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ABSTRACT 

This paper subjects electrostatic curved electrode actuators 
with novel shaped cantilevers to nonlinear dynamic analysis 
using the differential quadrature method.  Numerical results 
are compared with experimental results to assess the effi-
ciency and systematic procedure of this novel approach for 
nonlinear differential equations.  The pull-in voltages computed 
for different structures correlate well with published data.  
Several characteristics of different combinations of shaped 
cantilevers and curved electrodes are also examined in this 
paper.  Dynamic responses of actuators with novel shapes with 
several pull-in voltages are determined.  The transitional res-
ponses for the derived systems are calculated using the Wil-
son-θ  method. 

I. INTRODUCTION 

Microelectromechanical systems, when exploiting micro-
scale effects, have interesting and unique characteristics.  
Microelectromechanical systems are attracting considerable 
attention due to their ability to facilitate excellent electronic 
sensing, actuating, and computing.  Different numerical models 
were proposed by Legtenberg et al. [14, 16, 24, 25] to analyze 
electrostatically deformed diaphragms.  Numerical results 
suggested that electrostatic deformation calculated using a 
one-dimensional model is very close to that determined using 
a complex three-dimensional model.  Hirai et al. [18, 19, 20] 
considered the deflection characteristics of electrostatic actu-
ators with shaped modified electrodes and cantilevers.  Os-
terberg et al. [31] proposed different numerical models to 
analyze electrostatically deformed diaphragms.  Qiao et al. [32] 

presented a design of suspension beam to achieve parallel- 
plate actuator with extended working range based on two- 
layered polysilicon surface process.  This paper presents al-
ternative equations of residual vibrations of electrostatic ac-
tuators.  The differential quadrature technique is applied to 
formulate the electrostatic field problems in a matrix form.  
The integrity and computational accuracy of the differential 
quadrature method in this problem are demonstrated through 
various case studies.  With the recent development of stable 
responses and high performance actuator structures, damping 
enhancement has become a very significant issue.  A number 
of new actuator designs have been proposed for overcoming 
the pull-in disadvantage.  The possible effects of Kelvin-Voigt 
and external damping coefficients on the micro-actuator are 
included in the proposed model. 

II. DIFFERENTIAL QUADRATURE METHOD 

The differential quadrature is originally developed by sim-
ple analogy with the integral quadrature, which is derived 
using the interpolation function [1, 2, 4].  The differential 
quadrature method was first introduced by Bellman et al. [1, 2].  
Bert et al. [3, 4, 5, 6, 7, 8, 10, 15, 22, 23, 29, 34, 35], who 
investigated static and free vibration of beams and rectangular 
plates using the differential quadrature method, proposed the δ 
technique.  Boundary points are chosen at a small distance in 
the δ method.  The δ technique can be applied to the double 
boundary conditions of plate and beam problems.  However, δ 
cannot be enlarged for solution accuracy, and solutions oscil-
late when δ  is excessively small.  Bert et al. [3, 4, 5, 6, 7, 8, 10, 
15, 22, 23, 29, 34, 35] accounted for boundary conditions in 
the weighted coefficients.  In the formulation of differential 
quadrature approach, multiple boundary conditions are di-
rectly applied to the weighted coefficients and selecting a 
nearby point, as required when using the δ-interval method, is 
not necessary.  The accuracy of calculated results will be in-
dependent of the value of the δ-interval.  Liew et al. [13, 17, 26, 
27], who analyzed rectangular plates resting on Winkler 
foundations using the differential quadrature method, also 
presented a static analysis of laminated composite plates 
subjected to transverse loads using the differential quadrature 
method.  Malekzadeh and Setoodeh [28] studied the nonlinear 
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behavior of symmetric and antisymmetric cross ply, thin to 
moderately thick, elastic rectangular laminated plates resting 
on nonlinear elastic foundations using the differential qua-
drature method.  De Rosa and Lippiello [12] dealt with the free 
vibrations of parallel double-beams joined by a Winkler-type 
homogeneous elastic foundation using the differential qua-
drature method.  The differential quadrature method is a con-
tinuous function that can be approximated by a high-order 
polynomial in the overall domain, and a derivative of a func-
tion at a sample point can be approximated as a weighted 
linear summation of functional values at all sample points in 
the overall domain of that variable.  Using this approximation, 
the differential equation is then transformed into a set of al-
gebraic equations.  The number of equations depends on the 
number of sample points selected.  Potential oscillations in 
numerical results arising from high-order polynomials can be 
eliminated by employing numerical interpolation schemes.  
For a function, f(z), the differential quadrature method ap-
proximation for the m-th order derivative at the i-th sample 
point is given as follows [4]. 
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  for  i, j = 1, 2, …, N (1) 

