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ABSTRACT 

For the Landau-Lifshitz equation a Lie type linear system 
representation in the Minkowski space 3 1+

M  has been derived 
previously [25].  The internal symmetry group is a proper 
orthochronous Lorentz group SOo(3, 1), and the numerical 
method based on the internal symmetry was developed in [29].  
This paper derives another four new representations of the 
Landau-Lifshitz equation.  We prove that this equation admits 
two generators: one conservative and one dissipative, as well 
as two brackets: Poisson bracket and dissipative bracket.  
Upon embedding the Landau-Lifshitz equation into a 
skew-symmetric matrix space, we can develop a dou-
ble-bracket flow representation.  The conserved magnetization 
magnitude is just the result of the isospectrality for an iso-
spectral flow equation.  Finally, on the cotangent bundle of an 
invariant manifold of the constant magnetization magnitude, 
we introduce the Lie-Poisson bracket to construct an evolu-
tional differential equations system.  The magnetization tra-
jectory traces a coadjoint orbit in the Poisson manifold under a 
coadjoint action of the rotation group SO(3).  The six different 
representations including the one by Bloch et al. [3] are com-
pared. 

I. INTRODUCTION 

The hysteretic phenomenon of ferromagnetic materials has 
attracted great scholarly attention in the last century.  Many 
models have been proposed to describe the micro-magnetic 
dynamics of ferromagnetic media.  Among them, the Lan-
dau-Lifshitz model [20] has been widely used, in which the 
following equation plays a central role:  

 eff eff( )
sM

γαγ= − × − × × .M M H M M H�  (1) 

From the above equation it is apparent that 0⋅ =M M� , and 
consequently the magnitude of magnetization vector M(t) is 
conserved, i.e., ||M(t)||  = Ms = constant.  Throughout this paper, 
a superimposed dot denotes the time derivative, a dot between 
two vectors stands for their scalar product, and ||•|| presents 
the magnitude of a vector.  The two material parameters γ > 0 
and α ≥ 0 are the absolute value of gyromagnetic ratio and the 
Gilbert damping constant [14], respectively.  The effective 
field Heff is the sum of the applied field, the demagnetizing 
field, the anisotropy field, and the exchange field. 

The Landau-Lifshitz equation is essential to the interpre-
tation of the dynamics of domain wall [41], ferromagnetic 
resonance [11], and magnetization switching in thin film 
recording media [38], and its extension beyond the restric-
tion that this equation is introduced for small magnetization 
motions and for the case of high magnetic symmetry with an 
isotropic damping parameter has been made by Safonov [36] 
and Safonov and Bertram [37].  Recently, an exact analytical 
result was obtained for a magnetic body exhibiting rotational 
symmetry about a certain axis and the external field being 
circularly polarized in the perpendicular plane [2].  However, 
exact solutions for the nonlinear magnetization problems are 
yet to be explored.  Usually, the majority of nonlinear studies 
are carried out by the numerical integration techniques [12, 
19, 27, 28, 39]. 

It will be useful to recall some of the basic and essentially 
well known elements of generalized Hamiltonian formulation 
of mechanical systems.  The classical Hamiltonian mechanics 
is endowed with an even-dimensional phase space.  In practice, 
there are many mechanical systems whose phase spaces are 
not canonical [6, 7, 26].  That is, the phase manifold does not 
admit a cotangent bundle structure on it, but still has a Poisson 
bracket equipped with the properties of skew-symmetry, bi-
linearity, the Leibniz identity and the Jacobi identity.  The 
most famous example is the Euler equations, governing the 
motion of rigid body. 

Suppose that P is a manifold.  If there is a bracket {•, •} 
defined on the function space ( ),P�  which possesses the fol-
lowing properties: 
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Skew-Symmetry: {F, G} = –{G, F}, (2) 

Bilinearity: 

 { } { } { }  F G H F H G Hλ µ λ µ λ µ+ , = , + , , , ∈ ,�  (3) 

Jacobi identity: 

 { { }} { { }} { { }} 0F G H G H F H F G, , + , , + , , = ,  (4) 

Leibniz identity: { } { } { }FG H F G H F H G, = , + , ,  (5) 

then (P, {•, •}) is a Poisson manifold [30].  If an observable 
function :F P � �  of a dynamical system can be governed 
by a generalized Hamiltonian function H through 

 { }, ,F F H=�  (6) 

then (P, {•, •}, H) is called a generalized Hamiltonian system. 
Let H P: � �  be a smooth function on P.  The general-

ized Hamiltonian vector field XH associated with H is a unique 
smooth vector field on P, which for every smooth function 

:F P � �  satisfies 

 { }( ) , .H F F H=X  (7) 

Instead of the non-degeneracy of classical Poisson bracket, the 
bracket defined on the non-canonical Poisson manifold is per-
mitted degenerate. 

