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ABSTRACT 

A complete stability theory for a plate can be constructed by 
an incremental virtual work equation describing instability 
effects induced by all kinds of actions.  Besides, this incre-
mental virtual work equation should satisfy the rigid body rule, 
i.e., it should objectively obey the rigid body rule no matter 
what coordinates systems are adopted.  In this paper, a com-
plete nonlinear stability theory for the Kirchhoff thin plate is 
proposed by using the principle of virtual work and the update 
Lagrangian formulation.  Then, a rigid body motion testing 
method is developed for examining the incremental virtual 
work equation.  In developing such a theory, three key pro-
cedures are especially considered.  First of all, the virtual strain 
energy contributed from all six nonlinear strain components 
are clearly identified and then, two actions on the effective 
transverse edge per unit length, namely the Kirchhoff’s forces 
and moment per unit length in the currently deformed con-
figuration (2C state) are especially considered here in contrast 
to be ignored in previous literatures.  Finally, nonlinear terms 
of the virtual work done by boundary moments per unit length 
in the 2C state are also derived.  Advantages of this new theory 
not only come from passing the rigid body rule, which is 
seldom found in the nonlinear theory of the plate, but also 
owing to the completeness of the proposed theory. 

I. INTRODUCTION 

The incremental virtual work equation is usually encoun-
tered in the buckling analysis and mainly formulated in the 
currently deformed configuration (2C state).  Since the cur-
rently deformed configuration is unknown, the Lagrangian for- 

mulation is usually adopted to describe the current deforma-
tions within the known reference coordinates system.  If the 
reference coordinates system is based on an un-deformed 
configuration (0C state), the formulation is called the total 
Lagrange formulation; in contrast, if the coordinates system is 
based on the previously deformed configuration (1C state), this 
formulation is called the update Lagrange formulation. 

In early studies of the stability theory for plates and shells, a 
known configuration was first taken as the reference con-
figuration for describing the equilibrium of actions (forces and 
moments) and thus, forces equilibrium equations in the cur-
rently deformed configuration, 2C state, could be constructed 
by using the coordinates system in the reference configuration 
and by considering incremental displacements effects.  Through 
a relationship between forces and displacements, governing 
equations of buckling were obtained by using the incremental 
displacements.  For example, the well-known von Kármán 
formula used the 0C state as the reference configuration, and 
those theories of buckling developed by Timoshenko and Gere 
[10], Chajes [3] and Ziegler [23] used the 1C state as the ref-
erence configuration.  Only the membrane forces are consid-
ered in theories, their governing equations are easy to under-
stand and each term has its own physical meaning.  Therefore, 
they are still in use for the researchers nowadays [9, 13, 16, 22].  
Although these buckling theories discussed stability behaviors 
of thin plates; however, only considering the membrane forces 
effects leads to fail in handling those buckling problems with 
out-of-plane actions.  In the theory developed by Hodges et al. 
[5], the energy approach was adopted to derive the governing 
equation for plate buckling.  In their theory, warping effect 
was systematically eliminated, large deformation and rotation 
were both taken into consideration, and the governing equa-
tion was constructed by taking forces and moments as vari-
ables.  However, implicit type of the govern equation and 
complexity of each term in the governing equation make it 
hard to understand and implement. 

As known, the principle of virtual work is a very powerful 
tool to derive the governing equation of mechanics [1, 15].  
Unlike the previously mentioned approaches, the virtual work 
method only needs to set up the strain energy terms and con-
siders the virtual work done by the actions.  By using the total 
Lagrange formulation or the update Lagrange formulation, 
one can construct the virtual work in the 2C state by way of the 
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known configurations (0C or 1C state).  Introducing the rela-
tion of displacements and strains, one can formulate the gov-
erning equation and natural boundary conditions from the 
incremental virtual work equation by means of the variational 
principle.  Yang and Kuo [19] adopted the update Lagrange 
formulation to develop the nonlinear buckling theory for a 
solid beam.  They used the rigid body motion test to examine 
the governing equation, natural boundary condition and in-
cremental virtual work equation for validation.  Basically, the 
virtual work method is more systematical than the previously 
mentioned approaches due to its completeness; however, using 
the principle of virtual work to study the stability of a plate is 
seldom found.  The possible reasons for this situation may 
come from two folds: (1) some terms in the virtual strain en-
ergy do not have clear physical meanings; (2) the boundary 
forces and nonlinear virtual work done in the 2C state should 
be defined correctly. 

In this paper, the update Lagrange formulation is adopted 
and the virtual work method is used to derive the incremental 
virtual work equation for the nonlinear buckling analysis of a 
thin plate.  Three issues in the derivations are crucial: (1) stain 
energy due to six nonlinear strain components should be all 
taken into considered; (2) the boundary moments per unit 
length and the effective transverse edge force per unit length 
acting on the boundary of the middle surface in the 2C state are 
defined; (3) the nonlinear virtual work done by the boundary 
moments in the 2C state is derived.  It should be noted that 
those terms with unclear physical meanings in the incremental 
virtual strain equation are cancelled out by some mathematical 
operations.  Besides, based on the rigid body rule [7, 17, 18, 
19], a rigid body test especially for a plate to check the in-
cremental virtual work equation is also proposed.  In this 
regard, the proposed theory can satisfy the rigid body test such 
that the objectivity of the proposed theory is guaranteed.  The 
proposed theory has several merits: (1) the incremental virtual 
work equation are represented in the explicit forms such that 
the physical meaning for each term is clear; (2) the theory 
considers all kinds of actions such that it has a wider applica-
tion;  (3) the theory can pass the rigid body rule such that it is 
suitable in analyzing the nonlinear behavior in which case 
large deformation is usually encountered. 

