) ( ) ( ), 2 0 , 1 0 , 2 0...v v v NB z B z B z− − +  
 

, 2 , 1 , 2...
T

v v v Na a a− − +   = [0] (31c) 

( ) ( ) ( ), 2 0 , 1 0 , 2 0...v v v NdB z dB z dB z

dz dz dz
− − + 

 
 

 

, 2 , 1 , 2...
T

v v v Na a a− − +   = [0] (31d) 

( ) ( ) ( ), 2 , 1 , 2...u N u N u N NB z B z B z− − +    

, 2 , 1 , 2...
T

u u u Na a a− − +   = [0] (31e) 

( ) ( ) ( ), 2 , 1 , 2...u N u N u N NdB z dB z dB z

dz dz dz
− − + 

 
 

 

, 2 , 1 , 2...
T

u u u Na a a− − +   = [0] (31f) 

( ) ( ) ( ), 2 , 1 , 2...v N v N v N NB z B z B z− − +    

, 2 , 1 , 2...
T

v v v Na a a− − +   = [0] (31g) 

( ) ( ) ( ), 2 , 1 , 2...v N v N v N NdB z dB z dB z

dz dz dz
− − + 

 
 

 

, 2 , 1 , 2...
T

v v v Na a a− − +   = [0] (31h) 

The eigenvalues of the resultant algebraic equation system 
provide the natural frequencies of the pre-twisted beam prob- 
lem. 

IV. NUMERICAL RESULTS AND DISCUSSION 

Figure 2 shows the calculated natural frequencies of 
clamped-free beams with different pre-twisted angles.  The 
data for this pre-twisted beam are [4]: b0/t0 = 4.  The 
non-dimensional natural frequencies of the pre-twisted beam  

are defined as 4 3
0 012i i AL Eb tω ω ρ= .  Numerical results  
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Fig. 2.  The calculated natural frequencies of the clamped-free beams 

with different pre-twisted angles. 

 

100

90

80

70

60

50

40

30

20

10

0
0 50 100 150 200 250 300 350 400 450 500

Pre-twisted angle (Deg)

N
on

di
m

en
si

on
al

 n
at

ur
al

 fr
eq

ue
nc

y ω1

ω2

ω3

ω4

 
Fig. 3.  The natural frequencies of the simple-supported beams with vari-

ous pre-twisted angles. 

 
indicate that the natural frequencies of a pre-twisted beam 
calculated using the spline collocation method are shown to be 
in favorable agreement with the numerical results solved using 
the Rayleigh-Ritz method [4].  No significant error is found 
for the results calculated using the spline collocation method.  
Results indicated that a higher first natural frequency is cal-
culated for the beam with a higher total pre-twisted angle for 
θt < 360°.  Numerical results also indicated that the calculated 
second natural frequency is decreased while the pre-twisted 
angle increasing for θt < 360°. 

Figure 3 shows the natural frequencies of simple-supported 
beams with various pre-twisted angles.  Numerical results indicated 
that a higher first natural frequency is calculated for the beam 
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Fig. 4.  The natural frequencies of the clamped-clamped beams with vari-

ous pre-twisted angles. 

 

with a higher pre-twisted angle for θt < 360°.  Numerical re-
sults also indicated that the calculated second natural fre-
quency is decreased while the pre-twisted angle increasing for 
θt < 360°.  The pre-twisted angles deeply affect the third and 
fourth natural frequencies.  

Figure 4 shows the natural frequencies of the clamped- 
clamped beams with various pre-twisted angles.  Numerical 
results indicated that a higher first natural frequency is calcu-
lated for the beam with a higher pre-twisted angle for θt < 90°.  
Numerical results also indicated that the calculated second 
natural frequency is decreased while the pre-twisted angle 
increasing for θt < 90°.  Numerical results in this example 
show that the pre-twisted angle can significantly affect the 
natural frequencies of the pre-twisted beams.   

Figure 5 describes the natural frequencies of the clamped- 
free beams with various tapered angles β.  The fundamental 
frequencies are almost constant.  Numerical results also indi-
cated that the calculated second, third and fourth natural fre-
quencies are increased while the tapered angles increasing. 

Figure 6 shows the natural frequencies of the simple- 
supported beams with various tapered angles β.  Numerical 
results in this example show that the tapered angle can sig-
nificantly affect the first frequency.  The first, second, third 
and fourth natural frequencies increase with tapered angles β, 
almost linearly. 

Figure 7 shows the natural frequencies of the clamped- 
clamped beams with various tapered angles β.  Numerical 
results also indicated that the calculated natural frequencies 
are increased while the tapered angles increasing in general.  
Numerical results indicate that the tapered angle is a very sen-
sitive parameter for the vibration of the tapered beam.  The 
clamped-clamped boundary conditions give rise to higher 
natural frequencies of the beams in comparison with the 
simply supported boundary conditions. 
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Fig. 5.  The natural frequencies of the clamped-free beams with various 

tapered angles β. 
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Fig. 6.  The natural frequencies of the simple-supported beams for vari-

ous tapered angles β. 

 

V. CONCLUDING REMARKS 

The variation in calculated natural frequencies for the pre- 
twisted beams using the spline collocation method is investi-
gated.  The solution of the governing fourth-order differential 
equation is approximated by the spline function with poly-
nomial.  The efficiency and accuracy of the proposed method 
is ascertained by comparison with existing solutions.  Nu-
merical results in different cases validated the applicability of 
the proposed method for solving such an engineering problem.  
The pre-twisted angles influence the natural frequencies of 
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Fig. 7.  The natural frequencies of the clamped-clamped beams with vari-

ous tapered angles β. 

 

the beams.  The demonstrated accuracy and simplicity of the 
proposed method makes it a good candidate for modeling 
more complicated pre-twisted beam problems. 
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