Suppose that :C P � �  is a non-constant smooth function 
on P.  If {C, F} = 0 for all smooth function :F P → � , then C 
is a Casimir function on P.  When P is a finite-dimensional 
manifold with dimensions n, the local coordinates of P can be 
assigned as x = (x1, …, xn), and the Poisson bracket on P can be 
written as 

 { }, : ,ij
i j

F G
F G J

x x

∂ ∂=
∂ ∂

 (8) 

where Jij (x) is a Poisson tensor.  In this paper the Einstein 
summation convention is adopted for repeated indices. 

Given an n × n matrix function J(x) = Jij (x) defined on the 
open set ,nP ⊂ �  the necessary and sufficient conditions of 
J(x) to be a Poisson tensor are 

 ,  , 1, 2, , ,ij jiJ J i j n= − = �  (9) 

 , , , 0,   , , 1,2, , ,i jk j ki k ijJ J J J J J i j k n+ + = =
� � � � � �

�  (10) 

where Jjk,ℓ denotes ∂Jjk /∂xℓ. 
For all smooth function :H P � �  defined on P, the 

bundle mapping *:B T P TP�  is denoted by B(dH(x)) = XH|X.  
TP and T*P are, respectively, the tangent and cotangent bun-
dles on the Poisson manifold P .  The rank of the Poisson 

bracket at a point x ∈ P is defined as the rank of the linear 

mapping *| :B T P T PX X X� .  A point x on the Poisson mani-

fold P is called a regular point, if the ranks for all points in the 
neighborhood of x ∈ P are the same; otherwise, x is a singular 
point.  The rank of B at x ∈ P and the rank of Poisson tensor 
J(x) at point x are the same.  Because of the skew-symmetry of 
J(x) the rank is always even. 

Suppose that the rank of Poisson tensor J(x) at a regular 
point x0 is n – m, m > 0, then there are m functionally inde-
pendent Casimir functions defined in the neighborhood of the 
point x0. 

Especially, when Jij(x) is a linear function of x, the bracket 
(8) is called a Lie-Poisson bracket, and (6) is a Lie-Poisson 
system written as 

 ( ) ( )H= ∇ ,x J x x�  (11) 

where the gradient operator ∇ denotes the derivative with 
respect to x.  We usually write such Jij(x) to be 

 k
ij ij kJ C x= ,  (12) 

where k k
ij jiC C= −  and the Jacobi identity (10) takes the form: 

 0r r r
ij k jk i ki jC C C C C C+ + = .� � �

� � �
 (13) 

It is known that for this case the underlying space can be given 
a Lie algebra structure with the structure constants k

ijC  in a 

suitable basis [30]. 
The Lie-Poisson system is naturally formulated in the dual 

space of a Lie algebra G.  The solutions of the system are 
coadjoint orbits of a certain Lie group, constrained in the nonlin- 
ear submanifolds of G* known as the symplectic foliations.  In 
recent years, the applications that fit into the Lie-Poisson 
formalism and the extensions to dissipative systems are nu-
merous [3, 35].  Also, for its important applications in the 
physical systems there were some integrators developed to 
preserve the Lie-Poisson structure [5, 10, 13, 21, 29, 31]. 

For the undamped case of (1) 

 eff ,γ= − ×M M H�  (14) 

Bloch et al. [3] have considered a Poisson bracket of the rigid 
body type, 

 { }( ) [ ( ) ( )]F G F G, = ⋅ ∇ ×∇ ,M M M M  (15) 

such that by introducing the generator 

 effS γ= ⋅ ,M H   (16) 

one can obtain 

 { } ( )i i ijk k jM M S M Sε= , = ∇ ,�  (17) 
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where εijk is the permutation symbol.  It can be seen that Jij = 
εijkMk is a Lie-Poisson tensor, and (17) is a Lie-Poisson system.  
However, under this formulation there has a weak point that S 
is not an invariance of the system unless H eff is a constant 
vector.  Then, Bloch et al. [3] extended their formulation to 
system (1) by adding a symmetric dissipative bracket: 

 {{ }}( ) [ ( )] [ ( )]
s

F G F G
M

α, = ×∇ ⋅ ×∇ ,M M M M M  (18) 

and obtained a two-bracket form of system (1): 

 { } {{ }}i i iM M S M S= , + , .�  (19) 

Previously, Liu [22, 24] has developed a Jordan algebra 
basis of the Landau-Lifshitz equation, and then Liu [25] has 
derived a Lie type linear system representation in the Min-
kowski space.  Here, we analyze the Landau-Lifshitz equation 
from another four new different aspects, namely, a two- 
generator formalism, an isospectral flow, a double-bracket 
form, and a Lie-Poisson bracket formulation which rendering 
the coadjoint orbit on the invariant manifold of the system 

with a constant 
2 2(2 )sH Mα= /M  rather than the above S = 

γM ⋅ H eff.  This paper not only manifests the mathematically 
structural elegance and the diversity in the guise of the Lan-
dau-Lifshitz equation, but also provides a new thought that 
this nonlinear dissipative equation can be examined from 
different aspects.  The significance of these four representa-
tions is that these different forms are associated with their 
related mathematical physics so that the intrinsic properties of 
the Landau-Lifshitz equation, which had not yet been found 
before, are thoroughly uncovered. 

