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ABSTRACT

A compl ete stability theory for aplate can be constructed by
an incremental virtual work equation describing instability
effects induced by al kinds of actions. Besides, this incre-
mental virtual work equation should satisfy therigid body rule,
i.e., it should objectively obey the rigid body rule no matter
what coordinates systems are adopted. In this paper, a com-
plete nonlinear stability theory for the Kirchhoff thin plate is
proposed by using the principle of virtual work and the update
Lagrangian formulation. Then, a rigid body mation testing
method is developed for examining the incremental virtual
work equation. In developing such a theory, three key pro-
cedures are especialy considered. First of all, the virtua strain
energy contributed from al six nonlinear strain components
are clearly identified and then, two actions on the effective
transverse edge per unit length, namely the Kirchhoff’s forces
and moment per unit length in the currently deformed con-
figuration (°C state) are especially considered here in contrast
to beignored in previous literatures. Finally, nonlinear terms
of the virtual work done by boundary moments per unit length
inthe 2C state are also derived. Advantages of this new theory
not only come from passing the rigid body rule, which is
seldom found in the nonlinear theory of the plate, but also
owing to the completeness of the proposed theory.

I[.INTRODUCTION

The incremental virtual work equation is usually encoun-
tered in the buckling analysis and mainly formulated in the
currently deformed configuration (°C state). Since the cur-
rently deformed configuration is unknown, the Lagrangian for-
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mulation is usually adopted to describe the current deforma-
tions within the known reference coordinates system. If the
reference coordinates system is based on an un-deformed
configuration (°C state), the formulation is called the total
Lagrange formulation; in contrast, if the coordinates systemiis
based on the previously deformed configuration (*C state), this
formulation is called the update L agrange formulation.

In early studies of the stability theory for plates and shells, a
known configuration was first taken as the reference con-
figuration for describing the equilibrium of actions (forces and
moments) and thus, forces equilibrium equations in the cur-
rently deformed configuration, 2C state, could be constructed
by using the coordinates system in the reference configuration
and by considering incremental displacements effects. Through
a relationship between forces and displacements, governing
equations of buckling were obtained by using the incremental
displacements. For example, the well-known von Karman
formula used the °C state as the reference configuration, and
those theories of buckling devel oped by Timoshenko and Gere
[10], Chajes [3] and Ziegler [23] used the 'C state as the ref-
erence configuration. Only the membrane forces are consid-
ered in theories, their governing equations are easy to under-
stand and each term hasits own physical meaning. Therefore,
they arestill in usefor the researchers nowadays[9, 13, 16, 22].
Although these buckling theories discussed stability behaviors
of thin plates; however, only considering the membrane forces
effects leads to fail in handling those buckling problems with
out-of-plane actions. In the theory developed by Hodges et al.
[5], the energy approach was adopted to derive the governing
equation for plate buckling. In their theory, warping effect
was systematically eliminated, large deformation and rotation
were both taken into consideration, and the governing equa-
tion was constructed by taking forces and moments as vari-
ables. However, implicit type of the govern equation and
complexity of each term in the governing equation make it
hard to understand and implement.

As known, the principle of virtual work is a very powerful
tool to derive the governing equation of mechanics [1, 15].
Unlike the previously mentioned approaches, the virtual work
method only needs to set up the strain energy terms and con-
siders the virtual work done by the actions. By using the total
Lagrange formulation or the update Lagrange formulation,
one can construct the virtual work in the °C state by way of the
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known configurations (°C or 'C state). Introducing the rela-
tion of displacements and strains, one can formulate the gov-
erning equation and natural boundary conditions from the
incremental virtual work equation by means of the variational
principle. Yang and Kuo [19] adopted the update Lagrange
formulation to develop the nonlinear buckling theory for a
solid beam. They used the rigid body motion test to examine
the governing equation, natural boundary condition and in-
cremental virtual work equation for validation. Basicaly, the
virtual work method is more systematical than the previously
mentioned approaches due to its completeness; however, using
the principle of virtual work to study the stability of aplateis
seldom found. The possible reasons for this situation may
come from two folds: (1) some terms in the virtual strain en-
ergy do not have clear physical meanings; (2) the boundary
forces and nonlinear virtual work done in the “C state should
be defined correctly.

In this paper, the update Lagrange formulation is adopted
and the virtual work method is used to derive the incremental
virtual work equation for the nonlinear buckling analysis of a
thin plate. Threeissuesin the derivationsare crucial: (1) stain
energy due to six nonlinear strain components should be all
taken into considered; (2) the boundary moments per unit
length and the effective transverse edge force per unit length
acting on the boundary of the middle surfacein the ’C state are
defined; (3) the nonlinear virtual work done by the boundary
moments in the °C state is derived. It should be noted that
those terms with unclear physical meaningsin the incremental
virtual strain equation are cancelled out by some mathematical
operations. Besides, based on the rigid body rule [7, 17, 18,
19], arigid body test especially for a plate to check the in-
cremental virtual work equation is aso proposed. In this
regard, the proposed theory can satisfy therigid body test such
that the objectivity of the proposed theory is guaranteed. The
proposed theory has several merits: (1) the incremental virtual
work equation are represented in the explicit forms such that
the physical meaning for each term is clear; (2) the theory
considers all kinds of actions such that it has a wider applica-
tion; (3) the theory can pass the rigid body rule such that it is
suitable in analyzing the nonlinear behavior in which case
large deformation is usually encountered.

