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ABSTRACT 

We treat an ill-posed system of linear equations by trans-
forming it into a linear system of stiff ordinary differential 
equations (SODEs), adding a differential term on the left-hand 
side.  In order to overcome the difficulty of numerical insta-
bility when integrating the SODEs, Liu [20] has combined non- 
standard finite difference method and group-preserving scheme, 
namely the nonstandard group-preserving scheme (NGPS), to 
obtain an unconditional stable numerical method for SODEs.  
This paper applies the NGPS to the SODEs resulting from the 
ill-posed linear equations, and proves that the new algorithms 
are unconditional stable.  To strengthen accuracy, an L-curve 
is used to select a suitable regularization parameter.  Moreover, 
we also combine the NGPS with a newly developed fictitious 
time integration method (FTIM) from Liu and Atluri [29] to 
solve the ill-posed linear equations.  Several numerical ex-
amples are examined and compared with exact solutions, re- 
vealing that the new algorithms have better computational 
efficiency and accuracy even for the highly ill-conditioned 
linear equations with a large disturbance on the given data. 

I. INTRODUCTION 

In this paper we will propose some robust and easily- 
implemented new methods to solve the following linear equa-
tions system: 

 Ax = b, (1) 

where A ∈ Rn×n is a given positive definite matrix, and x ∈ Rn 
is an unknown vector. 

The input data of b ∈ Rn may be corrupted by noise.  In a 
practical use of (1) in engineering problems, the data b are 
rarely given exactly; instead of the noises are unavoidable due 

to measurement and modeling errors.  Therefore, we may 
encounter the problem that the numerical solution of (1) may 
deviate from the exact one to a great extent, when A is se-
verely ill-conditioned and b is perturbed by noise. 

The solution of ill-posed linear equations is an important 
issue for many engineering problems.  We are specially in-
teresting on the solution of the above equation under noise, 
when the condition number of A is very large.  A good nu-
merical method to solve (1) may be beneficial in the appli-
cations to the optimization problems including linear pro-
gramming and nonlinear programming, Newton's, Quasi- 
Newton's and homotopy methods for nonlinear equations sys- 
tem, finite difference and finite element methods for partial 
differential equations, etc. 

Many numerical methods used in computational mechanics, 
as demonstrated by Atluri [1], Atluri et al. [2], Atluri and Shen 
[3], Atluri and Zhu [4, 5], and Zhu et al. [45], lead to the re-
quirement by solving linear equations system.  Collocation 
methods, as those used by Liu [21-23] for the modified Trefftz 
method of Laplace equation also need to solve a large system 
of linear equations. 

To account of the sensitivity to noise it is usually using a 
regularization method to solve this sort of ill-posed problem 
[15, 37, 42, 44], where a suitable regularized parameter is used 
to depress the bias in the computed solution by a better balance 
of approximation error and propagated data error.  There are 
several techniques developed after the pioneer work of Tik-
honov and Arsenin [41].  For a large scale system the main 
choice is using the iterative regularization algorithm, where a 
regularized parameter is represented by the number of itera-
tions.  The iterative method works if an early stopping crite-
rion is used to prevent from reconstruction of noisy compo-
nents in the approximated solutions. 

A measure of the ill-posedness of (1) can be performed by 
calculating the condition number of A [40]: 

 1cond( )  ,−=A A A  (2) 

where ||A|| is the Frobenius norm of A.  For arbitrary ε > 0, 
there exists a matrix norm ||A|| such that ρ(A) ≤ ||A|| ≤ ρ(A) + ε, 
where ρ(A) is a radius of the spectrum of A.  Therefore, the 
condition number of A can be estimated by 
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where σ(A) is the collection of the eigenvalues of A. 
Speaking roughly, the numerical solution of (1) may lose 

the accuracy of k decimal points when cond(A) = 10k.  The 
problems of this sort with ill-conditioned A may appear in 
several fields.  For example, finding an n-degree polynomial 
function r(x) = a0 + a1x + …+ anxn to best match a continuous 
function f(x) in the interval of x ∈ [0, 1]: 
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r n
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leads to a problem governed by (1), where A is the (n + 1) × 
(n + 1) Hilbert matrix defined by 
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x is composed of the n + 1 coefficients a0, a1, …, an appeared 
in r(x), and 
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is uniquely determined by the function f(x). 
The Hilbert matrix is a famous example of highly ill-condi- 

tioned matrices, which can be seen from Table 1.  Equation (1) 
with the matrix A having a large condition number usually 
displays that an arbitrary small perturbation on the right-hand 
side may lead to an arbitrary large perturbation of the solution 
on the left-hand side. 

On the other hand, when we apply the central difference 
scheme on the following two-point boundary value problem: 
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where ∆x = 1/(n + 1) is the spatial length, and ui = u(i∆x), i = 
1, ..., n, are unknown values of u(x) at the grid points xi = i∆x.  
u0 = a and un+1 = b are the given boundary conditions.  The 
above matrix A is known as a central difference matrix. 