II. TWO-GENERATOR FORMALISM 

Corresponding to the one-generator formulation as shown 
in equation (19) for the Landau-Lifshitz equation, there is a 
two-generator formulation.  The two-generator bracket for-
malism is the one that appears first in the original development 
for the dynamics of dissipative systems by Kaufman [18], 
Morrison [32] and Grmela [15].  Recent progress of this for-
malism leads to the GENERIC (general equation for the 
nonequilibrium reversible-irreversible coupling) framework 
[1, 16, 34], in which the time evolution of any isolated ther-
modynamic system can be written in the form 

 
( ) ( )

( ) ( )
d E S

dt

δ δ
δ δ

= + ,x x x
x x

x x
L M  (20) 

where L and M are certain operators, δ• /δx signifies a Fréchet 
derivative, and E and S represent, respectively, the total energy 
and entropy expressed in terms of the state variables x.  The 
use of two generators, the energy for the reversible dynamics 
and the entropy for the irreversible dynamics, is the charac-

teristic feature of GENERIC.  The major advantage of the 
GENERIC framework is that it can be derived from Hamil-
ton's equations for classical systems or from Heisenberg's 
equations for quantum systems.  Two notable equations that 
can be derived in the GENERIC context are the Navier-Stokes 
equation [9] and the Boltzmann equation [33].  Rewriting the 
Landau-Lifshitz equation in the context of the two-generator 
formalism is the purpose of this section. 

Let us define a unit vector 

 :
SM

= = ,M M
m

M
 (21) 

and for saving notations we use a new time scale γMSt still 
denoted by t and a new field Heff /MS denoted by H, such that 
(1) can be rearranged to 

 ˆ α α= + − ⋅ ,m Hm H H mm�  (22) 

where  

 
3 2

13

2 1

0
ˆ 0

0

H H

H H

H H

− 
 : = − 
 − 

H  (23) 

is skew-symmetric, a superimposed dot presents the derivative 
with respect to the new time t, and Hi, i = 1, 2, 3, are three 
independent components of H.  The field H can be treated as 
an input on (22) and in general is a function of m.  Now we 
take an assumption as also adopted by Bloch et al. [3] that H  
is a constant vector.  Under such restriction the elegance of the 
mathematical structure of the Landau-Lifshitz equation in the 
two-generator formalism can be manifested. 

Theorem 1.  The Landau-Lifshitz equation (22), admitting 
two generators: one conservative E = ||m||2 /2 and one dissi-
pative S = H · m, can be written as 

 ˆ E S= ∇ + ∇ ,m H η�  (24) 

where ˆ ˆ T= −H H  and 

 3( )α: = − ⊗η I m m  (25) 

are, respectively, a skew-symmetric structural tensor and a 
non-negative metric tensor.  Furthermore, there hold two de-
generate conditions 

 ˆ 0S∇ = ,H  (26) 

 0E∇ = .η  (27) 

Proof.  In order to obtain a two-generator formulation of the 
Landau-Lifshitz equation (22), let us rewrite it with the fol-
lowing form: 

 3
ˆ [ ]E α= ∇ + − ⊗ ,m H I m m H�  (28) 
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Table 1.  Comparisons of six representations of the Landau-Lifshitz equation. 

Equation Space Bracket(s) Generator(s) Invariance Lie algebra Lie group 

(19) E
3 Lie-Poisson + Dissipative One Coadjoint – – 

(24) E
3 Poisson + Dissipative Two Casimir – – 

(44) Skew(3) Lie + Double – Eigenvalue so(3) SO(3) 

(47) Skew(3) Double – Eigenvalue so(3)  SO(3) 

(55) M
3+1 – – Cone so(3, 1) SOo(3, 1) 

(67) ∗
G  Lie-Poisson One Coadjoint (3)i so∗ ∈M  SO(3) 

 
where ⊗ denotes the dyadic product, and 

 
2

( )
2

E =
m

m  (29) 

is a conservative quantity preserved by the Landau-Lifshitz 
equation as demonstrated above.  For the later use we may call 
||m|| = 1 an invariant manifold of the system, i.e., 2.∈m S   
Hence, ∇E = m follows directly and (28) is verified by noting 

.⊗ = ⋅m mH H mm  
Let 

 ( )S = ⋅m H m  (30) 

be the quantity dominated the dissipation of the system.  ∇S = 
H follows directly and (24) is thus verified in view of (25) and 
(28). 