1. STATICSAND KINEMATICSOF A THIN
PLATE

To analyze the stability behaviors of a structure, two stages
should be considered. The first oneis called the pre-buckling
stage in which the deformation after loadingsisvery small and
consequently, the influence due to geometrical changes can be
neglected. The second is called the buckling stage in which a

small increment in the loading will result in large deformations.

In this paper, the update Lagrange formulation is adopted. It
means that the previous deformed configuration (‘C state)
obtained from the pre-buckling stage is used to derive the
incremental equilibrium eguation in the currently deformed

IC state

(a) Coordinates of a thin plate in 'C state.

= IC state

(b) Infinitesimal boundary surface element.

Fig. 1. Platein'C state.

configuration (°C state) for the buckling stage. In what fol-
lowing, the pre-buckling and buckling stages are analyzed
consequently.

1. Pre-buckling Stagein 'C State

A thin plate, shown in Fig. 1(a), having a thickness h with
its middle surface locating on x-y plane, in which the bound-
ary of the middle surface isdenoted asT;, is considered. At the
edge of this thin plate, a small surface element is chosen as
showninFig. 1(b). Thecurveabisapart of I" and the segment
ac is perpendicular to the curve ab. Define alocal coordinate
Nn-s-z system on this small surface element with the unit vector
of s- axis, €, denoting the tangential direction of T which is
perpendicular to the z- axis (direction of segment ab); the unit
vector of n- axis, &,, denoting the out-normal direction of this
tiny surface element; and the unit vector of z- axis, &, de-
noting the direction of the plate thickness (direction of seg-
ment ac). The length of curve ab is denoted as d's and the
length of segment acis¢, i.e., the distance from point c to the
middle surface.

According to Kirchhoff thin plate theory [14], the linear
displacement fields for the thin plate can be expressed as:

u, =u+&o,, Q

u, =v-4e,, 2
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u, = w, 3
ow

6, =——, 4

y =T 4)
ow

6 =—, 5

=y )

in which u, v, and w denote the displacements for the middle
surface in x-, y- and z- directions, respectively, uy, U, and u,
denote the displacements for point c in x-, y- and z- directions,
respectively, and 6 and 6, denote the rotational angles for
segment ac with respect to x- axis and y- axis, respectively.
Integrating the stress components with respect to the plate
thickness, the membrane forces per unit length, transverse
shears per unit length and moments per unit length, respec-
tively, can be obtained:

1 _ (e 1 _ (%
N,, = J.% 7,dE, N, = I% def,

Ny, = [) 1, dé, (6)
Q= [ add Q= [ (7)

M= .[%17“5 dg, "M, = .[%lfyyf dé,

M, = [ VV 7 £ dé, ®)

In the above equations, the index ‘1’ on the left-upper cor-
ner denotes the physical quantity in the 'C state, Tjisthe stress
component, N; isthe membrane force per unit length, Q; isthe
transverse shear per unit length, and M;; isthe moment per unit
length.

As shown in Fig. 1(b), the transformation relationship be-
tween n-s-z local coordinate system and global x-y-z coordi-
nate system in 'C state can be expressed as

& n. n 0[g
és = _ny n, 0 éy ' (9)
&| |0 o0 1]lg

where n,and n, are x- and y- components for the out-normal
vector, &, respectively. The rotation angles of the surface

element, i.e., the shaded region containing segment ab shown
in Fig. 1(b) inthelocal coordinate system, can be expressed in
the following. First, two rotational anglesin s- and n- direc-
tionsare

i k
- - ov— v —_———-— e ———=0--
a b
>
d's

(a) Total twisting moment per unit length for the
normal direction in 'C state.

‘M), T
d's

(b) Equivalent force couples on boundary ij.

Q

z

A

I
~~
o
Qv

i a J

[ »

(M), &
-——————— —_——————-
a j b

(M) @

(c) Total force at point ;.
Fig. 2. Boundary equivalent vertical forcein ’C state.

g =W 5 _ W
J's

, 10
5= O (10)

where 0sand 6, represent rotation anglesin s- and n- directions,
respectively; while the rotational anglein z- direction, 6, is

N Ju ov
g =—-n,—-n,—. 11
z *9's 7 als (1)

The boundary traction forcein 'C state, 1?, can bewritten as
T oot 8+ 18

(12)
=te +t8&+',8.