Table 1.  The condition numbers of Hilbert matrix. 

n cond(A) n cond(A) 

3 5.24 × 102 7 4.57 × 108 

4 1.55 × 104 8 1.53 × 1010 

5 4.77 × 105 9 4.93 × 1011 

6 1.50 × 107 10 1.60 × 1013 

 
Table 2. The condition numbers of central difference  

matrix. 

n cond(A) n cond(A) 

60 1.5074 × 103 80 2.6584 × 103 

100 4.1336 × 103 120 5.9331 × 103 

140 8.0568 × 103 160 1.0505 × 104 

180 1.3277 × 104 200 1.6373 × 104 

 
Taking the inverse of A in (1) or (8) we may obtain the 

unknown vector x, or the unknown vector u.  However, there 
exhibits a great difficulty when A has a large condition number.  
The eigenvalues of A are found to be [19] 

 24sin ,  1, 2,..., ,
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k
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n
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+

 (9) 

which together with the symmetry of A indicates that A is 
positive definite, and 
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may be getting a large number when the grid number n is very 
large.  See Table 2 for a list of some condition numbers. 

II. THE REQUIREMENT OF METHODOLOGY 

There are several regularization methods to deal with (1) 
when A is ill-conditioned.  In this paper we consider an itera-
tive regularization method for (1) by investigating the long 
term behavior of the following equation: 

 : ( ),= − =x b Ax r x�  (11) 

where the superimposed dot denotes the differential with re-
spect to t, which is an independent variable.  The fixed point, 
i.e., r(x) = 0, of the above equation is the solution of (1).  
When t approaches to a large value we may expect that x tends 
to the solution of (1). 

The regularization in (11) is performed by integrating the 
initial value problem only up to a value t = 1/γ, where γ is a 
regularization parameter [8, 10]. 
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In fact, the integration of (11) by a forward Euler method 
leads to the Richardson's iteration method: 

 1 ( ),k k kh+ = + −x x b Ax  (12) 

where the factor h is a time stepsize.  For a stability reason h is 
constrained by 

 
2 2

0 ,h
λ

< < ≤
A max

 (13) 

in which λmax is the maximum eigenvalue of A. 
If A is not a positive definite matrix, we may also consider 

the normal equation by multiplying (1) by AT: 

 T T ,=A Ax A b  (14) 

where the superscript T denotes the transpose. 
Landweber [16] has proposed an iteration method to find 

the solution of the above equation: 

 T T
1 ( ),k k kh+ = + −x x A b A Ax  (15) 

where, in order to ensure the convergence of numerical solu-
tion, h is a fixed time stepsize satisfying 

 
T

2
0 .h< <

A A
  (16) 

It is known that the reciprocal of iteration number plays a 
role of regularization parameter [9, 17].  How to speed up the 
convergence rate of the Landweber iteration is also discussed 
by Hanke [11].  Apart from its easy implementation, the 
Landweber iteration method presents a better regularization 
and robustness feature.  Recently, Rieder [38] has proposed a 
Runge-Kutta regularization method for the ill-posed linear 
problems. 

Since A is ill-conditioned, Eq. (11) is a stiff ODEs system.  
When applying a numerical integration technique to solve (11), 
it is usually required that the numerical method should be 
unconditional stable and that it can preserve the fixed point 
behavior. 

In order to understand this problem let us consider a simple 
ODEs system: 

 1

2

500.5 499.5
 .

499.5 500.5

b

b

−   
= +   −   

x x�  (17) 

Under the initial conditions x1(0) = 2 and x2(0) = 1, the solu-
tions are 

1000 10001 2 1 2
1( ) 1.5 0.5 [1 ] [1 ],

2 2000
t t t tb b b b

x t e e e e− − − −+ −
= + + − + −

1000 10001 2 1 2
2 ( ) 1.5 0.5 [1 ] [1 ].

2 2000
t t t tb b b b

x t e e e e− − − −+ −
= + + − − −

  (18) 

The eigenvalues of the system matrix in (17) are λ1 = –1000 
and λ2 = –1.  A number of integration schemes when applied to 
(17) require that both |hλ1| and |hλ 2| be bounded by a certain 
number.  For example, it is necessary that 1000h < 2 for a 
stable calculation of (17) by the Euler method.  This condition 
imposes a severe restriction on the time stepsize h used in the 
numerical integration. 

The steady-state solutions are obtained from (18) by letting 
t → ∞, 

 1 1 2

1
[500.5 499.5 ],

1000
x b b= +  

 2 1 2

1
[499.5 500.5 ].

1000
x b b= +  (19) 

Assume that b1 = 1 and b2 = 1 and thus the exact solutions are 
x1 = x2 = 1.  In order to get an accurate solution with the error 
smaller than 5 × 10-6 from exact solution, it requires at least a 
time t0 = 5ln10 = 11.513 for t in (18), and hence 5756 steps are 
required for the Euler method.  For every one order increasing 
of the condition number of A, the step numbers also increase 
one order under the same required accuracy.  For example, if 
the condition number increases up to 1010 then the Euler 
method requires 5756 × 107 steps in order to achieve a solution 
with an accuracy of 5 × 10-6.  From this demonstration it is 
clear that the Euler integrator is not appropriate to treat the 
ill-posed problem with a high condition number. 

