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VIBRATION ANALYSIS OF PRE-TWISTED BEAMS
USING THE SPLINE COLLOCATION METHOD

Ming-Hung Hsu*
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ABSTRACT

The variation in the accuracy of the calculated natural fre-
guencies of pre-twisted beams solved with spline collocation
method is investigated in this study. The spline collocation
method is used to formulate the eigenvalue problems of
pre-twisted beams. Three types of boundary conditions are
considered. Numerical resultsindicate that the accuracy of the
calculated natural frequenciesis significantly dependent upon
the pre-twisted angle of the non-uniform beam. Results that
show that spline collocation method is very competitive for
the vibration analysis of pre-twisted beams are presented.

I.INTRODUCTION

Speaking of many kinds of design, dynamic characteristics
of pre-twisted beams absolutely play avital role. In thefield
of turbo or compressor engineering, for simplicity, the beamis
frequently approximated as a pre-twisted beam. At the design
stage, accurate prediction of national frequencies of non-
uniform pre-twisted beam is of considerable importance at the
design stage. The coupled natural frequencies of a pre-twisted
beam were also investigated using a humber of different me-
thods. Abrate [1] studied the vibration of a pre-twisted blade
using the Rayleigh-Ritz method. Anderson [2] studied the
flexural vibration of rotating bars. Dawson [4, 5] studied the
vibration of a pre-twisted blade using the Rayleigh-Ritz me-
thod. Gupaand Rao [8] applied the finite element method for
finding the variation of natural frequencies of doubly tapered
and twisted Timoshenko beams. Hodges et al. [9] used the
transfer matrices to compute the fundamental frequencies and
corresponding modal displacements along the non-uniform
rotating beams. They displayed that a blade has a complex
geometry that makes an exact investigation of its characteris-
tics somewhat complex. Kuang and Hsu [10, 11] presented
that the blade is frequently approximated as a pre-twisted
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beam for simplicity in the field of turbo or compressor engi-
neering. Lin et al. [12] presented the accurate modified
transfer matrix method for studying the dynamic behavior of a
non-uniform pre-twisted Timoshenko beam. Rao [15, 16]
studied the natural frequency of pre-twisted beam to consider
the complex shape of beam. They presented the vibration
problems of wind blades and turbo blades are crucia parts of
the design. Storti and Aboelnaga [19] studied the transverse
deflections of a straight tapered symmetric beam attached to a
rotating hub as a model for the bending vibration of bladesin
turbomachinery. Subrahmanyam et al. [20] showed coupled
bending-bending vibrations of pre-twisted cantilever blading
alowing for shear deflection and rotary inertia by the Reissner
method. Subrahmanyam and Rao [21] presented coupled
bending-bending vibrations of pre-twisted tapered cantilever
beams treated by the Reissner method. Swaminathan and Rao
[22] solved the vibrations of rotating, pre-twisted and tapered
blades. Young [27] dedlt with the dynamics of a pre-twisted
beam using Rao's comparison functions. In this work, the
spline collocation method is implemented to formulate the
eigenvalue problem of a pre-twisted beam in the discrete form.
The integrity and computational efficiency of spline colloca-
tion method in this problem will be demonstrated through a
series of case studies.

[I.SPLINE COLLOCATION METHOD

The solutions to numerous complex pre-twisted beam
problems have been efficiently obtained as the use of fast
computers and range of available numerical methods, in-
cluding the Galerkin method, differential quadrature method,
finite element technique, differential transform, boundary
element method, and Rayleigh-Ritz method. In this study,
spline collocation method is employed to formulate the dis-
crete eigenvalue problems of various pre-twisted beams.
Prenter et al. [7, 14, 18] investigated spline and variation
methods. Bert and Sheu [3] presented static analysis of beams
and plates using spline collocation method. El-Hawary et al.
[6] discussed quartic spline collocation methods for solving
linear elliptic partial differential equations. They derived
optimal quartic spline approximations to generated high order
perturbations of partia differential equations. Patlashenko
and Weller [13] applied the spline collocation method to solve
two-dimensional problems, and determined the postbucking