Since € and € are perpendicular to &, respectively,
boundary moments per unit length, bending moment *M, and

twisting moment *Ms, acting on the boundary due to the trac-
tion components, *ts and 't,, can be defined as

M= [gd M= [Trgde 1)

As shown in Fig. 2(a), the twisting moment per unit length
for the normal direction in *C state at the boundary point a can
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be expressed as (*M,) . Considering an infinitesimal seg-

ment ij with length equal to d's shown in Fig. 2(b), the total
twisting moment for the normal direction in 'C state then can

be written as (1Ms)adls Following with those works of

Timoshenko [11], Ugral [12] and Wempner [14], such a total
twisting moment can be replaced by an equivalent force cou-
ple, asshownin Fig. 2(b). It meansthe total twisting moment
for the normal direction in 'C state acting on this infinitesimal
element can be equivalent to a force couple system; that is,

(*M,), & acting at point i and —('M,) & acting at point j.

Now considering a neighbor point b with a distance between
two points (point a and point b) equal to d*s shownin Fig. 2(c),
the force acing at point j, which is contributed from the
equivalent force couple in the infinitesimal element centered

at point b, is (*M S)b e,; therefore, thetotal forceat point j can

bewrittenas (*M, ) & —(*M,) &, and suchatotal force acts

on a single point. Considering a continuously distributed
concept, the equivalent vertical force per unit length, V, can
be expressed as

S (1 ~ 9 (1, =
V=gl & -(M),8 |- (M) aa

In the above equation, it can be found that the twisting
moment acting on the boundary of the middle surface, M, is
transformed into a continuously distributed equivalent vertical
force per unit length. Therefore, the effective boundary forces
per unit length acting on the boundary of the middle surface, T,
can be expressed as

N, § 5 0
Ny p=| [P e |+ o (15)
lNz A z a > lMS

When we consider the thin plate problem to be a
two-dimensional plane problem as shown in Fig. 3, 'N,, 'N,
and N, are x- y- and z- components of the boundary force per
unit edge length acting on the boundary T, respectively. It
should be note that 'N, is the well-known Kirchhoff’s force.
Since the twisting moment per unit length, *Ms has been
transformed into the equivalent vertical force per unit length,
the boundary actions on I" only contains a boundary bending
moment per unit length, *M,, and three boundary forces per
unit length, *N,, N, and *N,. Without considering body forces,
the equation of equilibrium in z- direction in 'C state can be
written as

1 1 1
arﬂ+arﬂ+arzz=

0. 16
oX oy 0z (16)

boundary curve I'

Fig. 3. lllustration of the plane problem for thethin plate.

Multiplying (16) by z and integrating with respect to the
plate thickness and using Green's theorem with the trac-
tion-free conditions [21] can yield

iJ'%zlrxz dz+i "2 dz
oX % ay v ¥
% _0'T,
-7z
P 0z

= J.?/ 'z, dz.

dz 17)

Equation (17) will be used to deal with an unclear term
appearing in the following derivation, in which the integration
of normal stress components along the direction of plate
thickness is ambiguous.

2. Buckling Stagein °C Sate

When the plate deformed form the 'C state (previous de-
formed configuration) to the °C state (currently deformed
configuration), the deformation includes displacements (u, v,
and w) a point a and rotational angles (6, 05, and 6,) for the
small surface element at the edge. Illustration of the surface
element deformation in the °C dtate is shown in Fig. 4, in
which points a’, b’ and ¢’ represent the current positions of
points a, b and ¢ in C state, respectively, and ds denotes the
length of a'b'. According to the assumptionsin the Kirchhoff
plate theory, the length of a’c’ remains the same as that of
segment ac, i.e., & Similar to that in the 'C state, a coordinate
system (a-f-y system) at the plate edge in the °C state can be
defined. The unit vector of f axis, €;, is in the tangential

direction of the boundary of the middle surface (T'), i.e,, inthe
direction of a'b'. The unit vector of y axis, €, is in the

direction of the plate thickness, i.e., in the direction of a’c’.
The unit vector of a axis, €,, isinthe normal direction of the
plate edge.

The unit vectorsin the previous deformed configuration (*C
state) and those in the currently deformed configuration (°C
state) have the following transformation:
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2C state

e

e, 1 6, -6,||s,
&r=|-6, 1 6, |e (18)
e, 6, -6, 1 ||g

Define the linear strain components for a boundary point
using n-s-z- coordinates as

Ju ov
e$:—ny81s+ ki’ (29)
ou ov
=n,—+n,—, 20
enn xaln yaln ( )
1 Ju ov 1 Ju ov
=g i ol ) @)

From (19), the relationship of theinfinitesimal length d'sin
the 'C state and its corresponding deformed infinitesimal
length d?s in the °C state can be written as

d?’s=d's (1+e,). (22)

The tractions acting at the plate edge in the °C state, as
shown in Fig. 4, can be expressed by the coordinate system in
the 2C state as well as the coordinate system in the 'C state:

T o= 1.8 + 2tyéy +%,8
=28 + 6 +,8 (23)

=%,8,+ 1,8, + 1 8.

Since €; and €, are both perpendicular to €,, the bound-

ary moments per unit length dueto the tractionsin the °C state,
%, and 4,,, can be defined as

% %
M, = [%Ztﬁg dg, 2™, = '[%Ztaf d¢. (24)
Because the traction component, t,, acts in the direction
paralld to the plate thickness after deformation, it resultsin no
moment consequently.