As mentioned above we usually require our integration of 
(11) to a large time extent in order to get a steady-state solution.  
If the time stepsize of a numerical scheme is restricted to be 
very small due to a reason of stability, it is hardly been used in 
the integration of stiff equation (11).  For a highly ill-posed 
problem A has a large condition number, which also renders 
(11) very stiff, and the approach to a steady state usually re-
quires a time very long.  It is thus very difficult to apply the 
conventional numerical scheme to search the steady-state 
solution, since it is very expensive of computational time. 

III. APPLIED THE NGPS TO ILL-POSED 
LINEAR EQUATIONS 

An effective scheme is developed here by considering the 
nonstandard finite difference method for solving severely stiff 
problems, which is basing on the group preserving scheme 
proposed by Liu [18, 20] stated as follows for self-content. 

1. Group Preserving Scheme 

Liu [18] has embedded the n-dimensional system (11) into 
the following n+1-dimensional augmented system: 
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Since the system matrix is an element of the Lie algebra soo(n, 
1), the Lie group generated from it is known as a Lorentz 
group SOo(n, 1). 

The group-preserving scheme (GPS) can preserve the above 
internal symmetry group SOo(n, 1) of the augmented system.  
We refer Liu [18] for the following integration method: 
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1 2 22
,k k k

k k k k k k

k k

h
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η
τ

+

+ ⋅
= + = +

−

x r x
x x r x r

x r
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where xk denotes the numerical value of x at the discrete time 
tk, τ: = h/2, rk denotes r(x k), and η k is an adaptive factor. 

Some properties of preserving the fixed point behavior of 
the above numerical scheme (21) have been investigated by 
Liu [18], showing that it is efficient and accurate for the nu-
merical solutions of ODEs.  However, for the use of GPS in 
the stiff ODEs the stepsize may require to be very small; hence, 
we need to introduce the following nonstandard GPS devel-
oped by Liu [20]. 

2. Nonstandard Group Preserving Scheme 

The main idea of nonstandard finite difference [32-35] is 
replacing the Euler forward approximation of :kx�  

 1 ,k k
k h

+ −
≈

x x
x�   (22) 

by a nonstandard forward approximation: 

 1 ,
( )

k k
k hφ

+ −
≈

x x
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where φ(h) is a denominator function with the properties of 
φ(h) > 0 and φ(h) = h + O(h2). 

For linear stiff ODE we may let 

 
1 exp( )
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h

h
ρφ

ρ
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where ρ is a number not smaller than the Lipschitz constant of 
(11): 

 max{ : 1, 2, ..., }.i i nρ λ≥ = ≥ =AL   (25) 

The replacement of h by φ(h) in (23) inspired Liu [20] to 
replace the h in (21) by φ(h); consequently, one has 
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From (24) and k k≤r xL  it follows that 

 1,  0.k

k

h
φ

φ≤ < ∀ >
r

x
L   (27) 

Hence, the denominator in (26) is positive, i.e., 
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It guarantees that the adaptive factor in (26) is always positive, 
that is, 
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2 22

4 2
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4
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h
φ

η φ
φ
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−

x r x
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The combination of nonstandard difference method with 
group preserving scheme, namely the nonstandard group pre- 
serving scheme (NGPS), renders the new numerical scheme 
(26) always stable.  This result is very important for stiff dif-
ferential equations, because as demonstrated by Shampine and 
Gear [39] the dominant factor to choose a suitable stepsize for 
stiff differential equations is its stability, not its accuracy. 

Furthermore, scheme (26) preserves the fixed point and the 
property of original differential equations system.  Under the 
above condition (29), it is obvious that 

 1 .k k k+ = ⇔ =x x r 0   (30) 

This means that xk is a fixed point of the discretized mapping 
(26) if and only if the point x is a fixed point of the system 
(11). 

Liu [20] has proved that the mapping (26) preserves the 
property of stable fixed point for all h > 0.  For the linear stiff 
equation (11) the fixed point is an asymptotically stable one, 
since –A has negative eigenvalues.  Therefore, the application 
of NGPS to this equation may be beneficial from those good 
properties. 

IV. NUMERICAL METHODS FOR LINEAR 
EQUATIONS 

1. Numerical Algorithm of NGPS (Algorithm 1) 

Substituting (11) for r into (26) we can obtain 

 1 ,k k k kη+ = +x x r   (31) 

where 

 k k= −r b Ax   (32) 

is a residual vector at the k-th step, and the adapting factor η k 
is 
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When applying the NGPS to solve (1), the numerical pro-
cedures can be summarized as follows (Algorithm 1): 

 
(i) Give an initial x0, and then  r0 = b – Ax0. 
(ii) For k = 0, 1, 2… we repeat the following calculations.  If 

||rk|| < ε for a given stopping criterion ε, then stop; other-
wise, let k = k + 1 and find the next xk+1 by (31), and rk+1 by 
(32). 

 
We can prove that the above algorithm is unconditional 

stable.  By using the inequality rk ⋅ xk ≤ ||rk|| ||xk||, from (33) it 
follows that 

 
2

.
2

k
k

k k

η φ
φ

≤
−
r

r r
  (34) 

Because of ρ ≥ ||A||, by taking (27) and (24) into account we 
can obtain 

 
2 2

2 .kη φ
ρ

< ≤ ≤
A

  (35) 

The above equation guarantees that the iteration given in 
(31) converges, no matter what h > 0 is used.  For the Richard- 
son iteration given in (12) or the Landweber iteration given in 
(15), h is constrained either by (13) or by (16). 