Now, we prove that η is non-negative definite.  From (25) 
the symmetry of η is obvious.  Then, by 

 
2T 2 3

3[ ] ( ) 0− ⊗ = − ⋅ ≥ , ∀ ∈ ,v I m m v v v m v �  (31) 

we prove that α(I3 – m⊗m) ≥ 0 and thus η is non-negative 
definite.  In above the superscript “T” denotes the transpose.  
In addition, the two degenerate conditions (26) and (27) are 
easily identified with the help of (23), (25), (29) and (30).□ 

For arbitrary two functions F(m) and G(m), let us define 
the Poisson bracket by 

 
ˆ{ }( ) ( ) [ ( )]

                [ ( ) ( )]

F G F G

F G

, : = ∇ ⋅ ∇
= − ⋅ ∇ ×∇ ,

m m H m

H m m
 (32) 

and the dissipative bracket by 

 
{{ }}( ) ( ) [ ( ) ( )]

                    [ ( )] [ ( )]

F G F G

F Gα
, : = ∇ ⋅ ∇

= ×∇ ⋅ ×∇ .
m m η m m

m m m m
 (33) 

Since Ĥ  is skew-symmetric and is assumed to be independent 
of m, it satisfying (9) and (10) is a Poisson tensor.  The skew- 
symmetric Ĥ  and the non-negative definite η guarantee the 

skew-symmetry of the Poisson bracket defined in (32) and the 
symmetry of the dissipative bracket defined in (33).  Then, a 
bracket, called the two-generator bracket, composed of the 
above two brackets is the underlying bracket structure for (24).  
The governing equation for this system is thus simply given by 

 ˆ{ } {{ }} ( ) ( )F F E F S F E F S= , + , = ∇ ⋅ ∇ + ∇ ⋅ ∇ .H η�  (34) 

As the consequences of (23) and (25)-(27) we have 

ˆ{ } {{ }} ( ) ( ) 0E E E E S E E E S= , + , = ∇ ⋅ ∇ + ∇ ⋅ ∇ = ,H η�  (35) 

 ˆ{ } {{ }} ( ) ( ) 0S S E S S S E S S= , + , = ∇ ⋅ ∇ + ∇ ⋅ ∇ ≥ ,H η�  (36) 

which indicate that E is a conservative quantity and S has a 
natural physical interpretation as the entropy of this system.  
Especially, because of 

 {{ }} 0E F, =  (37) 

for arbitrary differentiable function F(m), E may be viewed as 
a Casimir function of the dissipative bracket dynamics. 

It deserves to note that our formulation of the Landau- 
Lifshitz equation is different from that proposed by Bloch et al. 
[3], which as presented in (19) is an one-generator formulation.  
The comparisons of these two formulations and the others to 
be discussed below are summarized in Table 1. 

III. ISOSPECTRAL FLOW AND 
DOUBLE-BRACKET FLOW 

The double-bracket flow 

 0[[ ] ] 0 (0) Sym( )t n= , , , ≥ , = ∈Y Y N Y Y Y�  (38) 

was introduced simultaneously by Brockett [4] and Chu and 
Driessel [8].  In (38), Sym(n) denotes the set of all real  
n × n symmetric matrices, N(t) ∈ Sym(n) is a given matrix 
function, and [• , •] is the usual matrix Lie bracket.  The most 
important feature of (38) is that it is a special case of the iso-
spectral flow equation [17]: 
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 0[ ( ) ] 0 (0) Sym( )t t n= , , , ≥ , = ∈ ,Y B Y Y Y Y�  (39) 

where Sym( ) ( ),n so n+: ×B � �  and the set so(n) is a Lie 
algebra composed of all n × n real skew-symmetric matrices.  
From (39) it follows a solution: 

 T
0( ) ( ) ( ) 0t t t t= , ≥ ,Y Q Y Q  (40) 

where Q is a solution of 

 T
0( ) 0 (0) nt t= , , ≥ , = .Q B QY Q Q Q I�  (41) 

Since it is a Lie-group equation, Q evolves in SO(n), and there- 
fore (40) presents a similar transformation of the initial value 
Y0 onto Y(t).  In other words, the eigenvalues of Y in (39) (and 
hence in (38)) are invariances of the flow equation, not vary-
ing with t. 

An extension of (38) can be made by allowing Y to be 
skew-symmetric.  In order to derive the isospectral flow and 
double-bracket flow formalisms for the Landau-Lifshitz 
equation, let us return to the 3 × 3 skew-symmetric real matrix 
as the one already shown in (23) for the case H.  For each 

3∈x �  we can assign a 3 × 3 skew-symmetric matrix to rep-
resent it: 

 
3 2

13

2 1

0

ˆ ˆ 0

0

x x

x x

x x

− 
 : := − . 
 − 

x x�  (42) 

Suppose that x, y ∈ R3 and that x̂  and ŷ  are the corre-
sponding 3 × 3 skew-symmetric matrices, then through some 
derivations we can identify the following relation: 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ],× = ≡ − = ,x y xy xy yx x y  (43) 

where × is the usual cross product of three-dimensional vec-
tors and [• , • ] is the matrix Lie bracket of three-dimensional 
matrices.  Equation (43) is a key point for further development, 
and under the above sense we can assign an isospectral flow 
for (1). 