By using (18), two traction components in the n-s-z- coor-
dinate can be obtained as

A =%, - Ztﬁeg + Zty 0., (25)

to=",0,+%, -0, (26)
Multiplying (25) and (26) by &, integrating with respect to
plate thickness and introducing (24), one can have

jf%ng dE =M, —2M 6, + f;zt/; a6, (27)

%% _2 2 Y 5
_[%Ztsfdf— M, 6, + M,,—j_% t,£dE 6,  (28)

It should be noted that in the °C state the unit vectors & and
€, do not perpendicular to &,. From thefundamental concept

of moments, the left-hand side terms appearing in (27) and (28)
cannot be taken as the moments per unit length acting on the
middle surface, which are done by thetractionsin the °C state;

therefore, those integration terms appearing in the right-hand

sides of (27) and (28) do not show apparent physical mean-

ings.

Asshown in Fig. 5(a), the twisting moment per unit length
in the normal direction for point @’ (the °C state) can be ex-

pressed by (ZMﬂ)a. Taking an infinitesimal segment ij with

length d?s in the neighborhood of point a’ (shown in Fig.
5(b)), the total twisting moment acting on segment ij can be
writtenas (M, )a d 2s, which should be equivalent to aforce

couple system with a force —(ZM/,)a(ey)a acting at point |
and the other force (ZMﬂ)a(ér)a acting at point i. In the

above statement, (ér)a represents the unit vector in the di-

rection of plate thickness for point a” after deformation (the
’C state). Based on the same argument, there exists an
equivalent force couple system acting at point b', whichisa
neighbor point of point a’ and the length of segment a'b’ is
d?s. Asmentioned earlier, thisforce couple system resultsin a
force, (ZM/,)b(éy)b, acting at point j, where the vector (é}/)b

represents the unit vector in the direction of plate thicknessfor
point b’ after deformation (the °C state) and is not necessary
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d’s

(My),
i ad N_\O _____ o= _ k

(a) Total twisting moment per unit length for the
normal direction in *C state.

(@)

(€)a

(A/[/f)a\
%

(b) Equivalent force couples on boundary ij.

(My)q

(é;-)u (Al/f)h (é,')b (é,r)b

(M), (e).

(c) Total force at point ;.

Fig. 5. Boundary equivalent vertical forcein *C state.

equal to (ér)a' As can be seen in Fig. 5(c), the total equiva-
lent vertical forceat point j isequal to (ZM'B)b (&), ~( ZMﬂ)a
(ér)a . Considering continuous distribution of such an equiva-

lent force, the equivalent vertical force per unit lengthinthe>C
state, &/, can be expressed as

VoL (), (8),-(m,), 3,

3 (29)
zg(zMﬁey).
From (9) and (19), one has
& =0,6.—06,6 +€.. (30)
With the use of (30), Eq. (29) can rewritten as
2\7—i(2|\/| 0,6 "M ,0,8,+°M & ). (31)
~ 9% BYy & By BE)

Equation (31) transforms the twisting moment per unit
length ZM,; into equivalent force per unit length. Similarly, the
effective boundary forces per unit length acting on the bound-
ary of themiddle surface I" in the °C state can be yielded as:

N, \ , 52 ZMﬁﬁy

2 _ 22 v J_2

N, t = jy t, pdé +2201 = Mt (32)
ZNZ 2tz ZMﬁ

In the above equation, °N,, °N, and °N, are boundary forces
per unit length acting on I in the *C state and they can be
considered as ageneralized Kirchhoff 'sforce. These effective
forces per unit length in the °C state are firstly defined to au-
thors' best knowledge. They are clearly defined only when the
deformed positions in the °C state are clearly handled.

I11. INCREMENTAL VIRTUAL WORK
EQUATION

In this section, the update Lagrangian formulation will be
used to derive the incremental virtual work equation. The
incremental virtual work equation iswritten as[1, 19]:

J.Cklide e dV+ IlTii577ij dV="R-"R, (33)
iy Y

where

’R= cfztiéuj d’S,i=x,y,z (34)
s

and

'R= qltié‘uj d's,i=x,y,z (35)
's

In the above equations, °R and 'R represent the virtual work
done by the traction forces in °C and 'C states, respectively; u;
is the incremental displacement from the 'C state to the °C
state; S and S represent the surface enclosed the plate in the
IC state and °C state, respectively; 't; and *; are traction forces
action on surface 'S and 2S in the 'C state and °C state, re-
spectively.

Thefirst and second termsin the left hand side of (33) isthe
linear virtual strain energy, 6Ug, and nonlinear incremental
virtual strain energy, Uy, respectively. That is

&g = [Cyy8,08 dV” (36)
1\/

Uy = J.lTijé‘nij dv- (37)
]\/
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in which Cyy is the elastic modulus tensor, g; is the linear
strain tensor, #;; is the nonlinear strain tensor, lrij isthe Cauchy

stresstensor in the 1C state, and 1V isthe volumein the 1C state.