It can be seen that the NGPS algorithm is controlled by two 
parameters h and ρ in the ranges of h > 0 and ρ ≥ ||A|| ≥ λmax. 
Equation (35) reveals that a larger ρ will lead to a smaller η k, 
which in turns renders to a slower convergence rate.  The h 
controls the accuracy; however, for the linear equation (1) we 
do not take care the accuracy of its transient state governed by 
(11), but instead of we are concerned with its convergence rate 
to the steady state.  For this reason h can be chosen as large as 
possible in order to quickly tend to the steady-state solution.  
For example, the smallest eigenvalue of the Hilbert matrix 
with n = 9 is about 1.52 × 10-9, and the largest eigenvalue is 
about 1.75.  If in (11) we use this Hilbert matrix, there are fast 
changing components and also slowly changing components.  
Tending to a steady state may require the time t larger than 109 
for that exp[–10-9 t] can approach to zero.  If the time stepsize h 
is small we may require many steps to approach the steady 
state.  In Section V we will give numerical examples to show 
that a suitable selection of (h, ρ) may lead to a better NGPS 
algorithm to treat the ill-posed linear problems.  When the 
noisy effect is also considered, we may need to select a more 
better (h, ρ, α) to calculate the solution, where α plays a role of 
regularization parameter as to be shown in Section IV.3. 

2. The Steepest Descent and Conjugate Gradient Methods 

Solving (1) by the steepest descent method [14] is equiva-
lent to solve the following minimum problem: 

 T T1
min ( ) min[ ].

2n nR R
ϕ

∈ ∈
= −

x x
x x Ax x b  (36) 

Then, by using the Ritz variational principle we can derive 
the following algorithm: 

 
(i) Give an initial x0, and then  r0 = b – Ax0. 
(ii) For k = 0, 1, 2… we repeat the following calculations: If 

||rk|| < ε then stop; otherwise, let k = k + 1 and find the next 
xk+1 and rk by 

 1 ,k k k kη+ = +x x r   (37) 

 ,k k= −r b Ax   (38) 

 
2

T
.k

k
k k

η =
r

r Ar
  (39) 

Go to step (ii). 
As compared with the algorithm in Section IV.1 one can 

find that the algorithm of steepest descent method (SDM) is 
similar to the NGPS, besides that the calculations of the 
adapting factor ηk by (39) for the SDM, and by (33) for the 
NGPS.  However, the SDM is not unconditional stable, be-
cause ηk, given in (39), satisfying 

 
min max

1 1
,kη

λ λ
≥ ≥  (40) 

where λmin and λmax are respectively the smallest and the larg- 
est eigenvalues of A, is not guaranteed to satisfy the stable 
condition (13). 

For the SDM the residual vector rk is the steepest descent 
direction of the function φ at the point xk.  But when ||rk|| is 
rather small the calculated rk may deviate from the real steep- 
est descent direction to a great extent due to a round-off error 
of computing machine, which usually leads to the numerical 
instability of SDM. 

An improvement of SDM is the conjugate gradient method 
(CGM), which enhances the searching direction of the mini-
mum by imposing the orthogonality of the residual vectors at 
each iterative step [14].  The algorithm of the CGM can be 
summarized as follows: 

 
(i) Give an initial x0. 
(ii) Calculate r0 = b – Ax0 and p1 = r0. 
(iii) For k = 1, 2… we repeat the following calculations: 

 
2

1

T
,k

k
k k

η −=
r

p Ap
  (41) 

 1 ,k k k kη−= +x x p   (42) 

 1 ,k k k kη−= −r r Ap   (43) 
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=
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r
  (44) 

 1 .k k k ka+ = +p p p   (45) 

If xk converges according to a given stopping criterion: 

 1 ,k k ε+ − <x x  (46) 

then stop; otherwise, go to step (iii). 

3. A Regularization of NGPS (Algorithm 2) 

A regularization can be employed when one solves (1) under 
a highly ill-conditioned A.  Hansen [12] and Hansen and 
O'Leary [13] have given an illuminating explain that the 
Tikhonov regularization of linear problems is a trade-off be-
tween the size of the regularized solution and the quality to fit 
the given data: 

 
2 2

min ( ) min[ ].
n nR R
ϕ α

∈ ∈
= − +

x x
x Ax b x   (47) 

Therefore, instead of (11) we can apply the NGPS to solve 

 ,α= − −x b Ax x�  (48) 

where α is a regularized parameter, which can be determined 
by a technique of L-curve.  As that done in Section IV.1, we 
can obtain an iterative method given by 

 1 ,k k k kη+ = +x x r   (49) 

where 

 : ,k k kα= − −r b Ax x   (50) 
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φ
η φ

φ

+ ⋅
=

−

x r x

x r
  (51) 

The numerical procedures can be written as follows (Al-
gorithm 2): 

 
(i) Give an initial x0. 
(ii) For k = 0, 1, 2… we repeat the following calculations.  If 

Eq. (46) is fulfilled, then stop; otherwise, let k = k + 1 and 
find the next xk+1 by (49). 