Theorem 2.  The Landau-Lifshitz equation. (22) admits an iso- 
spectral flow representation: 

 ˆ ˆˆ ˆ ˆ ˆ[ ] [[ ] ]α= , + , , ,m H m m H m�  (44) 

with t ≥ 0 and 0
ˆ ˆ(0) Skew(3),= ∈m m where Skew(3) denotes 

the set of all real 3 × 3 skew-symmetric matrices.  The eigen-
values of m̂  are 0 and i± m , the latter two of which are 
preserved by the flow equation. 

Proof.  Simplifying (1) by the new time scale and the new 
vector field H as that demonstrated below (21) and by using 
(43), it is not difficult to derive (44), which can be further 
written as 

 ˆ ˆˆ ˆ ˆ[ [ ] ]α= + , , .m H m H m�  (45) 

Since ˆ ˆˆ[ ]α+ ,H m H  is skew-symmetric, Eq. (44) is indeed an 
isospectral flow equation.  The preservation of m  is a direct 
result of (44). □ 

It deserves to note that the first and second terms on the 
right-hand side of (44) correspond, respectively, to the first 
and second terms on the right-hand side of (24).  The two 
brackets in (44) are respectively the Lie bracket and the double 
bracket in a literal sense. 

In the corotated frame m is given as mR = RTm and H as 
HR = RTH, where the rotation matrix R satisfies 

 3
ˆ (0)= , = .R HR R I�  (46) 

Then, from (22) we can prove the following result. 

Theorem 3.  In the corotated frame, the Landau-Lifshitz 
equation (22) admits a double-bracket flow representation: 

 ˆˆ ˆ ˆ[[ ] ]R R R Rα= , , ,m m H m�  (47) 

with t ≥ 0 and 0
ˆ ˆ(0) Skew(3)R = ∈ .m m  

Proof.  From (22) we have 

 R R R RR α α= − ⋅H H m mm�  (48) 

due to RTR = I3.  The above equation can be written as 

 R R RR ( )α= × ×m H mm�  (49) 

due to the invariance of mR · mR = m · m = 1.  Then, skew- 
symmetrizing the above equation and employing the equiva-
lence as specified in (43) we can arrive at (47). □ 

IV. LINEAR REPRESENTATION IN THE 
MINKOWSKI SPACE 

The above techniques employed to derive the bracket for-
mulas for the Landau-Lifshitz equation rely on the introduc-
tion of flow equations in different spaces.  These derivations 
prompt us to define an integrating factor for (22), 

( ) ( )0

0 0
exp ( ) exp [ ( ) ( )]

t t
X S d dα ξ ξ α ξ ξ ξ: = = ⋅ .∫ ∫ H m  (50) 

The above equation together with (30) assert that 

 0 0
1 2 1 2( ) ( )X t X t t t≥ , ≥ ,   (51) 

provided that S(t) ≥ 0, which implies that the angle between 
the magnetization and the effective field is less than 900.  Then 
(51) indicates that X 0 is a time-like variable of the system, and 
is pointing to the future. 
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Accordingly, we can prove the following theorem with a 
slight extension of the results given by Liu [25]. 

Theorem 4.  The Landau-Lifshitz equation (22) admits a 
linear system =X AX�  representation in the four-dimensional 
Minkowski space with 3 1+∈X M , which holds the cone con-
dition XTgX = 0, where g is a Minkowski metric with signa-
ture 2. Suppose that X1(t) and X2(t) are two solutions of 

=X AX� , then T
1 2( ) ( )t tX gX  is an invariance. 

Proof.  Upon taking advantage of the integrating factor defined 
in (50), we can rearrange (22) to 

 0 0 0ˆ( )
d

X X X
dt

α= + .m Hm H  (52) 

On the other hand, from (50) it follows directly that 

 0 0X Xα= ⋅ .H m�  (53) 

Let us introduce the augmented state vector: 

 

1

2
0

0 3

0

1

s

X

X
X

X X

X

 
 
 

   
   
   
   
    

 
  

 
= = : = , 

 

mX
X  (54) 

and then (52) and (53) are combined to 

 = ,X AX�  (55) 

where 

 
T

ˆ

0

α
α
 

: = . 
  

H H
A

H
 (56) 

The model originally formulated for 2∈m S  can be trans-
formed into a model in the augmented state space of X with a 
cone condition [23]: 

 
2T 0 2( ) [ 1] 0X= − = ,X gX m  (57) 

in terms of the Minkowski metric g, 

 3 3 1

1 3 1
×

×

 
= . − 

I 0
g

0
 (58) 

The vector space of augmented state X endowed with the Min- 
kowski metric tensor g is referred to as a Minkowski space 
designated as M3+1. 