where f(zi) is the functional value at grid point zi, and ( )m
ijD is  

the weighting coefficient of the m-th order differentiation 
attached to these functional values.  For a micro-cantilever struc- 
ture problem, the most convenient technique is to choose the 
grid points in a grid point distribution that is equally spaced.  
Numerical results with poor accuracy were acquired in this study 
using this equally spaced distribution.  This finding demonstrates 
that the choice of a grid point distribution and test functions 
markedly influence the efficiency and accuracy of results in 
some cases.  Selection of grid points always has an important 
role in solution accuracy when using the differential quadra-
ture method.  The unequally spaced sample points on each 
micro-beam using the Chebyshev-Gauss-Lobatto distribution 
in the present computation are distributed as follows [4, 30]. 
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Some researchers have shown that the roots of the shifted 
Chebyshev polynomials in the (0, 1) domain can equally pro-
duce good results [4, 30].  The differential quadrature weighted 
coefficients can be derived using numerous techniques.  To 
overcome the numerically poor conditions when determining 

the weighted coefficients, ( ),m
ijD a Lagrangian interpolation 

polynomial was introduced [4], which is as follows. 
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Substituting (3) into (1) yields the following equations [4]. 
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Once the grid points are selected, the coefficients of the 
weighted matrix can be acquired using (4) and (5).  Notably, the 
numbers of test functions exceed the highest order of the de-
rivative in the governing equations.  High-order derivatives of 
weighted coefficients can also be acquired using matrix mul-
tiplication [4], which is as follows. 
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III. DYNAMIC BEHAVIOR OF 
MICRO-ACTUATORS 

Figures 1 and 2 show the geometry of an electrostatic ac-
tuator.  Variable t0 is the thickness at the actuator root, t1 de-
notes the tip thickness, and L is the cantilever length.  

An electrostatic force, introduced from the applied voltage 
difference between the curved electrode and cantilever, pulls 
the cantilever toward to the curved electrode.  Shape function 
S denotes the shape of the curved electrode, and is presented as 
a polynomial, i.e., S = δmax(z/L)n, where δmax is the tip gap 
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Fig. 1.  Schematic of a curved electrode micro-actuator. 
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Fig. 2. Schematic of a curved electrode actuator based on microelectro-

mechanical devices. 

 

distance of the curved electrode at z = L, and n is the poly-
nomial order of electrode shape.  The electrode shape varies 
with the value of n.  The distance between the cantilever and 
curved electrode declines as the polynomial order n of the 
curve increases.  By applying the long beam assumption, the 
strain energy of the bended cantilever can be simplified as 
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∫   (9) 

where v(z) is the deflection of the actuator and E is Young’s 
modulus of the actuator.  I(z) is the moment of inertia of 
cross-sectional area of the micro-actuator, which is I(z) =  
I0 (1 + β(z/L))3.  β is defined as the ratio of (t1 – t0)/t0 and I0 =  