4. A FTIM Technique 

Liu and Atluri [29] have introduced a novel method by 
embedding the nonlinear algebraic equations into a system of 
nonautonomous first order ODEs: 

 ( ).
1 t

ν= −
+

x r x�  (52) 

This numerical technique has been called a fictitious time 
integration method (FTIM). 

The above idea by introducing a fictitious time t was first 
proposed by Liu [24] to treat an inverse Sturm-Liouville 
problem by transforming an ODE into a PDE.  Then, Liu and 
his coworkers [25, 26, 31] extended this idea to develop new 
methods for estimating parameters in the inverse vibration 
problems.  More recently, Liu [27] has used the FTIM tech-
nique to solve the nonlinear complementarity problems, whose 
numerical results are very well.  Then, Liu [28] used the FTIM 
to solve the boundary value problems of elliptic type partial 
differential equations.  Liu and Atluri [30] also employed this 
technique of FTIM to solve mixed-complementarity problems 
and optimization problems. 

In this paper we will use the NGPS introduced in Section 
III.2 to integrate the above equation by inserting (11) for r, and 
the criterion of stopping iterations is given by 

 1.k ε≤r   (53) 

V. NUMERICAL EXAMPLES 

In order to assess the performance of the newly developed 
methods let us investigate the following examples. 

1. Example 1 

We first consider a very simple example: 

 1 1

2 2

1000 0
  

0.909 1

x b

x b

    
=    −     

  (54) 

with exact solution: 

 1
1 2 2 1

0.909
,  .

1000 1000

b
x x b b= = +   (55) 

The condition number of this problem is 1000.  Let us 
consider 

 1 1 1

2 2 2

1000 0
 .

0.909 1

x b x

x b x

      
= −      −      

�

�
 (56) 

We apply both the NGPS method and the Landweber iteration 
method in (15) to this simple problem.  Since the NGPS is 
designed for the solution of stiff equation, we can take a large 
time stepsize h = 100 when ρ is fixed to be the larger eigen-
value, i.e., ρ = 1000.  When we apply the Landweber iteration 
method to this problem the stepsize h is restricted to be h < 2 × 
10-6, and we take h = 10-6. 

In the case when the data (b1, b2) = (1, 1) are contaminated 
by a random noise, we are concerned with the stability of our 
calculation method, which is investigated by adding a random 
noise into b1 and b2 by sR(i), where R(i) are random numbers 
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between –1 and 1.  Under the noise level in the range of s ∈ 
[0.0001, 0.001], we have compared the numerical solutions 
obtained by the NGPS and the Landweber method by the 
relative errors of x1 and x2 as shown in Fig. 1(a).  Obviously, it 
can be seen that the results of the NGPS are much better than 
that calculated by the Landweber method.  For the NGPS both 
the erros of x1 and x2 are in the order of 10-3, but the Land-
weber method gives an unacceptable solution of x2. 

Under the same initial condition (x1, x2) = (0.1, 0.1) and the 
same stopping criterion ε = 10-3, the iteration numbers of the 
Landweber method are much larger than that of the NGPS 
method as shown in Fig. 1(b), and the computational time of 
the Landweber method spent in this calculation is about twenty 
times of the NGPS.  For the FTIM we use the NGPS to inte-
grate (52) by using h = 0.01, ρ = 10, ν = –10, and ε1 = 10-4.  As 
shown in Fig. 1 by the dashed-dotted lines, the iteration 
numbers of the FTIM are smaller than that of the NGPS, and 
the accuracy of x2 is also improved than that of the NGPS. 

The main drawback of the Landweber iteration method is 
its large number of iterations needed to obtain a converged 
solution, and this situation is more worse when the stopping 
criterion is imposed more strictly for more ill-conditioned 
linear equations.  To speed up the method, several semi- 
iterative methods have been investigated, for example, the 
ν-method [6], and the polynomial acceleration method [11]. 

2. Example 2 

Let us consider the boundary value problem in (7) with f(x) 
= sinπx.  The exact solution is 

 
2

1
( ) ( ) sin .u x a b a x xπ

π
= + − +  (57) 

Here we fix a = 1 and b = 2.  
In the calculation of this example by the NGPS we have 

fixed ∆x = 0.02, ρ = 10 and h = 10.  Starting from a set of initial 
conditions we can employ the iteration procedure as specified 
in Section IV.1 to calculate the solution, where the stopping 
criterion is taken to be ε = 10-5.  We first consider a linear 
initial condition as shown in Fig. 2(a).  Through 13424 itera-
tions the numerical solution converges to the exact solution 
very accurately as shown in Fig. 2(b) by the dashed line, while 
the exact solution is shown by the solid line.  From Fig. 2(c) it 
can be seen that the numerical error is smaller than 5 × 10-4 
even the quantity of ∆x = 0.02 used in the discretization is of 
the second order. 