M.-H. Hsu: Vibration Analysis of Pre-Twisted Beams Using the Spline Collocation Method 107

behavior of laminated panels subjected to mechanical and
heating induced loadings. Viswanathan and Navaneethakrish-
nan [23] studied the free vibration of circular cylindrical thin
shells using point collocation method. Rao and Kumar [17]
presented a B-spline collocation method of higher order for a
class of self-adjoint singularly pertured boundary value prob-
lems. Wu et al. [24, 25, 26] displayed the application of the
spline collocation method to analysis of rigid frame structures
under variousloading conditions. Their resultsfrom the spline
collocation method are compared with those obtained from the
differential quadrature method, the finite element method, and
other available analytical methods. The spline function can be
derived from backward or central finite difference. In this
work, we consider the knots z as follows.

zZ =a+ih fori=-2,-10,..,N+1LN+2 Q)

where 7y, 71, 2, ..., Zn-1, Zy are the abscissas of knots and z.,,
Z.1, Zn+1, Za+o are the abscissas of extended fictitious knots.

_b-a
N

h @

where distance h between two adjacent knots keep constant.
Spline function is given asfollows 3, 6, 13].
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% it ze(2.4,2,)
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where Bu,—Z(Z)! Bu,—l(z)l Bu,O(Z)r LERS] Bu,N+1(Z)v Bu,N+2(Z)! and
By-2(2), By-1(2), Buo(2), ..., Bun:1(2), Bunio(2) form abasis for
the function defined over theregion a< z<b. Thevaluesat
the knots are given by the following equations.

N+2

Umﬁ;%%&) @

N+2
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where a; and a,; are coefficients to be determined. There are
N + 5 collocation points in the domain. The spline functions
should be at least one order higher than that of the governing
differential equation so that accuracy and smoothness of the
approximate solution can be guaranteed [24, 25, 26].

=

Fig. 1. Geometry of a pre-twisted beam.

1. FORMATION OF THE EIGENVALUE
PROBLEM

The spline collocation method is employed to formulate the
eigenvalue problems for pre-twisted beams. The pre-twisted
beam is shown in Fig. 1.

Thelength of the pre-twisted beamisL. by andt, denotethe
width and thickness of the pre-twisted beam at z = 0, respec-
tively. b; and t; denote the width and thickness of the pre-
twisted beam at z = L, respectively. The deflection compo-
nents u and v are the transverse flexible deflections of the
pre-twisted beam. The kinetic energy of the beam, due to the
lateral bending vibration [2, 10, 11], is

1 auY (avY
T==| pA|—| +|—| |d 6
o33 e o
Consider the cross sectional area of the pre-twisted beam
material at position zto be

A(2)=lyt, (1+ afj [1+ ,ij @)

where p isthe density of the pre-twisted beam, and the tapered
angles of the pre-twisted beam are

_h-h ®

o

b= ©)

The strain energy of the pre-twisted beamis[2, 10, 11]

10 PETRE RN RY aavY
U =EL E{IW{?J +2|W[822}[822j+|“(azzj sz

(10)

In this equation, |, |y and |, are the area moments of in-
ertia.  Consider the tapered beam to be pre-twisted with a
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uniform pre-twisted angle & and the moments of cross sec-
tional area at the position z can be derived as

.z .z

I (Z) =1, cOS (Ietjﬂwsm (Ietj (11)
oz z

I, (2) =l sin (IQJHWCOSZ(IQJ (12
. (z z

Ixy(z):(lw—Ixx)smﬁtetjcos(tetj (13

where L is the length of the pre-twisted beam and the area
moments of inertia with respect to theaxes X and Y are

_bts
Iy (2) = T (LHZLJ(H’B j (14)
bot
Iy (2)= g (1+aLJ £1+ﬂ j (15)
Hamilton's principle of motionis
[F(sT-6U+ow)dt = (16)

where dW, oT and &U are the virtual work, the variation of
kinetic energy and the variation of strain energy, respectively.
By using Hamilton principle, the equations of motion of this
pre-twisted beam can be derived as:

0%El, 92 OEl , 9° 4
0°u au+2 yyaquEI o'u

AL L a- g
PR 02 o2 oz o7 Y or

9%El,, 9%
t—-=—=12
dz° 0z

oEl , 9%
az oz

d%v
+E|xya?:0

17

v
> 9z*
+3ZE|xy82u+ oEl,, 9°u o’ o 24U

07 07 az o7 Y 9z

3
pAﬂ 0°El av+28Elxxav

> 5+ El
ot? 0% 97 0z 0z

=0 (18)

The corresponding boundary conditions of the clamped-
free beam are

u=0 a z=0 (193)
NM_0a z=0 (19b)
0z
v=0a z=0 (19¢)
N_oa z=0 (19d)
0z

9%u 0%

Elyyg-i_Elxy?:O a z=L (196)
d d°u 0%v
El +El,—|=0 a z=L 19f
82( T XyE)zzj (190
2 2
SR a—‘jzo a z=L (199)

* 97 Y 9z

2

8 Bl 8V LE U
azl  *oz e

The corresponding boundary conditions of the simply sup-
ported beam are

j 0az=L (1%

u=0a z=0 (20a)

2°u R
EIW¥+EIW82_O a z=0 (20b)
v=0a z=0 (20c)

%V 2%
EIXXa?+EIxy82—O a z=0 (20d)
u=0a z=L (20e)

9%u 0%
Elyy?—i_Elxy?:O a z=L (20f)
v=0a z=L (200)

R azu

The corresponding boundary conditions of the clamped-
clamped beam are

u=0a z=0 (218
N_o az=0 (21b)
0z
v=0a z=0 (21c)
ﬂ=O a z=0 (21d)
0z
u=0a z=L (21e)
au

—=0 a z=L (21f)
oz
v=0a z=L (219)
&zo a z=L (21h)
0z

The system is composed of eight boundary conditions and
two coupled governing equations. With the solution assumed
tobeof theformu=U exp (iwt) and v=V exp (i wt), Eqs. (17)
and (18) can then be simplified to
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dzElw dU 2dE|yy du d*u The corresponding boundary conditions of the clamped-
dZ2 dZ dz d ¥ 47 clamped beam may be presented as stated below:
CE gy dEL g iy U=0 for z=0 (264)
+——r—— 42— ——+El ——=0’pAU  (2) du
dz® dz dz dz dz o 0 for z=0 (26b)
z
dzElxxdz\/+2dElxxd3\/+El ﬂ V=0 f 0 o6
dz?2 dz° dz dZ’ * dz* sotorz= (260)
av
d’El,, d2y _dEl_, d%U d‘u —=0 for z=0 (26d)
<l +2—~ +El =w’pAV (23 dz
e A
. o U=0 for z=L (26e€)
where w is the angular frequency of vibration. The corres-
ponding boundary conditions of the clamped-free beam are: au —0 for z=L (26f)
U=0 for z=0 (249) @
U V=0 for z=L (260)
—=0for z=0 (24b) av
dz =0 for z=L (26h)
V=0 for z=0 (240) g
Y In seeking an efficient discretization technique to acquire
—=0 for z=0 (24d)  an accurate numerical solution with very small number of
dz knots, the spline collocation method is utilized to solve nu-
d2U a3V merically these partial differential equations. By applying the
Bl,— +El,—— =0 for z=L (24e)  spline collocation method, Egs. (4) and (5) are substituted into
dz dz (22) and (23). The equation of motion of a pre-twisted beam
d d?u a3V can be rearranged into the spline collocation method formula.
E(EIWF"' EIW?J=O for z=L (24f) Thisleadsto
iy . {dZEIW(zi)dzBuyz(zi) d’El,, (z)d*B, ,(7)
El ,—+El,——=0for z=L 2 dz* dz’ dz? dz?
*dz? Y dz? (249)
0’El,, (2) d°B,..(2)
d dv d2u ~ W un+2 (4 T
E[Elxx¥+ E|Xy?j:0 for z=L (24h) dz dz [au,—z TS a11,N+2:|
The corresponding boundary conditions of the simple dEl, (z)d°B, ,(z) dEl, (z)d°B, ,(7)
supported beam can be shown as 2 dz dz 2 dz dz
U=0 for z=0 (259) ,
dEl,, (7) d°B, v (2) T
2 2—2 b +
g, 99 8, Y o forz=0  (250) dz | (A A o B
dz dz
V:O for Z:O (250) EI d4Bu,—2(;) EI d4Bu—1(Z)
" } w(Z) w(Z) s
Elxxd—2+Elxyd—l2J=O for z=0 (25d)
dz dz 4‘B (2) )
u,N+2 \ 5
U=0 for z=L (25¢) EIW(; )T:| [au,—z &1 - am;,N+2] +
d?u dv _
Ely gz tElw gz =0 for z=L (25 | d°El, (2)d"B,,(3) d°El,(2)dB,.(3)
dz’ dz’ dz’ dz’
V=0 for z=L (259)
2 2
d2V d2U d EIXy(Z|)d Bv,N+2(Zi) T
El, o+l =0 for z=L (25h) = = (A & - &uel +
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,0El, (2) B, ,(2) ,0El,(2)d°B,,(2)
dz dz? dz dz