II. STATICS AND KINEMATICS OF A THIN 
PLATE 

To analyze the stability behaviors of a structure, two stages 
should be considered.  The first one is called the pre-buckling 
stage in which the deformation after loadings is very small and 
consequently, the influence due to geometrical changes can be 
neglected.  The second is called the buckling stage in which a 
small increment in the loading will result in large deformations.  
In this paper, the update Lagrange formulation is adopted.  It 
means that the previous deformed configuration (1C state) 
obtained from the pre-buckling stage is used to derive the 
incremental equilibrium equation in the currently deformed 
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Fig. 1.  Plate in 1C state. 

 
configuration (2C state) for the buckling stage.  In what fol-
lowing, the pre-buckling and buckling stages are analyzed 
consequently. 

1. Pre-buckling Stage in 1C State 

A thin plate, shown in Fig. 1(a), having a thickness h with 
its middle surface locating on x-y plane, in which the bound- 
ary of the middle surface is denoted as Γ, is considered.  At the 
edge of this thin plate, a small surface element is chosen as 
shown in Fig. 1(b).  The curve ab is a part of Γ and the segment 
ac is perpendicular to the curve ab.  Define a local coordinate 
n-s-z system on this small surface element with the unit vector 
of s- axis, ,se

�

 denoting the tangential direction of Γ which is 

perpendicular to the z- axis (direction of segment ab); the unit 
vector of n- axis, ,ne

�

 denoting the out-normal direction of this 

tiny surface element; and the unit vector of z- axis, ,ze
�  de-

noting the direction of the plate thickness (direction of seg-
ment ac).  The length of curve ab is denoted as d 1s and the 
length of segment ac is ξ, i.e., the distance from point c to the 
middle surface. 

According to Kirchhoff thin plate theory [14], the linear 
displacement fields for the thin plate can be expressed as: 

 ,x yu u ξθ= +  (1) 

 ,y xu v ξθ= −  (2) 



182 Journal of Marine Science and Technology, Vol. 17, No. 3 (2009) 

 

 uz = w, (3) 

 ,y

w

x
θ ∂= −

∂
 (4) 

 ,x

w

y
θ ∂=

∂
 (5) 

in which u, v, and w denote the displacements for the middle 
surface in x-, y- and z- directions, respectively, ux, uy and uz 
denote the displacements for point c in x-, y- and z- directions, 
respectively, and θx and θy denote the rotational angles for 
segment ac with respect to x- axis and y- axis, respectively.  
Integrating the stress components with respect to the plate 
thickness, the membrane forces per unit length, transverse 
shears per unit length and moments per unit length, respec-
tively, can be obtained: 

 
2 2

2 2

1 1 1 1, ,
h h

h hxx xx yy yyN d N dτ ξ τ ξ
− −

= =∫ ∫  

 
2

2

1 1 ,
h

hxy xyN dτ ξ
−

= ∫  (6) 

 
2 2

2 2

1 1 1 1, ,
h h

h hx xz y yzQ d Q dτ ξ τ ξ
− −

= =∫ ∫  (7) 

 
2 2

2 2

1 1 1 1 ,  ,
h h

h hxx xx yy yyM d M dτ ξ ξ τ ξ ξ
− −

= =∫ ∫  

 
2

2

1 1  .
h

hxy xyM dτ ξ ξ
−

= ∫  (8) 

In the above equations, the index ‘1’ on the lef t-upper cor-
ner denotes the physical quantity in the 1C state, τij is the stress 
component, Nij is the membrane force per unit length, Qi is the 
transverse shear per unit length, and Mij is the moment per unit 
length. 

As shown in Fig. 1(b), the transformation relationship be-
tween n-s-z local coordinate system and global x-y-z coordi-
nate system in 1C state can be expressed as 

 

0

0

0 0 1

n x y x

s y x y

z z

e n n e

e n n e

e e

     
    = −    
         

� �

� �

� �

, (9) 

where nx and ny are x- and y- components for the out-normal 
vector, ,ne

�

 respectively.  The rotation angles of the surface 

element, i.e., the shaded region containing segment ab shown 
in Fig. 1(b) in the local coordinate system, can be expressed in 
the following.  First, two rotational angles in s- and n- direc-
tions are 
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(a) Total twisting moment per unit length for the
normal direction in 1C state.
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Fig. 2.  Boundary equivalent vertical force in 1C state. 