Detailed descriptions of the above physical quantities can be
found in [19]. It should be noted that “Rin (34) is constructed
in the currently deformed configuration, i.e., the °C state. In
what following, we will derive these terms step by step.

1. Linear Virtual Srain Energy and Nonlinear Virtual
Srain Energy

Assume the plate is an isotropic linearly elastic material
with the Young's modulus E and the Poisson’s ratio v. Sub-
stituting (1) to (5) into (36) yields

_ En oau  ov
- 2(1-1?) H{ (8x ayJ
+2(1- v)6|:4(g—3 %}

]| 4
ox ay
3 2 2\? (38)
+ Eh . n’ 5 d \;V+a\;V
24(1-0v7) ox° oy
2. \? 20 02
+20-v)s| | LW | [ OWIW I 4
oxdy ox* ay’

where dA is the surface element of the middle surface. It
should be noted that the mentioned linear virtua strain energy
isthe same as that described in [10, 11].

To obtain the nonlinear virtual strain energy, we first sub-
stitute (1) to (5) into the nonlinear strain, #;, in (37). Using
definitions of the membrane force per unit length, moments
per unit length and transverse shear force per unit length in (6)
to (8), one can obtain the nonlinear virtual strain energy, oUy,
as

E

oU, =dUg; +dU_, (39)

in which

(8u ]2 (8vj2 (awjz
y ay ay
S Judu ov av oW ow |

2'N dA
Y L)xay axay ox ay |

xﬁ,_/

2 2
[ M ] QLW v W
X OX° X dxady

2 2
RV KL Jdu 0w E)va
Y axay Ay dy?

2 2
LM sl U ou 0w E)u 0w
Y7 ox axay ay ox*
ovo’w ov 0°w
t——t—
ox oy* 0y oxdy

i s 2udw v ow
OX dX OX ady

Ju ow Jv ow
s 28 20T
< [ay ox "y ay]}d’*

(40)

and
1o %, o |fow) (ow
.= [} ez a_‘s[(a_j J{E)yj }d“
+%J.( Llr zdz) ;yé‘{(aa—\)’(vjz+(g\;v] }dA (41)
+1_f( 7% 'z, dz) 6{(8—\'\/}2{8\'\/} }dA
2 % ox oy

In 6Ug, the nonlinear virtual strain energy contains two
parts. one is contributed by three membrane forces per unit
length (N, Ny, and N); the other is contributed by three
moments per unit length (M, M,y and M,y) and two transverse
shear forces per unit length (Qy and Q,). The first part had
been derived and used by many researchers[3, 10, 23].

In (41), the integrations of stress componentsin z-direction
with respect to the plate thickness cannot show aclear physical
meaning. Besides, this virtua strain energy 6U. has not been
discussed in literatures to our best knowledge. Using (17) and
Green's theorem, this term can be transformed into

U, =%9§“Ez(l@z N )dz} {(3\:} +(3_\;vj ]dls

- ij( zltzz dz)(HX(SeX +6,06,)d"s
(42)

After transformation, there still exists integration (the in-
tegration of the product of traction and z with respect to the
plate thickness) having no definite physical meaning; however,
thisterm will be treated in the following.
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2. TheVirtual Work Doneby Tractionsin the 'C and °C
Sates
Substituting (1) to (5), (13) and (15) into (35) can yield the
virtual work done by the traction force in the 'C state as

'R= W,
= cf[leﬁu +N, v+ N, 6w+ M naasj dis 4

where 6W,; denotes the virtual work done by the effective
boundary forces and boundary bending moment in the 'C state
and is equal to the virtual work done by the traction force in
the ’C state, i.e., 'R, Substituting (1) to (5) into (34) ,the vir-
tual work done by thetraction forcein the?C state, i.e., °R, can
be written as

y A, ! Su+£66,
2Rz(j j;z At 16v—£66, d¢ |d%s
s A, Sw
h A, ! Su
~q j/y %L de[{ovhd’s (44)
s 4, oW
w2 ) 06,
2 n s 2
A faf e o

Substituting (32) into the first integration term in the right
hand side of (44), performing integrations by part, and per-
forming coordinate transformation (see Appendix 1) can yield

T

4, éu
gl [o4%, o¢ [ ovias
N ow

z

= [ *N,Su+ N, v+ N, 6w+ M ,86, [d*s  (45)

~4[ M. (0.0, +0,0e, +0.00) Jds

Substituting (27) and (28) into the second integration term
in the right hand side of (44), performing coordinate trans-
formation, and neglecting higher order terms (see Appendix 2)
canyield

{0l sos ) o

=4 (°™m,56,— M ,86,) d*s
7 (46)
- (M, 6,56, +'M 6,56,) d's

%
+§}7 (| %]tzz d2)(6,56, +6,59,) d's

Therefore, the virtual work done by the traction forcein the
°C state can be obtained by summing up (45) and (46) as:

2R= 6W, +0Ug+0U,, (47)

where

OW, = cf[szdu+ N, v+ 2N, 6w+ ZMGJHS]d ’s, (49)