El,,(z)dB,\.,(2) T
e = }[%2 8y - A Tt
ERCLLFLIERALLT
E'w(a)%} (a2 B -~ A
[@°pA(2)B, ,(2) @*pA(z)B, (Z)
@*pA(Z)B,y.»(2)] (A, B4 ~ B for
i=0,1,...,N (27

d’El, (z)d’B, ,(z) d°El,(z)d’B,,(z)
dz? dz? dz? dz?

dzEIxx (ZI) dZBv N+2
dz’ dz’

( :|[avz & - av,N+2:|T+

,0E14(3) °B, 2 (3) ,dEl,(2) d°B,.(3)
dz dz’ dz dz’

2dE|xx (Z| ) dst N+2
dz dz’

[EIV(Z)d“BV,z(z)

:||:av 2 & e av,N+2:|T+

dz*

dz dz’ dz dz’

2dE|xx (Z| ) dst N+2
dz dz’

}[au_z Iy

d‘B, () d'B, ,(z)
o () PR lB) gy ) T
d'B, .
El,, () sz2( (a2 @ o &yl =

[@*pA(X)B, (%) @*pA(%)B, . (X)

)] [a. a.

] for
(28)

a)pA()ﬂ) vN+2
i=0,1,...,N

Using the spline collocation method, the boundary condi-
tions of the clamped-free beam can be rearranged into the
matrix forms as

|: ZO) Bu,N+2(ZO):|
(A, & - %,N+2]T=[0] (29a)
dBU~-2(ZO) dBu 1(20) dBu,N+2(ZO)
4z e B
(3. B — 8] =00 (29b)
|:BV -2 ZO) BV,N+2(ZO):|
[av 2 & a\/N+2]T (0] (29¢)
dBV 2 v 1(20) dBv,N+2(Zo)
e B
[a. a. 8VN+2]T (0] (29d)
{Elw(zN)dzB“dzzz(z“) E|W(ZN)dzBudzlz(ZN)
EIW(ZN)dZBu,crj\J;(ZN)}
[au,fz a1 au,rxuz}T +
|:E|xy(ZN)d BvdZZZ(ZN) Elxy(ZN)d B\aZlZ(ZN)
d T
Bl (zy) ng:( }[3\/,—2 &1 - 3\/,N+2:| =[0]

(29
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d°B, ,(z,) d°B, ,(z,)
I:EIXX(ZN)% Elxx(ZN) dzl3 -
d°B, ., (7
Elxx(ZN )%} [6\,,_2 & 1 - a\/,N+2]T+

dEl, (z,) d’B,_,(z,) dEl,(z,)d’B,(z)
dz dz? dz dz?

dEl . (z,) d°B, \.»