 

 
1

, ,s n

w w

n s
θ θ∂ ∂= − =

∂ ∂
 (10) 

where θs and θn represent rotation angles in s- and n- directions, 

respectively; while the rotational angle in z- direction, * ,zθ  is 

 *
1 1

.z x y

u v
n n

s s
θ ∂ ∂= − −

∂ ∂
  (11) 

The boundary traction force in 1C state,
1

,t
�

 can be written as 

 

1 1 1 1

1 1 1

  

.

x x y y z z

n n s s z z

t t e t e t e

t e t e t e

= + +

= + +

�

� � �

� � �

 (12) 

Since se
�

and ne
�

 are perpendicular to ,ze
�

 respectively, 

boundary moments per unit length, bending moment 1Mn and 
twisting moment 1Ms, acting on the boundary due to the trac-
tion components, 1ts and 1tn, can be defined as 

 
2 2

2 2

1 1 1 1 ,  .
h h

h hn n s sM t d M t dξ ξ ξ ξ
− −

= =∫ ∫  (13) 

As shown in Fig. 2(a), the twisting moment per unit length 
for the normal direction in 1C state at the boundary point a can 
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be expressed as ( )1 .s a
M   Considering an infinitesimal seg-

ment ij with length equal to d 1s shown in Fig. 2(b), the total 
twisting moment for the normal direction in 1C state then can 

be written as ( )1 1 .s a
M d s   Following with those works of 

Timoshenko [11], Ugral [12] and Wempner [14], such a total 
twisting moment can be replaced by an equivalent force cou-
ple, as shown in Fig. 2(b).  It means the total twisting moment 
for the normal direction in 1C state acting on this infinitesimal 
element can be equivalent to a force couple system; that is, 

1( )s a zM e
�

acting at point i and ( )1
s za

M e− �

acting at point j.  

Now considering a neighbor point b with a distance between 
two points (point a and point b) equal to d 1s shown in Fig. 2(c), 
the force acing at point j, which is contributed from the 
equivalent force couple in the infinitesimal element centered 

at point b, is ( )1 ;s zb
M e

�

 therefore, the total force at point j can 

be written as ( ) ( )1 1
s z s zb a

M e M e−� �

 and such a total force acts 

on a single point.  Considering a continuously distributed 

concept, the equivalent vertical force per unit length, 1 ,V
�

 can 
be expressed as 

 ( ) ( ) ( )1 1 1 1
1 1

1
.s z s z s zb a

V M e M e M e
d s s

∂ = − ≈
  ∂

�

� � �

 (14) 

In the above equation, it can be found that the twisting 
moment acting on the boundary of the middle surface, 1Ms, is 
transformed into a continuously distributed equivalent vertical 
force per unit length.  Therefore, the effective boundary forces 
per unit length acting on the boundary of the middle surface, Γ, 
can be expressed as 

 
2

2

1 1

1 1
1

1 1 1

0

0 .
h

h

x x

y y

z z S

N t

N t d
s

N t M

ξ
−

      
     ∂  = +      ∂      

     

∫  (15) 

When we consider the thin plate problem to be a 
two-dimensional plane problem as shown in Fig. 3, 1Nx, 

1Ny 
and 1Nz are x- y- and z- components of the boundary force per 
unit edge length acting on the boundary Γ, respectively.  It 
should be note that 1Nz is the well-known Kirchhoff’s force.  
Since the twisting moment per unit length, 1Ms has been 
transformed into the equivalent vertical force per unit length, 
the boundary actions on Γ only contains a boundary bending 
moment per unit length, 1Mn, and three boundary forces per 
unit length, 1Nx, 

1Ny and 1Nz.  Without considering body forces, 
the equation of equilibrium in z- direction in 1C state can be 
written as  

 
11 1

0.yzxz zz

x y z

ττ τ∂∂ ∂
+ + =

∂ ∂ ∂
 (16) 

x, ex

y, ey

z, ez

middle surface
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Fig. 3.  Illustration of the plane problem for the thin plate. 

 
Multiplying (16) by z and integrating with respect to the 

plate thickness and using Green’s theorem with the trac-
tion-free conditions [21] can yield 
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2 2

2

2

2

2

1 1

1

1

  

 

 .

h h

h h

h

h

h

h

xz yz

zz

zz

z dz z dz
x y

z dz
z

dz

τ τ

τ

τ

− −

−

−

∂ ∂+
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∂
= −

∂

=

∫ ∫

∫

∫

 (17) 

Equation (17) will be used to deal with an unclear term 
appearing in the following derivation, in which the integration 
of normal stress components along the direction of plate 
thickness is ambiguous. 

2. Buckling Stage in 2C State 

When the plate deformed form the 1C state (previous de-
formed configuration) to the 2C state (currently deformed 
configuration), the deformation includes displacements (u, v, 

and w) at point a and rotational angles (θn, θs, and * )zθ  for the 

small surface element at the edge.  Illustration of the surface 
element deformation in the 2C state is shown in Fig. 4, in 
which points ,a′  b′  and c′  represent the current positions of 
points a, b and c in 1C state, respectively, and d 2s denotes the 
length of ' '.a b   According to the assumptions in the Kirchhoff 
plate theory, the length of a c′ ′  remains the same as that of 
segment ac, i.e., ξ.  Similar to that in the 1C state, a coordinate 
system (α-β-γ system) at the plate edge in the 2C state can be 
defined.  The unit vector of β axis, ,eβ

�

 is in the tangential 

direction of the boundary of the middle surface (Γ), i.e., in the 
direction of ' '.a b   The unit vector of γ axis, ,eγ

�

 is in the 

direction of the plate thickness, i.e., in the direction of .a c′ ′   
The unit vector of α axis, ,eα

�

 is in the normal direction of the 

plate edge. 
The unit vectors in the previous deformed configuration (1C 

state) and those in the currently deformed configuration (2C 
state) have the following transformation: 
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Define the linear strain components for a boundary point 
using n-s-z- coordinates as 