3
0 0 /12.b t  Because 
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Equation (9) can be written as follows. 
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The electrostatic force per unit length of the micro-actuator 
is given by the energy differentiation as follows. 
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where q is the electrostatic force per unit length of the mi-
cro-actuator, C is the capacitance per unit length along the 
cantilever, and V  is applied voltage.  In considering the elec-
trostatic force, virtual work δW1 is performed by the bended 
actuator and can be derived as follows. 
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where ε0 is the dielectric constant in the air, i.e., ε0 = 8.85 × 
10–12, b is the width of the micro-actuator, and d is the initial 
gap as shown in Figs. 1 and 2.  The dielectric layer also pre-
vents short circuits.  The cross-sectional area of the mi-
cro-actuator is A(z) = b0t0 (1 + βz/L).  The dynamic behavior of 
the microelectromechanical system is of interest to designers 
of electrostatic actuators.  Actuator residual response can 
affect the performance of the electrostatic actuator system.  
However, due to the difficulty associated with the nonlinear-
lity introduced between actuator deflection and electrostatic 
force, this residual vibration phenomenon has been examined 
in very few studies.  The effects of electrode shape on residual 
response have generally not been described.  The kinetic 
energy of the micro-actuator can be derived as 
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∫         (14) 

where A(z) is the cross-sectional area of the micro-actuator, 
that is, A(z) = A0(1 + β(z/L)).  For generality, Kelvin-Voigt damping 
and external damping effects have been considered in formu-
lating the equations of motion.  External damping is a viscous 
resistance to transverse displacement of the actuator; Kelvin- 
Voigt damping is a viscous resistance to straining of actuator 

materials [11, 33].  External damping force e

v
C

t

∂
∂

 is assumed  
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for resistance to actuator transverse velocity.  The Kelvin-Voigt 

damping force 
2 3
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 is assumed for resistance to 

actuator strain velocity.  In considering the Kelvin-Voigt and 
external damping effects in the actuator, virtual work δW2 
done by the actuator for a virtual displacement δv can be de-
rived as 
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where eC  and iC  are external damping and Kelvin-Voigt 
damping coefficients, respectively.  Substituting (11), (13), (14) 
and (15) into the Hamilton equation yields 
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The equation of motion of the electrostatic micro-actuator 
can be derived as 
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The dynamic response v(z, t) of an electrostatic micro-actuator 
is governed by the above fourth-order partial differential eq-
uation.  The boundary conditions of the clamped-free micro- 
beam are 

 v(0, t) = 0  (18) 
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This nonlinear equation does not have an analytical solution; 
however, numerical approaches can help solve this equation.  
In seeking an efficient discretization technique to acquire an 
accurate numerical solution with very small number of grid 
points, the differential quadrature method is utilized to solve 
numerically these nonlinear partial differential equations.  By 
applying the differential quadrature method, Eq. (1) is subs-

tituted into (17)-(21).  The equations of motion for the micro- 
actuator can be discretized in a matrix form with respect to the 
sample points as follows. 
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The elements in the mass, damping and stiffness matrices 
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In this paper, the dynamic responses of grid points on the 
micro-actuator are solved using the Wilson-θ approach.  The 
Wilson-θ method assumes that acceleration terms at sample 
points vary linearly between two time points.  In the Wilson-θ 
iteration, the i-th time step can be expressed as 
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noted that the Wilson-θ method is unconditionally stable with 
a factor of 1.37wθ ≥  [9, 11, 21, 33].  The acceleration vector 

of sample points at time w
it τ+  can be approximated as 
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where subscript i denotes the i-th step and ∆t is the time in-
crement.  Similarly, the velocity and displacement vectors of 
sample points at time w

it τ+  can be approximated using fol-
lowing two equations, respectively. 
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Substituting w tτ θ= ∆  into (40), the velocity vector can be 
rewritten as 
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Similarly, the displacement vector of grid points can then be 
rewritten as 
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 (43) 

Equation (39) can be solved to obtain 
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 (44) 

Substituting (44) into (42), the velocity vector at time w
it + 

θw∆t can be written as 
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Fig. 3. Comparisons of tip deflections of an actuating electrode with dif- 

ferent applied voltages and electrode shapes.  Proposed results 
solved using the differential quadrature method. 