Next we let ui = R(i)/2 + 1 + (sinπxi)/π
2 be our initial con-

ditions as shown in Fig. 2(a).  The total number of iterations is 
22044, which is much large than that for the linear initial 
condition.  The numerical error as shown in Fig. 2(c) is coin-
cident with the one under the linear initial condition.  The 
computational times are about two to three seconds in the 
above two calculations.  These results show that the NGPS 
algorithm works very well and accurately independent of the 
initial conditions. 
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Fig. 1. For Example 1 the numerical erros and iteration numbers of 

NGPS, FTIM and the Landweber method under different noise 
levels are compared in (a) and (b). 
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Fig. 2. Applying the NGPS for Example 2 we employ two different initial 

conditions in (a), and (b) comparing numerical and exact solu-
tions, (c) the numerical errors of NGPS, and (d) the numerical 
error of CGM. 
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Table 3. For Example 2 comparing the maximum error 
(ME) and iteration number (IN) for different h 
and ρ. 

ρ h ME IN 

0.1 5.031 × 10-3 7977 

0.5 5.024 × 10-3 1929 

10 3.492 × 10-5 608199 
1 

100 4.823 × 10-5 64879 

0.1 5.032 × 10-3 9646 

1 5.029 × 10-3 3821 

10 5.030 × 10-3 3795 
5 

100 5.030 × 10-3 3795 

0.1 5.033 × 10-3 12008 

2 5.031 × 10-3 7591 

10 5.030 × 10-3 7591 
10 

100 5.030 × 10-3 7591 

0.1 5.034 × 10-3 38211 

5 5.034 × 10-3 37954 

10 5.034 × 10-3 37954 
50 

100 5.034 × 10-3 37954 

 
In Table 3 we compare the maximum errors of our nu-

merical results under different ρ and h, and the iteration num- 
bers are also indicated when using the stopping criterion ε = 
10-4.  It can be seen that for a fixed ρ, when h increases the 
iteration number decreases and saturates to a certain number.  
For a fixed h, when ρ increases the iteration number is also 
increased.  In all cases the maximum errors can be controlled 
within a small range of [5.024 × 10-3, 5.044 × 10-3].  However, 
there are two particular cases for ρ = 1 and h = 10 and 100, the 
errors of which are greatly reduced to the order of 10-5, but the 
iteration numbers are also increased to 608199 for h = 10 and 
64879 for h = 100. 

We have applied the SDM to this problem; however, it is 
very unstable no matter what initial conditions are used.  Then, 
we apply the CGM to this problem and through 50 iterations it 
converges to a solution under the criterion (46) with ε = 10-10.  
However, this solution is not a true solution of this problem, 
because the error as shown in Fig. 2(d) is very large. 

Under a large noise level with s = 0.001, we have compared 
the numerical solutions obtained by the NGPS and the Land- 
weber iteration method (12) with exact solution as shown in 
Fig. 3.  Under the initial condition ui = 1.7 for all i and the 
stopping criterion ε = 6 × 10-3, the Landweber iteration method 
through 42 iterations leads to a maximum error of 5.473 × 10-2  
with a time stepsize h = 0.9, which is the maximum time 
stepsize that the Landweber method is stable for this problem.  
Under the same initial condition and the same stopping crite-
rion ε = 2 × 10-4, Algorithm 1 of the NGPS through 1894 
iterations leads to a maximum error of 2.326 × 10-2 with h = 1 
and ρ = 2.  It can be seen that the NGPS method is slightly 
better than the Landweber method as shown in Fig. 3. 
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Fig. 3. For Example 2 under a large noise the numerical solutions of 

Algorithms 1 and 2 of the NGPS and the Landweber are com-
pared with the exact solution. 
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Fig. 4. The L-curve of Algorithm 2 of the NGPS obtained by varying the 

regularized parameter. 

 
It can be seen that the non-regularized solution is already 

rather better.  However, in order to increase the accuracy of the 
NGPS method, we can employ a regularization technique to 
this problem.  According to Algorithm 2 in Section IV.3 we 
first plot an L-curve in Fig. 4 under the stopping criterion in 
(46) with ε = 2 × 10-4.  Then we select a regularized parameter 
to be α = 0.000064, and apply Algorithm 2 of the NGPS 
method to this problem under the same initial condition and 
the same stopping criterion ε = 5 × 10- 4.  Through 929 itera-
tions it leads to a maximum error 9.641 × 10-3.  It can be seen 
that the results of Algorithm 2 as shown in Fig. 3 with dashed 
line is slightly better than that calculated by Algorithm 1 of 
the NGPS, and is much better than that calculated by the 
Landweber method. 

3. Example 3 

In this example we consider a highly ill-conditioned linear 
equation (1) with A given by (5).  The ill-posedness of (1) 
increases fast with n. 
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Table 4.  Comparing the numerical results for Example 3 with different methods. 

Solutions x1 x2 x3 x4 x5 x6 x7 x8 x9 

Exact 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

SVD 0.9999 1.008 0.985 0.995 1.007 1.012 1.009 0.999 0.984 

NGPS 1.00001 0.99980 1.00090 0.99909 0.99928 1.00037 1.00105 1.00062 0.99887 

FTIM 1.00001 0.99981 1.00082 0.99922 0.99933 1.00029 1.00092 1.00058 0.99901 

SDM 1.00001 0.99980 1.00091 0.99910 0.99928 1.00035 1.00103 1.00062 0.99898 

CGM 1.00000 1.00001 0.99924 1.00019 0.99988 0.99985 1.00008 1.00019 0.99987 

 

1) n = 9 

In order to compare the numerical solutions with exact 
solutions we suppose that x1 = x2 = …= xn = 1, and then by (5) 
we have  

 
1

1
.