 
1 1

,ss y x

u v
e n n

s s

∂ ∂= − +
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 (19) 

 
1 1

,nn x y

u v
e n n

n n

∂ ∂= +
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 (20) 

 
1 1 1 1

1 1
 

2 2sn x y y x

u v u v
e n n n n

s s n n

∂ ∂ ∂ ∂   = + + − +   ∂ ∂ ∂ ∂   
 (21) 

From (19), the relationship of the infinitesimal length d 1s in 
the 1C state and its corresponding deformed infinitesimal 
length d 2s in the 2C state can be written as 

 2 1  ( 1 ).ssd s d s e= +  (22) 

The tractions acting at the plate edge in the 2C state, as 
shown in Fig. 4, can be expressed by the coordinate system in 
the 2C state as well as the coordinate system in the 1C state: 

 

2 2 2 2

2 2 2

2 2 2

  

.

x x y y z z

n n s s z z

t t e t e t e

t e t e t e

t e t e t eα α β β γ γ

= + +

= + +

= + +

�

� � �
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  (23) 

Since eβ
�

 and eα
�

 are both perpendicular to ,eγ
�

 the bound-

ary moments per unit length due to the tractions in the 2C state, 
2tβ and 2tα, can be defined as 

 
2 2

2 2

2 2 2 2 ,  .
h h

h h
M t d M t dβ β α αξ ξ ξ ξ

− −
= =∫ ∫  (24) 

Because the traction component, 2tγ, acts in the direction 
parallel to the plate thickness after deformation, it results in no 
moment consequently. 

By using (18), two traction components in the n-s-z- coor-
dinate can be obtained as 

 2 2 2 * 2  ,n z st t t tα β γθ θ= − +  (25) 

 2 2 * 2 2 .s z nt t t tα β γθ θ= + −  (26) 

Multiplying (25) and (26) by ξ, integrating with respect to 
plate thickness and introducing (24), one can have 

 
2 2

2 2

2 2 2 * 2   ,
h h

h hn z st d M M t dα β γξ ξ θ ξ ξ θ
− −

= − +∫ ∫  (27) 

 
2 2

2 2

2 2 * 2 2   .
h h

h hs z nt d M M t dα β γξ ξ θ ξ ξ θ
− −

= + −∫ ∫  (28) 

It should be noted that in the 2C state the unit vectors se
�

and 

ne
�

 do not perpendicular to .eγ
�

  From the fundamental concept 

of moments, the left-hand side terms appearing in (27) and (28) 
cannot be taken as the moments per unit length acting on the 
middle surface, which are done by the tractions in the 2C state; 
therefore, those integration terms appearing in the right-hand 
sides of (27) and (28) do not show apparent physical mean-
ings. 

As shown in Fig. 5(a), the twisting moment per unit length 
in the normal direction for point a′  (the 2C state) can be ex-

pressed by ( )2 .
a

M β   Taking an infinitesimal segment ij with 

length d 2s in the neighborhood of point a′  (shown in Fig. 
5(b)), the total twisting moment acting on segment ij can be 

written as ( )2 2 ,
a

M d sβ  which should be equivalent to a force 

couple system with a force ( ) ( )2

aa
M eβ γ− �

 acting at point j 

and the other force ( ) ( )2

aa
M eβ γ

�

 acting at point i.  In the 

above statement, ( )
a

eγ
�

 represents the unit vector in the di-

rection of plate thickness for point a′  after deformation (the 
2C state).  Based on the same argument, there exists an 
equivalent force couple system acting at point ',b  which is a 

neighbor point of point a′  and the length of segment ' 'a b  is 
d 2s.  As mentioned earlier, this force couple system results in a 

force, ( ) ( )2 ,
bb

M eβ γ
�

 acting at point j, where the vector ( )
b

eγ
�

 

represents the unit vector in the direction of plate thickness for 
point b′  after deformation (the 2C state) and is not necessary 
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d 2s

j

i

i

k
(Mβ)a

(Mβ)a
(Mβ)a

(eβ)a

(eγ)a

(eγ)a (eγ)b
(eγ)b(Mβ)b

a′ b′

(a) Total twisting moment per unit length for the
normal direction in 2C state.

j

d 2s

a′

(b) Equivalent force couples on boundary ij. 

(eγ)a(Mβ)a

j
a′ b′

(c) Total force at point j.  
Fig. 5.  Boundary equivalent vertical force in 2C state. 

 

equal to ( ) .
a

eγ
�

  As can be seen in Fig. 5(c), the total equiva-

lent vertical force at point j is equal to ( ) ( ) ( )2 2

bb a
M e Mβ γ β−�

 

( ) .
a

eγ
�

  Considering continuous distribution of such an equiva- 

lent force, the equivalent vertical force per unit length in the 2C 

state, 2 ,V
�

 can be expressed as 

 
( ) ( ) ( ) ( )

( )

2 2 2
2

2
2

1

.

b ab a
V M e M e

d s

M e
s

β γ β γ

γβ

= −

∂≈
∂

��

� �

�

 (29) 

From (9) and (19), one has 

   .x y zy xe e e eγ θ θ= − +
� � � �

 (30) 

With the use of (30), Eq. (29) can rewritten as 

 ( )2 2 2 2
2

.x y zy xV M e M e M e
s β β βθ θ∂= − +

∂

�� � � �

 (31) 