 

The force vector at time w
i wt tθ+ ∆  can be approximated as 

( ){ } ( ){ }, ,w w
i w iF z t t F z tθ+ ∆ =  

( ){ } ( ){ }{ }1, ,w w
w i iF z t F z tθ ++ −  (46) 

Substituting (43)-(46) into (22) yields the following equa-
tion. 
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The acceleration vector of sample points at time 1
w
it +  can be 

expressed as 
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Similarly, the velocity and displacement vectors of sample 
points at time 1

w
it +  can be approximated as 
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and 
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  (50) 

IV. NUMERICAL RESULTS AND DISCUSSION 

Figure 3 presents the difference between the calculated and 
measured tip deflections with different driving voltages, can-
tilever lengths and electrode shapes.  The micro-actuator is 
made of polysilicon.  The material and the geometric parame-
ters of the actuator are as follows: E = 150 GPa, δmax = 30 µm, 
b = 5 µm, t0 = 2 µm, d = 2 µm, and β = 0.  The differential 
quadrature approach is programmed in the MATLAB software 
package.  Numerical and measured results reveal that tip def-
lections calculated using the proposed differential quadrature 
method are in good agreement with published experimental 
results [25].  The accuracy of calculated results indicates that 
the model derived using the differential quadrature method is 
effective for assessing the deflection of an electrostatic actu-
ator system.  Electrode shapes and lengths of the novel canti-
lever influence the pull-in range.  Figure 4 presents the tip 
responses of the actuator with various electrode forms.  The 
material and geometric parameters of the electrostatic actuator 
system are as follows: E = 150 GPa, ρ = 2.3 × 103 kg/m3, 

0,eC =  0,iC =  δmax = 30 µm, b = 5 µm, t0 = 2 µm, d = 2 µm, 

L = 500 µm, and V = 10 V.  Electrode shapes vary with dif-
ferent values for n.  The nonlinear dynamic equation generated 
using the proposed differential quadrature method is solved 
using the Wilson-θ approach.  In this case, the Wilson-θ me-
thod is used with θw = 1.4 and ∆t = 0.003 ms.  
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Fig. 4.  Tip responses of the micro-actuator with various electrode forms. 
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Fig. 5.  Tip responses of the micro-actuator with different applied voltages. 

 
Numerical results in Fig. 4 demonstrate that electrode shape 

markedly affects actuator deflection, and residual vibra- tion.  
Calculated results demonstrate that tip residual vibration can 
be decreased considerably as electrode shape with a value of 
n near 4. 
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Fig. 6.  Tip responses of the micro-actuator with different β values. 

 
Figure 5 presents the variation of actuator tip deflection and 

tip residual vibration after applying different driving voltages.  
Numerical results in this example demonstrate that driving 
voltage affects significantly the dynamic behavior of the ac-
tuator system.  Calculation results also indicate that high driv- 
ing voltage applied between electrodes always introduces 
large actuator deflection and serious residual vibration.  

Figure 6 presents the variation of tip displacement res-
ponses for a micro-actuator with different β.  Numerical re-
sults dem- onstrate that the actuator stiffness is enhanced when 
the value of β is large. 

Figure 7 shows the variations of actuator tip response with 
different external damping values.  Numerical results demon-
strate that the external damping coefficient is an extremely 
sensitive parameter to actuator residual vibration.  Substantial 
residual vibration is acquired for the system with a zero ex-
ternal damping coefficient.  

A similar reduction effect for actuator residual vibration, as 
shown in Fig. 8, was found for the system with different Kel-
vin-Voigt damping values.  An external damping coefficient of 
zero is assumed in this case.  However, numerical results also 
indicate that the Kelvin-Voigt damping is as sensitive to re-
sidual vibrations as β and external damping. 

V. CONCLUSIONS 

Simulation results verify that the differential quadrature 
method obtains accurate results with relatively minimal 
computational and modeling efforts.  The effects of electrode 
shape and cantilever beam shape on the pull-in behavior and 
residual vibration of cantilever actuators are investigated.  The 
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Fig. 7. Variation of tip responses of the micro-actuator with different 

external damping coefficients. 

 
damping constant of the system has a marked effect on the 
system’s dynamic behavior.  Excellent agreements are ob-
tained between measured deflections and deflections solved 
using the differential quadrature method.  
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