For the system (55) let us consider the following two 
equations: 

 1 1= ,X AX�  (59) 

 2 2= ,X AX�  (60) 

which under the same A but with different initial conditions 
X1(0) and X2(0); hence, the two solutions X1 and X2 are not 

fully identical in the range of t ≥ 0.  Applying T
2X g  to the first 

equation and then integrating the resultant we have  

 

T T
2 1 2 10 0

T T
2 10

T
1 20

T
1 20

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

t t

t

t

t

d d

d

d

d

ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ

=

= −

= −

= − ,

∫ ∫

∫

∫

∫

X gX X gA X

X A gX

X gA X

X gX

�

�

 (61) 

in which we have used the Lie algebra property of A: 

 T 0+ = .A g gA  (62) 

On the other hand, integrating by part we obtain 

 T T T
2 1 2 1 0 1 20 0

( ) ( ) | ( ) ( )
t ttd dξ ξ ξ ξ ξ ξ= − .∫ ∫X gX X gX X gX� �  (63) 

Comparing (61) and (63) leads to 

 T T
2 1 2 1( ) ( ) (0) (0),t t =X gX X gX  (64) 

which means that T T
1 2 2 1=X gX X gX  is an invariance of the 

system. □ 

The theorem manifests that a state of m on the sphere 
||m|| = 1 corresponds to an augmented state X on the right 

circular cone T{ 0}| =X X gX  emanating from X = 0 of the 

Minkowski space.  In addition, as a consequence of (64) we 
can prove that 

 1 2
1 2 0 0

1 2

(0) (0) 1
( ) ( ) 1

( ) ( )
t t

X t X t

⋅ −
⋅ = + ,

m m
m m  (65) 

when insert (54) for X and (58) for g into (64).  Since S is not a 

decreasing function of t as shown in (36), both 0
1X  and 0

2X  

defined by (50) tend to infinite.  Therefore, from (65) it follows 
that 

 1 2lim ( ) ( ) 1
t

t t
→∞

⋅ = .m m  (66) 

When taking ||m1(t)|| = ||m2(t)|| = 1 into account, the above 
equation means that the magnetization orientations align to the 
same direction independent on the initial orientations. 

Because A is an element of the real Lie algebra so(3, 1) as 
shown in (62), the generated transformation G corresponding 
to A is an element of the proper orthochronous Lorentz group 
SOo(3, 1).  Liu [25] has employed the above symmetry into a 
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numerical solution of the Landau-Lifshitz equation, and found 
that the new numerical method is stable, robust, accurate and 
preserving the manifold invariant. 

V. LIE-POISSON BRACKET FORMULATION 

For the undamped case, i.e., α = 0, of the Landau-Lifshitz 
equation we have mentioned in Section 1 that Bloch et al. [3] 
have given a Lie-Poisson system description by viewing S as a 
generator [12, 14].  However, for the most applications in 
micromagnetics of the damped Landau-Lifshitz equation there 
does not yet have a Lie-Poisson system description.  In this 
section we construct a Lie-Poisson bracket formulation of the 
Landau-Lifshitz equation, stressing the coadjoint orbit invari- 
ant behavior of this equation. 

Equation (48) can be written as 

 R H= ∇ ,m J�  (67) 

where 

 
2 2R

2 2
H

α α= =m m  (68) 

is an invariant function of the system as a generalized Ham-
iltonian function, and 

 R R R R= ⊗ − ⊗J H m m H  (69) 

is a Poisson tensor.  Then we can prove the following results. 

Theorem 5.  The Landau-Lifshitz equation (22) is a Lie- 
Poisson system.  The solutions of (22) are the coadjoint orbits 
of the Lie group SO(3), constrained in the invariant manifold 
of G* as a symplectic foliation with the generalized Hamilto-
nian function H constant on it.  Even the Poisson tensor J is 
degenerate, there exists no Casimir function of this system. 

Proof.  We can prove that J satisfies (9) and (10).  The first 
condition of skew-symmetry is obvious.  Let us write 

 R R R R
ij i j i jJ H m m H= − ,  (70) 

 R R
ij i j i jJ H Hδ δ, = − .
� � �

 (71) 

By using them we have  

 

R R R R R R

R R R R R R

R R R R R R

R R R R R R R R R R R R

R R R R R R R R R R R R

( )( )

( )( )

( )( )

i jk j ki k ij

i i j k j k

j j k i k i

k k i j i j
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j k i i j k i k j i k j

J J J J J J

H m m H H H

H m m H H H

H m m H H H

H H m H H m H H m H H m

H H m H H m H H m H H m

δ δ

δ δ

δ δ

, , ,+ +

= − −

+ − −

+ − −

= − − +

+ − − +

+

� � � � � �

� � � �

� � � �

� � � �

R R R R R R R R R R R R 0i k j j k i i j k i j kH H m H H m H H m H H m− − + = .