Equation (31) transforms the twisting moment per unit 
length 2Mβ into equivalent force per unit length.  Similarly, the 
effective boundary forces per unit length acting on the bound-
ary of the middle surface Γ in the 2C state can be yielded as: 

 
2

2

2 2 2

2
2 2 2

2
2 2 2

.
h

h

x x y

y y x

z z

N t M

N t d M
s

N t M

β

β

β

θ
ξ θ

−

      
     ∂  = + −      ∂      

      

∫  (32) 

In the above equation, 2Nx, 
2Ny and 2Nz are boundary forces 

per unit length acting on Γ in the 2C state and they can be 
considered as a generalized Kirchhoff ’s force.  These effective 
forces per unit length in the 2C state are firstly defined to au-
thors’ best knowledge.  They are clearly defined only when the 
deformed positions in the 2C state are clearly handled. 

III. INCREMENTAL VIRTUAL WORK 
EQUATION 

In this section, the update Lagrangian formulation will be 
used to derive the incremental virtual work equation.  The 
incremental virtual work equation is written as [1, 19]: 

 
1 1

1 1 1 2 1    ,klij kl ij ij ij

V V

C e e d V d V R Rδ τ δη+ = −∫ ∫  (33) 

where 

 
2

2 2 2 , , , ,i j

S

R t u d S i x y zδ= =∫�  (34) 

and 

 
1

1 1 1 , , , ,i j

S

R t u d S i x y zδ= =∫�  (35) 

In the above equations, 2R and 1R represent the virtual work 
done by the traction forces in 2C and 1C states, respectively; ui 
is the incremental displacement from the 1C state to the 2C 
state; 1S and 2S represent the surface enclosed the plate in the 
1C state and 2C state, respectively; 1ti and 2ti are traction forces 
action on surface 1S and 2S in the 1C state and 2C state, re-
spectively. 

The first and second terms in the left hand side of (33) is the 
linear virtual strain energy, δUE, and nonlinear incremental 
virtual strain energy, δUN, respectively.  That is 

 
1

1  E klij kl ij

V

U C e e d Vδ δ= ∫ ” (36) 

 
1

1 1 ..  N ij ij

V

U d Vδ τ δη= ∫  (37) 
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in which Cijkl is the elastic modulus tensor, eij is the linear 
strain tensor, ηij is the nonlinear strain tensor, 1τij is the Cauchy 
stress tensor in the 1C state, and 1V is the volume in the 1C state.  
Detailed descriptions of the above physical quantities can be 
found in [19].  It should be noted that 2R in (34) is constructed 
in the currently deformed configuration, i.e., the 2C state.  In 
what following, we will derive these terms step by step. 

1. Linear Virtual Strain Energy and Nonlinear Virtual 
Strain Energy 

Assume the plate is an isotropic linearly elastic material 
with the Young’s modulus E and the Poisson’s ratio υ.  Sub-
stituting (1) to (5) into (36) yields 

 

2

2

2

23 2 2

2 2 2

22 2 2

2 2

2(1 )

1
        2(1 )

4

24(1 )

        2(1 ) ,

E

Eh u v
U

x y

u v u v
dA

u x x y

Eh w w

x y

w w w
dA

x y x y

δ δ
υ

υ δ

δ
υ

υ δ

  ∂ ∂= +  ∂ ∂−  

 ∂ ∂ ∂ ∂  + − + −  ∂ ∂ ∂ ∂   

  ∂ ∂+ +  − ∂ ∂ 

    ∂ ∂ ∂  + − −    ∂ ∂ ∂ ∂      

∫∫

∫∫

 (38) 

where dA is the surface element of the middle surface.  It 
should be noted that the mentioned linear virtual strain energy 
is the same as that described in [10, 11]. 

To obtain the nonlinear virtual strain energy, we first sub-
stitute (1) to (5) into the nonlinear strain, ηij, in (37).  Using 
definitions of the membrane force per unit length, moments 
per unit length and transverse shear force per unit length in (6) 
to (8), one can obtain the nonlinear virtual strain energy, δUN, 
as 

 ,N G cU U Uδ δ δ= +  (39) 

in which 

 

2 2 2
1

2 2 2

1

1

1

2

                 

                2

G xx
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xy

u v w
U N

x x x

u v w
N

y y y
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  ∂ ∂ ∂     = + +       ∂ ∂ ∂        

      ∂ ∂ ∂
 + + +     ∂ ∂ ∂       

 ∂ ∂ ∂ ∂ ∂ ∂ + + +  ∂ ∂ ∂ ∂ ∂ ∂  

∫∫

 

 

2 2
1

2

2 2
1

2

2 2
1

2

2 2

2

1
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xy

x

y
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M

x x x yx
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M

y x y y y

u w u w
M

x x y y x

v w v w

x y x yy

u w v w
Q

x x x y

u w v
Q

y x y

δ

δ

δ

δ

δ

  ∂ ∂ ∂ ∂− +  ∂ ∂ ∂ ∂∂  

 ∂ ∂ ∂ ∂+ + ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂+ + ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂+ + ∂ ∂ ∂ ∂∂ 

 ∂ ∂ ∂ ∂− + ∂ ∂ ∂ ∂ 

∂ ∂ ∂− +
∂ ∂ ∂

∫∫

,
w

dA
y

 ∂ 
 ∂  

 (40) 

and 

 

( )
( )
( )