(ZN)} [av,—z a,_y - av,N+2:|T+

dz dz?
d3Bu,—2(ZN) dSBu,—l(ZN)
EIXY(ZN)T ElW(ZN)T
d°B, \,, (2
EIW(ZN)%(N)} [au,fz &1 au,N+2:|T+

dEl,, (z,) d’B,_,(z,) dEl,(z,)d’B,,(z)
dz dz? dz dz?

dEIxy(ZN) dzBN+2(ZN)

}[au,_z 8,, - au.] =0

dz dz?
(29)
d’B, ,(z) d’B, ,(z,)
EI XX (ZN ) dZZ EI XX (ZN ) dZZ
dZBVN+ (ZN)
Elxx(ZN) dz;
[ & -~ Ane] +
d*B, ,(2) d’B, . (%)
[E@(z@ 28 g (7)o
d?B P4
EIW(ZN)%(N)} [au,-z TR au,mz]T:[o]
(299)
d’B, ., (z) d’B, . (z)
I:EIXX(ZN)a—Zzs EIXX(ZN) dz3
d*B z
Elxx(ZN)\hé\‘i—;i(,\‘):| [6\,,_2 & 1 - av,N+2]T+

dEl, (z,)d’B, ,(z,) dEl.(z,)d’B,,(z)
dz dz? dz dz?

dEuxx(zN)dszmz(ZN)}[avz A - Al +
. BTN N+

dz dz?
dSBu,—Z(ZN) dSBu,—l(ZN)
{E'W(ZN)T Elxy(ZN)T
dSBuN+2 ZN
EIW(ZN)T():| |:au,—2 &g - au,N+2:|T+

dEl, (z,) d°B, ,(z,) dEl(z)d"B, ,(z)
dz dz? dz dz?

dEl,, (z,) d°B

uN+2 (DN T_
& dzz( )} (3 a. - aw.] =0

(29h)

Using the spline collocation method, the boundary condi-
tions of the simple supported beam can be rearranged into the
matrix forms as

[B.2(%) B.a(z) -+ Biuo(z)]

. Ay =[0] (30a)

1, ()2 P (%)

{EIW(ZO)dZBu,-z(Zo) ey

dz?

Elyy(zo) : au,N+2:|T+

dZBu N+
,_z(z-ﬁ} la, a.

dz?

d’B, . (%
el () oal®)

o, ) T2

dZBv,N+2(ZO)

El,y (2) }[am 8,y - 8] =[O

(30b)
[B..(z) B.(z) Boniz(2)]

. a.] =[0] (300)

[a. a
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dzB N+2 T
Elm(zo)vaT(ZO):l |:av,—2 a1 - av,N+2:| +
d’B ) dZBuf1
o1, (2) ) g () TRa(2)
d’B .
E'xy(zo)%(z‘))} [, & - &) =[0]
(30d)
[Bu,—z (ZN ) Bu,—l(ZN ) Bu,N+2 (ZN ):|
(A & au,N+2]T=[0] (30€)
d’B, ,(z, d’B, ,
2, () 22 |, (o) TR
dzBu,N+2(ZN) T
EIW(ZN)T:| [aufz a, 1 au,N+2:| +
[Elxy(ZN)dZBvdzzz(ZN) EIXy(ZN)dZBVlez(zN)
dzB\/,N+2(ZN) T _
EIW(ZN)T} |:av,72 & av,N+2:| _[0]
(30f)
[Bv,—z (ZN ) Bv,—l (ZN ) BV,N+2 (ZN ):|
(a2 & « &u.] =[0 (309)
d’B 2\ 4N dsz—l N
()2 |, () )
dsz,N+2(ZN) T
EIXX(ZN) dz }[3\12 &, av,N+2:' +
[EIXY(ZN)d Bsln) g (g,) L Ba(2)
dZBu,N+2 (ZN) T _
EIXV(ZN)T:I |:au,—2 &1 au,N+2] =[0]

(30h)

Using the spline collocation method, the boundary condi-
tions of the clamped-clamped beam can be rearranged into the
matrix forms as

[Biz(2) Bia(z)  —  Bue(z)]
(3 8. - au.] =[O0 (31a)
(%) B.(z)  B.(z)

dz dz dz
(8 & -« &) =00 (31b)
[B2(%) Ba(z) -~ Be(z)]
(8, &, - au.] =0 (310)
B,.(%) dB.(x) dBV,M(Zo)}

dz dz dz
(3. &, — au.] =0 (31d)
[B.2(zv) Ba(z) -~ Buue(z)]
(a2 &1 - &) =[O (31¢)
{dBu,z(ZN) dB, , (2) dBu,M(ZN)}

dz dz dz
(3, & - &y.] =0 (31)
[B2(z) Ba(z) o Bia(z)]
(3 &, - 2. =0 (319)
dB, ,(z,) dB,_.(z) dB, .. ()

dz dz dz
(8, &, - ay.] =0 (31h)

The eigenvalues of the resultant algebraic equation system
provide the natural frequencies of the pre-twisted beam prob-
lem.