 

Thus, J satisfies (9) and (10).  Moreover, because J is a linear 
function of mR, the bracket (8) with the above J is a Lie-Poisson 
bracket.  Consequently, the Landau-Lifshitz equation (22) 
viewed in the corotated frame is a Lie-Poisson system (11). 

As that presented in (12), from (69) we can identify the 
structure constants to be 

 

R R
2 3

1 R
2
R
3

0

0 0

0 0
ij

H H

C H

H

 − −
 = , 
 
 

 (72) 

 

R
1

2 R R
1 3

R
3

0 0

0

0 0
ij

H

C H H

H

 
 = − − , 
 
 

 (73) 

 

R
1

3 R
2

R R
1 2

0 0

0 0

0
ij

H

C H

H H

 
 = . 
 − − 

 (74) 

Suppose that R R
k km=m e  and that {e k, k = 1, 2, 3} forms a 

basis of the dual Lie algebra G*.  The above structure constants 

can be used to construct a Lie algebra denoted by G: 

 [ ] k
i j ij kC, = ,f f f  (75) 

where {f k, k = 1, 2, 3} forms a basis of the Lie algebra G and 
[•,•] is the Lie commutator [40]. 

Next, we consider the adjoint representation of the Lie al-
gebra G.  For each f ∈ G the operator ad f that maps g ∈ G into 
[f, g] is a linear transformation of G onto itself, i.e., 

 (ad ) [ ]= , .f g f g  (76) 

As supposed {f k, k = 1, 2, 3} is a basis for the Lie algebra G 
and then we have 

 (ad ) k
i j ij kC= .f f f  (77) 

Therefore the matrix associated with the transformation ad fi is 

 ( ) j
i jk ikC= .M  (78) 

Corresponding to the structure constants given in (72)-(74), 
the following Mi are available: 

 

R R
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R
1 1

R
1

0

0 0

0 0

H H

H

H

 
 
 
 
 
 
 
  

− −
= ,M  (79) 
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R
2

R R
2 1 3

R
2

0 0

0

0 0

H

H H

H

 
 
 
 
 
 
 
  

= − − ,M   (80) 

 

R
3

R
3 3

R R
1 2

0 0

0 0

0

H

H

H H

 
 = . 
 − − 

M   (81) 

The above {M k, k = 1, 2, 3} indeed forms a matrix basis for 
the Lie algebra G and satisfies (75), because the Lie brackets 
of M k, k = 1, 2, 3, satisfy 

 

R R R 2 R R
1 2 2 2 3

R 2 R R R R
1 2 1 1 2 1 3

1 2
12 1 12 2

( )
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0 0 0
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= + .

M M
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 (84) 

Let us consider the Lie group Gi generated from the matrix 
Mi: 

 3(0) not summedi i i i i= , = , .G M G G I�  (85) 

We can solve the above Gi: 
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G  (86) 
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G  (87) 
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∫

∫G  (88) 

where 

 R R

0 0
( ) ( ) exp ( )

t

ij j iv t H H d d
ξ

ξ η η ξ = − .
  ∫ ∫  (89) 

The above Gi is a dilational translation in the i-th plane 
R
im = constant denoted by DTi (2).  The right-action of DTi (2) 

on R2 is a dilation followed by a translation with vector iv  

and has the following expression: 

 
R R

0 0
( ) ( )T T TR R

2( ) ( )
t t

i iH d H d

i ii ie e
η η η η 

, = + 
 

∫ ∫I v vm m  (90) 

with R R T R R T R R T 2R R R
1 2 32 3 1 3 1 2( ) , ( ) , ( ) ,m m m m m m= , = , = , ∈m m m �

where T
1 12 13( ) ,v v= ,v  T

2 21 23( ) ,v v= ,v  T 2
3 31 32( ) .v v= , ∈v �   

Note that we can embed DTi (2) into GL(3, R) as in the for-

mulation of (86)-(88), and thus one can operate with DTi (2) as 
one would with the matrix Lie groups by using the embedding 
technique. 

Corresponding to the Lie algebra G there exists a Lie group 
denoted by G which is composed of all DTi (2), and the adjoint 
representation of the Lie group G is denoted by Adg, g ∈ G: 

 Ad : .g �G G  (91) 

G
* is foliated by the coadjoint orbits: 

 R 1
R{Ad }−

∗ ∗= | ∈ ⊂ ,
m g

m g G GO  (92) 

where the coadjoint action 1Ad −
∗
g

 is defined by  

 1 1Ad Ad− −
∗ ∗< , >=< , >, ∈ , ∈ .
g g

w v w v w vG G  (93) 

Here <•, •> denotes a non-degenerate pairing between G* and 
G.  For matrices the adjoint and coadjoint actions are, respec-
tively, given by 

 1
1Ad −

−= ,
g

v g vg  (94) 
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 1Ad −
∗ = .
g

v gv  (95) 