2

2

2

2

2

2

22
1
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1

22
1

1
   

2

1
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1
            

2

h

h

h

h

h

h

c xz
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w w
U z dz dA

x x y

w w
z dz dA

y x y

w w
dz dA

x y

δ τ δ

τ δ

τ δ

−

−

−

  ∂ ∂ ∂ 
 = +   ∂ ∂ ∂     

  ∂ ∂ ∂ 
 + +   ∂ ∂ ∂     

  ∂ ∂ 
 + +   ∂ ∂     

∫ ∫

∫ ∫

∫ ∫

 (41) 

In δUG, the nonlinear virtual strain energy contains two 
parts: one is contributed by three membrane forces per unit 
length (Nxx, Nyy and Nxy); the other is contributed by three 
moments per unit length (Mxx, Myy and Mxy) and two transverse 
shear forces per unit length (Qx and Qy).  The first part had 
been derived and used by many researchers [3, 10, 23]. 

In (41), the integrations of stress components in z-direction 
with respect to the plate thickness cannot show a clear physical 
meaning.  Besides, this virtual strain energy δUc has not been 
discussed in literatures to our best knowledge.  Using (17) and 
Green’s theorem, this term can be transformed into 

 

( )( )

2

21

h
2

21

22
1 1 1

1 1
x x y y

1
( )    
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 s

h

h

h

c xz x yz y

s
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w w
U z n n dz d s

x y

t z dz d

δ τ τ δ

θ δθ θ δθ

−

−

  ∂ ∂    = + +      ∂ ∂     

= +

∫ ∫

∫ ∫

�

�

  (42) 

After transformation, there still exists integration (the in-
tegration of the product of traction and z with respect to the 
plate thickness) having no definite physical meaning; however, 
this term will be treated in the following. 
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2. The Virtual Work Done by Tractions in the 1C and 2C 
States 

Substituting (1) to (5), (13) and (15) into (35) can yield the 
virtual work done by the traction force in the 1C state as 

 

1

1
1

1 1 1 1 1
x y z n s

s

R W

N u N v N w M d s

δ

δ δ δ δθ

=

 = + + + ∫�
 (43) 

where δW1 denotes the virtual work done by the effective 
boundary forces and boundary bending moment in the 1C state 
and is equal to the virtual work done by the traction force in 
the 1C state, i.e., 1R.  Substituting (1) to (5) into (34) ,the vir-
tual work done by the traction force in the 2C state, i.e., 2R, can 
be written as 
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t
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δ
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−

−

   +     
 = −   
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        
 =    
        

      +    −      

∫ ∫

∫ ∫

∫ ∫

�

�

�  

. (44) 

Substituting (32) into the first integration term in the right 
hand side of (44), performing integrations by part, and per-
forming coordinate transformation (see Appendix 1) can yield 
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∫ ∫

∫

∫

�

�

�

 (45) 

Substituting (27) and (28) into the second integration term 
in the right hand side of (44), performing coordinate trans-
formation, and neglecting higher order terms (see Appendix 2) 
can yield 
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∫

∫
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�

�

�

�

 (46) 

Therefore, the virtual work done by the traction force in the 
2C state can be obtained by summing up (45) and (46) as: 

 2
2

ˆ ,R cR W U Uδ δ δ= + +  (47) 

where 
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2 2 2 2 2
2 ,x y z s

s

W N u N v N w M d sαδ δ δ δ δθ = + + + ∫�  (48) 
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1 * 1 1 * 1( )    ,R s ss n z s n z n

s s

U M e d s M d sδ δ θ θ θ θ δθ= − + −∫ ∫� � (49) 
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21

1 1
x x y y

ˆ   (  )( ) ,
h

hc z

s

U t z dz d sδ θ δθ θ δθ
−

= +∫ ∫�  (50) 

in which δW2 is the linear virtual work done by the effective 
boundary forces and boundary moment in the 2C state.  Tra-
ditionally, 2R is thought to be equal to δW2 possibly by the 
intuition.  However, from (47), 2R is not equal to δW2.  A 
similar result has been reported in the work of Yang and Kuo 
[19] in which they derived the nonlinear stability theory of a 
solid beam.  In (47), δUR is the nonlinear virtual work done by 
the boundary moments after rotations.  This term has never 
been mentioned before.  It can be found that ˆ

cUδ  in (50) is the 
same as δUc in (42) and thus, they can be canceled out each 
other.  Therefore, the problem of their physical meaning be-
comes meaningless.  Substituting (38), (39), (43) and (47) into 
(33), we can obtain the incremental virtual work equation for 
the Kirchhoff thin plate as 

 δUE + δUG – δUR = δW2 – δW1. (51) 

It should be noted that δUR is derived based on three pro-
cedures: first, completely considering the nonlinear strain 
energy due to six nonlinear strains; second, reasonably de-
fining the boundary moments per unit length and the equiva-
lent transverse edge forces per unit length in the 2C state; the 
last, deriving the nonlinear virtual work done by the boundary 
moments per unit length in the 2C state.  One of the virtual 
works in (51), δUR, is in the same order as the traditional 
nonlinear virtual strain energy, δUG and thus, it cannot be 
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neglected.  In the following, we will prove that neglecting this 
term will result in failure in passing the rigid body test. 