1

n

i
j

b
i j=

=
+ −∑   (58) 

We first calculate this problem for the case with n = 9.  As 
shown in Table 1, the resulting linear equation is highly ill- 
conditioned, since the condition number is very large up to 
4.93 × 1011. 

In the calculation by the NGPS we have fixed ρ = 2 and h = 
0.5.  Starting from a set of initial conditions with x1 = …= x9 = 
0.5, we employ the iteration procedure in Section IV.1 to this 
problem with a stopping criterion ε = 10-8.  Through 182441 
iterations the numerical solution converges to the exact solu-
tion very accurately as shown in Table 4, where the values 
obtained by the singular value decomposition (SVD) tech-
nique [36] are also listed for the purpose of comparison.  In the 
calculation by the FTIM we have fixed ρ = 10, h = 10-3, ε1 = 
10-7 and ν = –20000.  Starting from a set of initial conditions 
with x1 = … = x9 = 0.5, we employ the iteration procedure as 
specified in Section IV.4 to this problem with a stopping cri-
terion ε1 = 10-7.  Through 47403 iterations the numerical so-
lution converges to the exact solution very accurately as 
shown in Table 4.  The accuracy of FTIM is slightly better than 
that of the NGPS, and is also convergent fast than the NGPS. 

In Fig. 5(a) we have used the solid line to denote the exact 
values and the dashed line to denote the numerical values 
obtained by the NGPS.  From Fig. 5(b) it can be seen that the 
maximum numerical error of NGPS is equal to 1.12768 × 10-3.  
But the maximum error of SVD is 1.6 × 10-2.  Obviously, the 
NGPS results in a great improvement of the numerical results 
than that of the SVD. 

For Example 2 in Section V.2 both the SDM and the CGM 
are failed to find solution, which may be due to a large di-
mension of the problem and the narrow band character of the 
matrix A.  But for Example 3 we can apply these methods to 
find the solutions, which are listed in Table 4.  Both the NGPS 
and the SDM produce the same errors, and the CGM is slightly 
better than that of the NGPS and SDM. 
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Fig. 5. For Example 3: (a) comparing the numerical result of NGPS with 

the exact solution, and (b) the numerical errors of NGPS and 
SVD. 

 
In Fig. 6(a) we fix ρ = 2 and ε = 10-6 and allow the stepsize 

varying from h = 1 to h = 10.  It can be seen that the maximum 
errors are located within a narrow range of [6.3388 × 10-3, 
6.3692 × 10-3].  It reflects that the NGPS method is stable for 
different time stepsize.  Also, we have investigated the influ-
ence of ρ on the maximum errors in Fig. 6(b), from which it 
can be seen that the maximum errors are located within a 
narrow range of [9.396 × 10-3, 9.401 × 10-3].  In these calcu-
lations we have fixed h = 1 and ε = 10-5.  The NGPS method is 
also stable even one employs different ρ. 

When applying the CGM to this problem we found that it is 
very sensitive to the noise; hence, we cannot calculate the 
result under a noise level s = 10-5. 

In the calculation of this noised problem by the NGPS we 
have fixed ρ = 2 and h = 5, and ε = 10-5 is also used in the 
calculation by the SDM.  The NGPS converges to a rather 
accurate solution as shown in Table 5 through 3139 iterations.  
In the calculation by the FTIM we have fixed ρ = 1, h = 0.005 
and ν = –1000.  The FTIM converges very fast with 766 it-
erations to a rather accurate solution as shown in Table 5.  On 
the other hand, the SDM converges to a slightly bad solution 
as shown in Table 5 through 31576 iterations.  Unfortunately, 
for x 4 the SDM leads to an error about 21%. 
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Table 5.  Comparing numerical results for Example 3 under noise. 

Solutions x1 x2 x3 x4 x5 x6 x7 x8 x9 

Exact 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

NGPS 1.00016 1.00038 0.99902 0.99119 1.00490 1.01430 1.00135 0.99808 0.98977 

FTIM 1.00021 1.00074 0.99568 0.99464 1.00761 1.00961 1.00572 0.99771 0.986885 

SDM 1.00102 0.97669 1.12472 0.79421 1.00401 1.19965 0.93218 0.98919 0.97715 
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Fig. 6. When applying the NGPS for Example 3 we displaying the in-

fluence of (a) the time stepsize and (b) the factor ρ on the maxi-
mum error of solutions. 

 

2) n = 50 

Let us increase the ill-posedness of this problem with n = 50 
and with a noise s = 10-8, which is the maximum noise that 
allows us to apply the CGM in the computation of this prob-
lem.  For this problem the condition number is about 1.1748 × 
1019.  In the calculation of this problem by the NGPS we have 
fixed ρ = 2 and h = 5, and ε = 10-5 is also used in the calcula-
tions by the SDM and the CGM.  The NGPS provides a rather 
accurate solution with the errors in the order of 10-3 as shown 
in Fig. 7 when comparing with the exact solutions x1 = … =  
x50 = 1.  The accuracy of the SDM and the CGM are worse than 
that of the NGPS.  The largest error for the SDM at x50 is about 
0.01.  In the calculation of this problem by the FTIM we have 
fixed ρ = 10, h = 10-4, ν = -30000 and ε1 = 10-8.  The accuracy 
of the FTIM is much better than other methods as shown by 
the dashed-dotted line in Fig. 7. 