25

U =M 5(e.60,+6,6,) d's ~'M,6,56, d's, (49)
a0.= g I// ,2d2)(6,66, +6,60,) d’s,  (50)

in which oW, is the linear virtual work done by the effective
boundary forces and boundary moment in the °C state. Tra-
ditionally, %R is thought to be equal to 6W, possibly by the
intuition. However, from (47), °R is not equal to W, A
similar result has been reported in the work of Yang and Kuo
[19] in which they derived the nonlinear stability theory of a
solid beam. In (47), dUgisthe nonlinear virtual work done by
the boundary moments after rotations. This term has never
been mentioned before. It can befoundthat dU, in (50) isthe
same as oU, in (42) and thus, they can be canceled out each
other. Therefore, the problem of their physical meaning be-
comes meaningless. Substituting (38), (39), (43) and (47) into
(33), we can obtain the incremental virtual work equation for
the Kirchhoff thin plate as
O0Ug + 0Ug — 0Ugr = OW, — OW,. (51D
It should be noted that JUr, is derived based on three pro-
cedures: first, completely considering the nonlinear strain
energy due to six nonlinear strains; second, reasonably de-
fining the boundary moments per unit length and the equiva-
lent transverse edge forces per unit length in the °C state; the
last, deriving the nonlinear virtual work done by the boundary
moments per unit length in the 2C state. One of the virtual
works in (51), dUg, is in the same order as the traditional
nonlinear virtual strain energy, 6Ug and thus, it cannot be
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neglected. Inthefollowing, we will prove that neglecting this
term will result in failure in passing the rigid body test.

IV.THE RIGID BODY TEST FOR THE
INCREMENTAL VIRTUAL WORK EQUATION

Therigid body test isbasically originated fromthe principle
of objectivity in mechanical analysis. The incremental virtual
equation, natural boundary condition, and geometric stiffness
matrix in geometrically nonlinear analysis of shells and plates
all should satisfy thisrigid body test. In the early literatures,
therigid body test was usually applied on the linear unloading
system at initial state and to check the elastic stiffness matrix
derived by using the finite element method for validating its
convergence. Assume the beam with actions is initidly in
equilibrium, Yang and Chiou [18] proposed therigid body rule
for the nonlinear element. They showed that when the finite
element is subjected to the rigid body motion, the force acting
on the body should rotate and translate according to the rigid
body motion but the magnitude of the force remains the same.
In their study, the rigid body rule was used to examine the
elastic and geometric stiffness matrices. In fact, this rigid
body rule can be considered as an extension of the principle of
objectivity and is adopted to check the theory of stability.

In this subsection, therigid body rule is adopted to examine
the validity of previously derived incremental virtual work
equation. Therigid body motion results in no deformation in
the thin plate, it can then be said that d's = d?s. Taking the
rigid body rotation with respect to z- axis, 65, as an example,

wewill examinethe nonlinear incremental virtual work in (51).

As shown in Fig. 3, let us take an infinitesimal length (ab) at
the edge I When the rotation, 6,, occurs, the effective
boundary forces per unit length will rotate as well (see Fig.
6(a)). Asaresult, the forcesacting on I in the °C state can be
expressed as.

N, ="N,—'N,8,, (52)
N, ="'N, +'N,6,, (53)
N, ='N,, (54)
M, ="M, (55)

The incremental displacements in x-, y-and z- axis (U, v
and w;) due to the rotation are

u=-yéo, (56)
v, =Xx6,, (57)
w, =0. (58)

IC state

2C state

(a) Boundary forces before the rigid body rotation.

°N, ='N0,, + N,
2C state

(b) Boundary forces after the rigid body rotation.
Fig. 6. Rigid body rotation 6.

Similarly, we consider another two rigid body rotations
with respect to x- and y- axis, i.e., 6, and 6, and three rigid
body translations with respect to x- , y- and z- axis, i.€., Ay, Ay,
and A,. Theforces and incremental displacements after rigid
body motion in the ?C state can be expressed as

N, =N, =N, +*N,6,, (59)
N, ="'N,8, +'N, N6, (60)
N, =—'N,8, + N8, +'N,, (61)
M, =M, (62)

U = Ay —Y0Osq, (63)

v = Ay + Xby, (64)

W, = Ay + YOy — X0y, (65)
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Substituting (63) to (65) into (38), (40) and (49) can yield

(66)

|
2
_—
7\
-
z
%
(S %)
Q| U
s

+6

N

oy

ou ov
N 6 —+'N _o6—
Yoox oY ayj

jj[lex(s 1NW53“

92w
-6, jj[lm 68_8y_ Mwﬁm

-0, [f bxéa—;“— byéa—vxv aA (67

:u%l

-6, 4| 'M, 5ausnx+5au”n ds
Js Js
nxﬂ ds

1 ou, au,,
-6, cf{ M, (5¥ny—5¥

+6, Cf[lM 53"" M, 53—W}

(68)

Applying algebraic operation to (66) to (68) and performing
Green's theorem with integration by parts, the virtual strain
energy in the left hand side of (51) can be write as

U +0Ug—8Ug =q('N,6, —'N,6, )du ds

+('N,6, -'N,0, )ovds  (69)
+ ("N, 8, —"N,8,, ) w ds.