IV. THE RIGID BODY TEST FOR THE 
INCREMENTAL VIRTUAL WORK EQUATION 

The rigid body test is basically originated from the principle 
of objectivity in mechanical analysis.  The incremental virtual 
equation, natural boundary condition, and geometric stiffness 
matrix in geometrically nonlinear analysis of shells and plates 
all should satisfy this rigid body test.  In the early literatures, 
the rigid body test was usually applied on the linear unloading 
system at initial state and to check the elastic stiffness matrix 
derived by using the finite element method for validating its 
convergence.  Assume the beam with actions is initially in 
equilibrium, Yang and Chiou [18] proposed the rigid body rule 
for the nonlinear element.  They showed that when the finite 
element is subjected to the rigid body motion, the force acting 
on the body should rotate and translate according to the rigid 
body motion but the magnitude of the force remains the same.  
In their study, the rigid body rule was used to examine the 
elastic and geometric stiffness matrices.  In fact, this rigid 
body rule can be considered as an extension of the principle of 
objectivity and is adopted to check the theory of stability. 

In this subsection, the rigid body rule is adopted to examine 
the validity of previously derived incremental virtual work 
equation.  The rigid body motion results in no deformation in 
the thin plate, it can then be said that d 1s = d 2s.  Taking the 
rigid body rotation with respect to z- axis, θzr , as an example, 
we will examine the nonlinear incremental virtual work in (51).  
As shown in Fig. 3, let us take an infinitesimal length (ab) at 
the edge Γ.  When the rotation, θzr , occurs, the effective 
boundary forces per unit length will rotate as well (see Fig. 
6(a)).  As a result, the forces acting on Γ in the 2C state can be 
expressed as: 

 2 1 1 ,x x y zrN N N θ= −  (52) 

 2 1 1 ,y y x zrN N N θ= +  (53) 

 2 1 ,z zN N=  (54) 

 2 1 .nM Mα =  (55) 

The incremental displacements in x-, y-and z- axis (ur, νr 
and wr) due to the rotation are 

  ,r zru y θ= −  (56) 

  ,r zrv x θ=  (57) 

 0.rw =  (58) 

a b

1Nx

1Ny

1Nz

1Mn

1C state

x

y

z

x

y
a'

b'

θzr

1Nx
1Ny

1Nz

1Mn

2Mα = 1Mn
2Nz = 1Nz

2Ny = 1Nxθzr + 1Ny

2Nx = 1Nx – 1Nyθzr

2C state

z
(a) Boundary forces before the rigid body rotation. 

x

y

z

a'

b'

2C state

(b) Boundary forces after the rigid body rotation.  
Fig. 6.  Rigid body rotation θzr. 

 
Similarly, we consider another two rigid body rotations 

with respect to x- and y- axis, i.e., θxr and θyr, and three rigid 
body translations with respect to x- , y-  and z- axis, i.e., ∆xr, ∆yr 
and ∆zr.  The forces and incremental displacements after rigid 
body motion in the 2C state can be expressed as 

 2 1 1 1 ,xr x y zr z yrN N N Nθ θ= − +   (59) 

 2 1 1 1 ,yr z yr y z xrN N N Nθ θ= + −   (60) 

 2 1 1 1 ,zr x yr y xr zN N N Nθ θ= − + +   (61) 

 2M
αr = 1Mn,  (62) 

 ur = ∆xr – yθzr, (63) 

 νr = ∆yr + xθzr, (64) 

 wr = ∆zr + yθxr – xθyr. (65) 
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Substituting (63) to (65) into (38), (40) and (49) can yield 

 0,EUδ =  (66) 
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Applying algebraic operation to (66) to (68) and performing 
Green’s theorem with integration by parts, the virtual strain 
energy in the left hand side of (51) can be write as 
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Substituting the forces after the rigid body rotation ((59) to 
(62)) into (48) yields 
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Substituting (70) into left hand side of (51), the incremental 
virtual work can be write as 
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Substituting (69) and (71) into (51), one can have 

 2 1,E G RU U U W Wδ δ δ δ δ+ − = −  (72) 

which is the same as (51).  It means the proposed equation can 
pass the rigid body test.  From the above derivations, it can be 
concluded that neglecting δUR in (51), the incremental virtual 
work equation cannot pass the rigid body test. 

V. NUMERICAL EXAMPLES 

In what followings, two numerical examples will be pro-
vided to investigate the geometrical nonlinear behavior of the 
shell for validating the proposed theorem and to compare their 
nonlinear behaviors with the conventional theorem without 
passing the rigid body rule.  In this article, the generalized 
displacement control method with advantages of efficiency 
and reliability [8, 20], which can be used to pass the limit point 
and snap-back point steadily in the equilibrium path, is adopted 
to conduct the incremental iteration analysis.  The adopted 
triangular plate element [7, 17] has three nodes and each of 
them contains three translation and three rotation degrees of 
freedom.  Besides, for a geometrically nonlinear incremental- 
iteration analysis, tangential stiffness matrices can be de-
composed into two parts: elastic stiffness and geometric stiff- 
ness one.  To construct the former matrix, a combined use of 
the plane hybrid element for membrane actions [4] and the 
HSM element for bending actions [2] is adopted for calcula-
tion; while for the latter one three different geometric stiffness 
matrices are adopted to compare those differences of the 
proposed theorem and the conventional one.  The first stiffness 
matrix is obtained by using virtual strain energy of (40) and 
(49) and a combined use of these two equations can pass 
through the rigid body rule.  The second one is the conven-
tional geometric stiffness matrix, which is derived by only 
considering the nonlinear strain energy in (40).  The third one 
is a simplified geometric stiffness matrix, which is obtained by 
using the first integrating term in the right-hand side 
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Fig. 8.  Central def lection of cylindrical shell. 

 
of (40) and only considering the geometrically nonlinear effect 
induced by the membrane force of the plate. 