Next, we consider  
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Fig. 7. For a highly ill-posed case of Example 3 with n = 50 we comparing 

the numerical errors of NGPS, FTIM, CGM and SDM. 
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+ −∑  (59) 

with n = 50 and 0 < pi ≤ 1.  This noise has a mean value 0.5.  
This problem is more difficult than the one with constant  
x1 = … = xn = 1. 

When the noise is imposed in the levels of s = 10-4 and s = 
10-2, the NGPS is still applicable.  In Fig. 8(a) we compare the 
exact solution given in (59) with the numerical solution of the 
NGPS by using ε = 2 × 10-4, h = 100 and ρ = 2 for the case with 
s = 10-4.  The maximum error is about 0.068966.  We also use 
the FTIM to calculate this problem under  ν = –1000, ε1 = 3 × 
10-4, h = 0.001 and ρ = 15.  The result is plotted in Fig. 8(a) by 
the dashed-dotted line.  It is convergent fast than that of the 
NGPS.  In Fig. 8(b) we compare the exact solution with the 
numerical solution by using ε = 5 × 10-2, h = 500 and ρ = 500 
for the case with s = 10-2.  At the two ends there are some 
discrepancies and the maximum error is about 0.172513.  Cal- 
culating this problem by FTIM, we use ν = –1000, ε1 = 2.5 × 
10-2, h = 1 and ρ = 5.  The result is plotted in Fig. 8(b) by the 
dashed-dotted line.  It is convergent fast than NGPS, and is 
slightly inaccurate than NGPS.  These results are better than 
that calculated by using the Tikhonov regularization technique 
[43]. 

3) n = 200 

It is known that the condition number of Hilbert matrix 
grows like as e3.5n when n is very large.  For the case with n =  
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Fig. 8. Comparing the numerical solutions of NGPS and FTIM with a 

non-constant exact solution for Example 3 with n = 50: (a) s = 
0.0001, and (b) s = 0.01. 

 
200 the condition number is extremely huge up to 10348.  The 
exact inverse of the Hilbert matrix has been derived by Choi 
[7]: 

2

1 ( ) 1 1 2
( ) ( 1) ( 1) .

1
i j

ij

n i n j i j
A i j

n j n i i
− + + − + − + −   

= − + −    − − −   
  (60) 

Since the exact inverse has large integer entries when n is large, 
a small perturbation of the given data will be amplified greatly, 
such that the solution is contaminated seriously by errors.  The 
program can compute the inverse by using the exact integer 
arithmetic for n = 13.  Past that number the double precision 
approximation should be used.  However, due to overflow the 
inverse can be computed only for n which is much smaller 
than 200. 

Under this severe condition of both a tremendous ill- 
posedness of A with n = 200 and a sensible noise with s = 10-3, 
the NGPS is still applicable to this problem by relaxing the 
convergence criterion to ε = 10-2, increasing the stepsize to h = 
1000 and with  ρ = 2.  Indeed, the NGPS gives a solution very 
fast only through 94 iterations, and the result is still acceptable 
with an error in the second order as shown in Fig. 9(a).  When 
s = 10-2 we also plot the numerical error in Fig. 9(b).  For this 
case we use Algorithm 2 in Section IV.3 to calculate the so-
lution with α = 0.0001, while the convergence criterion ε = 0.08 
and the stepsize h = 2000 were used.  It spends 13 iterations to 
obtain the solution with a maximum error 0.1811.  Similarly, 
we also plot the numerical errors by using the FTIM in Fig. 9 
with dashed lines.  Both cases spend 30 iterations, under the 
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Fig. 9. The numerical errors of NGPS and FTIM for Example 3 with a 

fixed n = 200 and different (a) s = 0.001, and (b) s = 0.01. 

 
same ν = –1000, ρ = 10 and h = 10, but with ε1 = 0.05 for s = 
0.001 and ε1 = 0.1 for s = 0.01. 

VI. CONCLUSION 

In order to tackle of the numerical instability of some 
conventional iteration methods on solving ill-posed linear 
problems, we have developed two new algorithms based on a 
combination of nonstandard finite difference method with 
group-preserving scheme, namely the nonstandard group- 
preserving scheme (NGPS).  We proved that the NGPS is 
unconditional stable, therefore, allowing a larger stepsize in 
the calculations without inducing numerical instability, as well 
as speeding up the convergence of iterations.  We also inves-
tigated the effect of a newly developed fictitious time inte-
gration method (FTIM) on the solutions of ill-posed linear 
equations.  When the time integration in the FTIM was carried 
out by the NGPS, the convergent behavior of FTIM is better 
than other methods.  Several numerical examples were ex-
amined, some of which were compared with exact solutions 
revealing that the NGPS and FTIM can work very well even 
for highly ill-conditioned linear equations under a large noise 
perturbation.  Through a regularization of NGPS we can ob-
tain a more accurate algorithm by selecting a regularized pa-
rameter through the use of L-curve.  Through this study, we 
have obtained two easily-implemented and unconditional 
stable iteration methods to solve the ill-posed linear problems. 
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