IV.NUMERICAL RESULTSAND DISCUSSION

Figure 2 shows the calculated natural frequencies of
clamped-free beams with different pre-twisted angles. The
data for this pre-twisted beam are [4]: by/to = 4. The
non-dimensional natural frequencies of the pre-twisted beam

are defined as @ = w \[12pAL* /EbtS . Numerical results
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Fig. 2. The calculated natural frequencies of the clamped-free beams

with different pre-twisted angles.
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Fig. 3. The natural frequencies of the smple-supported beams with vari-
ous pre-twisted angles.

indicate that the natural frequencies of a pre-twisted beam
calculated using the spline collocation method are shown to be
in favorable agreement with the numerical results solved using
the Rayleigh-Ritz method [4]. No significant error is found
for the results calculated using the spline collocation method.
Results indicated that a higher first natural frequency is cal-
culated for the beam with a higher total pre-twisted angle for
6 < 360°. Numerical results also indicated that the calcul ated
second natural frequency is decreased while the pre-twisted
angleincreasing for & < 360°.

Figure 3 shows the natural frequencies of simple-supported
beams with various pre-twisted angles. Numerica resultsindicated
that a higher first natural frequency is calculated for the beam
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Fig. 4. The natural frequencies of the clamped-clamped beams with vari-
ous pre-twisted angles.

with a higher pre-twisted angle for 6 < 360°. Numerical re-
sults aso indicated that the calculated second natura fre-
guency is decreased while the pre-twisted angle increasing for
6 < 360°. The pre-twisted angles deeply affect the third and
fourth natural frequencies.

Figure 4 shows the natural frequencies of the clamped-
clamped beams with various pre-twisted angles. Numerical
results indicated that a higher first natural frequency is calcu-
lated for the beam with a higher pre-twisted angle for 6 < 90°.
Numerical results also indicated that the calculated second
natural frequency is decreased while the pre-twisted angle
increasing for 6 < 90°. Numerica results in this example
show that the pre-twisted angle can significantly affect the
natural frequencies of the pre-twisted beams.

Figure 5 describes the natural frequencies of the clamped-
free beams with various tapered angles 5. The fundamental
frequencies are amost constant. Numerical results also indi-
cated that the calculated second, third and fourth natural fre-
guencies are increased while the tapered angles increasing.

Figure 6 shows the natural frequencies of the simple-
supported beams with various tapered angles 5. Numerical
results in this example show that the tapered angle can sig-
nificantly affect the first frequency. The first, second, third
and fourth natural frequencies increase with tapered angles 5,
amost linearly.

Figure 7 shows the natural frequencies of the clamped-
clamped beams with various tapered angles 5. Numerica
results also indicated that the calculated natural frequencies
are increased while the tapered angles increasing in general.
Numerical results indicate that the tapered angle is avery sen-
sitive parameter for the vibration of the tapered beam. The
clamped-clamped boundary conditions give rise to higher
natural frequencies of the beams in comparison with the
simply supported boundary conditions.
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Fig. 5. The natural frequencies of the clamped-free beams with various
tapered angles 8.
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V. CONCLUDING REMARKS

The variation in calculated natural frequencies for the pre-
twisted beams using the spline collocation method is investi-
gated. The solution of the governing fourth-order differential
equation is approximated by the spline function with poly-
nomial. The efficiency and accuracy of the proposed method
is ascertained by comparison with existing solutions. Nu-
merical results in different cases validated the applicability of
the proposed method for solving such an engineering problem.
The pre-twisted angles influence the natural frequencies of
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Fig. 7. The natural frequencies of the clamped-clamped beams with vari-

oustapered angles 8.

the beams. The demonstrated accuracy and simplicity of the
proposed method makes it a good candidate for modeling
more complicated pre-twisted beam problems.
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