1. Example 1: 

A circular cylindrical shell subjected to a concentrated load 
P at the geometric center with two straight-line boundaries 
hinged and curved boundaries free-supported shown in Fig. 7 
is considered.  Geometric parameters and material properties 
are given as: E = 3.10275 kN/mm2, ν = 0.3, R = 2540 mm, 
straight-line length L = 254 mm, θ = 0.1 rad, h = 12.7 mm.  At 
the symmetric center of the cylindrical shell, a concentrated 
vertical load acts at the point.  Because of symmetry, again 
only one quarter of the structure is taken into consideration.  
This considered structure is modeled consecutively by 8 × 8 
(128 elements) meshe.  Fig. 8 shows the central deflection of 
the circular cylindrical shell.  As can be found, those nonlinear 
behaviors from using the three different geometric stiffness 
matrices are the same and the analysis results are in accor-
dance with those of Ref. [6]. 
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(a) An Illustration of the cantilever beam with L section. 
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(b) An illustration of the nodal forces at the free end.  
Fig. 9. A cantilever beam of an L section subjected to the shear force at 

the end. 

 

2. Example 2: 

A cantilever beam of a L-type section subjected to a shear 
force V at the free end, is shown in Fig. 9, and its material 
properties and geometrics are as follows: E = 3.10275 kN/mm2, 
ν = 0.3, beam length L = 1,000 mm, flange thickness b = 100 

mm, plate thickness h = 5 mm, angle of flanges .2
πθ =   This 

considered structure is modeled consecutively by 20 × 4 (160 
elements) meshes.  When the structure is subjected to the shear 
force, it will result in the torsional buckling deformation.  Now, 
consider the unstable behavior at the g point from y direction 
at the end of the cantilever beam, as shown in Fig. 10, the solid 
line, which represents the relation of the applied force and the 
displacement, is the result obtained by using the proposed 
geometrically nonlinear theory of passing the rigid body rule; 
while the curve with the symbol “+” represents the result by 
using the conventional geometrically nonlinear theory; the 
curve with the symbol “O” represents the result from the use 
of the simplified theory, which only considers the plate sub-
jected to the membrane force.  As shown in this figure, the 
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Fig. 10. The displacement of the y-axis at the node a in the end of the 

cantilever beam. 

 
critical loadings of the latter two cases are 10% differences to 
that of the former case. 

VI. CONCLUSIONS 

In this paper, a complete stability theory for the Krichhoff 
thin plate has been developed by using the virtual work 
method.  This theory carefully considers various actions, such 
as three membrane forces per unit length (Nxx, Nyy, and Nxy), 
moments per unit length (Mxx, Myy, and Mxy), and transverse 
shear forces per unit length (Qx and Qy).  Expressing terms for 
the derived incremental virtual work equation in this plate 
buckling theory are all written in the explicit forms and every 
term in this theory has its own physical meaning.  In addition, 
a rigid body test especially for the incremental virtual work 
equation has been constructed and the proposed theory can 
pass the rigid body test successfully.  In practice, the geometric 
stiffness matrix derived from the current approach can con-
sider various actions and pass the rigid body test automatically; 
therefore, the derived stiffness matrix, based on the current 
theory, can correctly analyze the buckling and nonlinear be-
haviors for the plate and shell structure. 
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APPENDIX I 

Using the boundary forces in the 2C state in (32), the first 
integration term in the right hand side of (44) can be written  
as 
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The second integration term appearing in (A1) using inte-
gration by parts, we have 
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Using the definition for rotational angles in (10) and (11) 
and the relationship for edge lengths in (19) and (22), we have 
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Introducing (A2) and (A3), Eq. (A1) can be rewritten as 
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Now decompose the traction in the 2C state, 2ti, as the sum 
of the traction in the 1C state, 1ti, and the incremental traction 
(∆ti), that is 
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Adopting the transformation of coordinate systems in (18), 
2tα, 

2tβ and 2tγ can be expressed as  
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respectively.  Multiplying (A6) to (A8) with ξ, and inte-
grating with respect to the plate thickness and then, introduc-
ing the definitions for the boundary moments per unit length in 
(13) and (28), we obtain 
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Since the incremental tractions and incremental displace-
ments are tiny quantities, the underlined terms in (A9) to (A11) 
is relatively smaller in an order than the first terms appearing 

in the right hand sides of equations.  Substituting (A10) into 
the second integration terms in (A4) and neglecting the higher 
order terms can yield 
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Substituting (A12) into (A4), Eq. (45) then can be obtained. 

APPENDIX II 

Substituting (26) and (27) into the second integration terms 
in the right hand side of (44) yields 
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Substituting (A9) and (A10) into the second integration 
terms in the right hand side of (A13) and neglecting the higher 
order terms, we have 
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Substituting (A11) into the third integration term in (A13) 
and neglecting the higher order terms, we have 
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Substituting (A14) and (A15) into (A13), Eq. (46) can be 
yielded. 
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