Deriving the pair in (93) with respect to g and then letting g 
equal to identity, we obtain 

 ad ad∗ ∗< , >=< , >, ∈ , ∈ ,u uw v w v w vG G  (96) 

where u = (d/dt)g(t)|t = 0.  Ad* is the coadjoint representation of 
the Lie algebra G.  Then we have 

 ad ( )
i i

∗ ∗= − , ∈ .f w J w f w G  (97) 

Therefore the matrix associated with the transformation ad
i

∗
f  

is 

 ( ) i
i jk jkC∗ = − .M  (98) 

Since i
jkC  is a skew-symmetric matrix for each i, the corre-

sponding coadjoint action is found to be a three-dimensional 
rotation group denoted by SO(3). 

Given an initial point mR(0) on the invariant manifold, a 
solution to the Landau-Lifshitz equation (48) stays on the 
same coadjoint orbit R (0)m

O  for all time.  Along the coadjoint 

orbit the generalized Hamiltonian function H defined by (68) 
is a constant. 

Observing (69) we can see that the rank of J is one when mR 
and HR are linearly dependent, and two when mR  and HR are 
linearly independent.  Because the rank of J is smaller than 3 , 
J is degenerate.  For this case we have mentioned in Section 1 
that there exists at least one Casimir function of the Lan-
dau-Lifshitz equation (48).  However, this is not true for the 
Landau-Lifshitz equation.  We demonstrate it below. 

Suppose that there exists a function C, and its gradient is 
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with R R R R R R R R
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3 2 1m Hβ = −  
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1 2 .m H   It is easy to prove that 
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. (100) 

Therefore, the Lie-Poisson bracket of such C with any dif-
ferentiable function F is zero, that is, {C, F} = 0.  By definition 
if such C exists it seems a Casimir function.  However, Eq. (99) 
can be expressed as  
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2 1 3

0

0

0

H H m

C H H m

H H m

 
 
 
 
 
 
 
  

 −
 ∇ = − , 
 − 

 (101) 

and we can see that it is impossible to have a function that its 
gradient is the multiplication of a skew-symmetric matrix with 

the vector R R R R T
1 2 2( ) .m m m= , ,m   Thus, we conclude that for 

the Landau-Lifshitz equation (22) there has no Casimir func-
tion even the rank of J is smaller than the dimensions 3. □ 

The above statement seems to contradict to the statement 
about the Lie-Poisson system.  However, the premise which 
this statement holds is that the state point x is a regular point.  
But for the Landau-Lifshitz equation the state point mR is a 
singular point in the manifold. 

VI. CONCLUSION 

In this paper we have investigated the Landau-Lifshitz 
equation from several theoretical aspects.  We have explored 
six types of representations for the Landau-Lifshitz equation.  
The six representations are compared in Table 1 by consider-
ing their underlying space, bracket structure, generator, in-
variance, Lie algebra, and Lie group.  Each has its philosophy 
as being a different aspect of the same magnetization behavior 
of ferromagnetic materials modeled by the Landau-Lifshitz 
equation.  In the six representations only the linear system 
formulation does not rely on the use of bracket, while the other 
five representations have used one or two of the following 
brackets: Lie, Lie-Poisson, Poisson, dissipative, and double. 

We proved that the two-generator formalism nicely high-
lights the conservative magnetization and magnetic hysteretic 
behavior of the Landau-Lifshitz equation.  By mapping it into 
the skew-symmetric matrix space we also developed an iso-
spectral flow model as well as a double-bracket flow model of 
the Landau-Lifshitz equation.  Then, we have explored the 
internal symmetry group inherent in the Landau-Lifshitz equa-
tion, of which the proper orthochronous Lorentz group SOo(3, 
1) was found to be an underlying symmetry group. 

In terms of the generalized Hamiltonian formalism we can 
explore the invariant behavior of conservative magnetization 
magnitude as a coadjoint orbit on a symplectic foliation in the 
dual Lie algebra space.  The invariant function plays the role 
of a generalized Hamiltonian function in the Lie-Poisson 
system.  Conversely, in the dissipative bracket formulation the 
hysteretic behavior of ferromagnetic material is reflected in 
the magnetic dissipation as a generator.  The invariant be-
havior is guaranteed by preserving the Casimir function in-
variant.  While the Lie-Poisson system formulation stresses 
only the invariant behavior through the coadjoint orbit, both 
the two-generator and linear system formulations make a 
further breakthrough of the concept by protruding the dissi-
pation nature of magnetic hystereticity and keeping the mag-
netization orbit in the invariant manifold.  In the six types of 
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representations, the one with the linear system representation 
seems the best.  Even disregarding its linearity, the advantages 
of this formulation are reflected by its simplicity on the future 
pointing of X 0 due to the magnetic dissipation and the reten-
tion of the invariant manifold by the cone in the four- 
dimensional Minkowski space. 
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