Substituting the forces after the rigid body rotation ((59) to
(62)) into (48) yields

oW, = oW, + J('N,6, —'N,6, )du ds
+ ("N, ~"N,6, )ov ds (70)
+ ("N, —'N8, )owds.

Substituting (70) into left hand side of (51), the incremental
virtual work can be write as

OW, — OW, = cj(lNZ@yr -'N,6, )éu ds
+ J("N,8, -"N,8, )ov ds (71)
+ J("N,8, — N8, )Swds
Substituting (69) and (71) into (51), one can have
OUg +0Ug — U, = OW, — OW,, (72)

which isthe same as(51). It meansthe proposed equation can
passtherigid body test. From the above derivations, it can be
concluded that neglecting 6Ug in (51), the incremental virtual
work equation cannot pass the rigid body test.

V.NUMERICAL EXAMPLES

In what followings, two numerical examples will be pro-
vided to investigate the geometrical nonlinear behavior of the
shell for validating the proposed theorem and to compare their
nonlinear behaviors with the conventional theorem without
passing the rigid body rule. In this article, the generalized
displacement control method with advantages of efficiency
and reliability [8, 20], which can be used to passthe limit point
and snap-back point steadily in the equilibrium path, is adopted
to conduct the incremental iteration analysis. The adopted
triangular plate element [7, 17] has three nodes and each of
them contains three translation and three rotation degrees of
freedom. Besides, for a geometrically nonlinear incremental-
iteration analysis, tangential stiffness matrices can be de-
composed into two parts: elastic stiffness and geometric stiff-
ness one. To construct the former matrix, a combined use of
the plane hybrid element for membrane actions [4] and the
HSM element for bending actions [2] is adopted for calcula
tion; while for the latter one three different geometric stiffness
matrices are adopted to compare those differences of the
proposed theorem and the conventional one. Thefirst stiffness
matrix is obtained by using virtual strain energy of (40) and
(49) and a combined use of these two equations can pass
through the rigid body rule. The second one is the conven-
tional geometric stiffness matrix, which is derived by only
considering the nonlinear strain energy in (40). Thethird one
isasimplified geometric stiffness matrix, which is obtained by
using the first integrating term in the right-hand side
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Fig. 7. Cylindrical shell (a concentrated load at the symmetric center).
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Fig. 8. Central deflection of cylindrical shell.

of (40) and only considering the geometrically nonlinear effect
induced by the membrane force of the plate.

1. Example 1:

A circular cylindrical shell subjected to a concentrated |oad
P at the geometric center with two straight-line boundaries
hinged and curved boundaries free-supported shown in Fig. 7
is considered. Geometric parameters and material properties
are given as: E = 3.10275 kN/mm?, v = 0.3, R = 2540 mm,
straight-line length L = 254 mm, # = 0.1 rad, h= 12.7 mm. At
the symmetric center of the cylindrical shell, a concentrated
vertical load acts at the point. Because of symmetry, again
only one quarter of the structure is taken into consideration.
This considered structure is modeled consecutively by 8 x 8
(128 elements) meshe. Fig. 8 shows the central deflection of
thecircular cylindrical shell. Ascan befound, those nonlinear
behaviors from using the three different geometric stiffness
matrices are the same and the analysis results are in accor-
dance with those of Ref. [6].

<

4
X

(a) An Illustration of the cantilever beam with L section.

025V

025V

0.12 1V

(b) An illustration of the nodal forces at the free end.

Fig. 9. A cantilever beam of an L section subjected to the shear force at
theend.

2. Example 2:

A cantilever beam of a L-type section subjected to a shear
force V at the free end, is shown in Fig. 9, and its material
properties and geometrics are asfollows: E = 3.10275 kN/mm?,
v = 0.3, beam length L = 1,000 mm, flange thickness b = 100

mm, plate thicknessh =5 mm, angle of flanges & = % This

considered structure is modeled consecutively by 20 x 4 (160
elements) meshes. When the structureis subjected to the shear
force, it will result in thetorsional buckling deformation. Now,
consider the unstable behavior at the g point from y direction
at the end of the cantilever beam, as shown in Fig. 10, the solid
line, which represents the relation of the applied force and the
displacement, is the result obtained by using the proposed
geometrically nonlinear theory of passing the rigid body rule;
while the curve with the symbol “+" represents the result by
using the conventional geometrically nonlinear theory; the
curve with the symbol “O” represents the result from the use
of the simplified theory, which only considers the plate sub-
jected to the membrane force. As shown in this figure, the
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Fig. 10. The displacement of the y-axis at the node a in the end of the
cantilever beam.

critical loadings of the latter two cases are 10% differences to
that of the former case.

VI. CONCLUSIONS

In this paper, a complete stability theory for the Krichhoff
thin plate has been developed by using the virtual work
method. Thistheory carefully considers various actions, such
as three membrane forces per unit length (Ny, Ny, and N,y),
moments per unit length (M, My, and M,y), and transverse
shear forces per unit length (Q, and Q). Expressing terms for
the derived incremental virtual work equation in this plate
buckling theory are all written in the explicit forms and every
term in thistheory hasits own physical meaning. In addition,
arigid body test especialy for the incremental virtual work
equation has been constructed and the proposed theory can
passtherigid body test successfully. In practice, the geometric
stiffness matrix derived from the current approach can con-
sider various actions and pass the rigid body test automatically;
therefore, the derived stiffness matrix, based on the current
theory, can correctly analyze the buckling and nonlinear be-
haviors for the plate and shell structure.
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APPENDIX |

Using the boundary forces in the °C state in (32), the first
integration term in the right hand side of (44) can be written
as

T

ou
ov: d?3s
ow

%

gl 14, | ae
2g 2 zt

z

=E§[2Nxau+ ’N,ov+*N,ow] d’s

S

(A1)

d d
- i}f{g(zl\ﬂﬂey)au—ﬁ(zmﬂex)av

0
+_

d%s

(zMﬁ)ﬁw} d’s

The second integration term appearing in (A1) using inte-
gration by parts, we have

d d
q{ﬁ(zMﬁay)au—%(zMﬂex)a‘v

+%(2Mﬁ)5w} d?s

=‘<52Mﬂ{‘9va(§i) Y a<5v>+a<6w>}dzs

(A2)

d%s d%s

Using the definition for rotational angles in (10) and (11)
and the relationship for edge lengthsin (19) and (22), we have

9 d d
6, ——0u—0, — oV+—— 0w
Y o%s “9%s 9%
1
=d—f[9yi15u—exi15v+—15wj
ds\ " 9d’s J's J's (A3)
__1 (-6.06, - 6,5e, +56,)
(A+ey)

=00, —e 06, - 6.6e_— 06,56, .

Introducing (A2) and (A3), Eq. (A1) can be rewritten as

T

4, Su
d| [{2,} de | ovids
2 R 2
s t ow

z

=qJ[ PN, du+°N,dv+°N,dw+ M ,86, |d°s (A4)
—(j M, (e.06, +6,0e, +6,60,) d’s
Now decompose the traction in the °C state, 2;, as the sum

of the traction in the 'C state, 't;, and the incremental traction
(At), that is
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% t At,
A =1 9 AL (A5)
% % At

Adopting the transformation of coordinate systemsin (18),
%, % and °t, can be expressed as

A,=",+1.6,-1, 6,
o () g - (eag)e ] OO

ty ==",0,+ %t + .0,
=1ts+[—(]tn+Atn)6;+Ats+(]tZ+Atz)9n] (A7)

t,=",6,- 106, +,
(A8)

=’tz+[(]tn+Atn)HS—(’tS+Ats) Hn+Atz]

respectively. Multiplying (A6) to (A8) with & and inte-
grating with respect to the plate thickness and then, introduc-
ing the definitions for the boundary moments per unit lengthin
(13) and (28), we obtain

™, = [ g dg
+I [At +(]t +At) (]t +At ) SJf dé

=™ +.[ [At +(lt +At) (lt +At) s}f dé,

(A9)
zMﬂ:I%ltsfdf
+I%[ 't +At )9;+Ats+(’tz+Atz)9n]§ dé
=M +_[%[ t, +At )6;+Ats+(:'tz+Atz)6nJ§ dé,

(A10)

[[neae=["ngae

+_[%[ t, +At,) 60, — ('t +At,) 6’n+Atz}§ dé.

(A11)

Since the incrementa tractions and incremental displace-
ments are tiny quantities, the underlined termsin (A9) to (A11)
is relatively smaller in an order than the first terms appearing
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in the right hand sides of equations. Substituting (A10) into
the second integration terms in (A4) and neglecting the higher
order terms can yield

§°M (.58, +6,0e,+06,06,) d’s

* (A12)
~ cflM (6,08, +6.0e,+6,06,) d's.

Substituting (A12) into (A4), Eq. (45) then can be obtained.

APPENDIX 11

Substituting (26) and (27) into the second integration terms
in the right hand side of (44) yields

%4, ! 8, .,
ol so)f )
= 4(°M,36,-*M,88,)d’s

. (A13)
-4 (°M,6,66,+ °M ,6,50,)d s

+] jyy % £ dE)(6,00, +6,08,)d s

Substituting (A9) and (A10) into the second integration
termsin the right hand side of (A13) and neglecting the higher
order terms, we have

d(°M,6,66,+ M ,6,50,)d s

) o (A14)
~{('M,6,56,+ M 6,56,)d"s.

Substituting (A11) into the third integration term in (A13)
and neglecting the higher order terms, we have

q (jy/ % £ dE)(6,06, +6,6,) d°s
N (A15)
=g([}, ¢ d8)6.00,+6,88,) d’s

Substituting (A14) and (A15) into (A13), Eq. (46) can be
yielded.
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