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ABSTRACT 

This study adopts a meshless numerical method, the com-
bination of the method of fundamental solutions (MFS) and 
method of particular solutions (MPS) following the lead of 
Reutskiy, to determine the eigenfrequencies of four different 
waveguides, based on the principle of physical response of a 
system exposed to external source.  The response amplitudes 
to determine the resonant frequencies for the eigenproblems 
are used.  We use the MFS with external source (MFS-ES) and 
MPS to solve a sequence of inhomogeneous problems for the 
determination of the eigenfrequencies.  This is an alternative 
to the typical methods of directly solving the homogeneous 
matrix system to search for the eigenvalues in an eigenprob-
lem.  The square, elliptic, concentric annular and eccentric 
annular waveguides are analyzed to demonstrate the capability 
and robustness of the present meshless numerical method.  In 
the numerical experiments, the computational results are not 
sensitive at all to the locations of the external source.  Fur-
thermore, the spurious eigenfrequencies will not occur in this 
boundary-type meshless method which is different from other 
numerical methods. 

I. INTRODUCTION 

The waveguides, which guide the electromagnetic wave 
propagation, are important devices in optic and electronic ap- 
plications, such as the optical fiber, microwave elements and 
components, etc.  The determination of the eigenfrequencies 
of waveguides is a crucial topic when the electromagnetic 
waves with specific frequency have to propagate in the designed 
direction.  In general the eigenproblems for the waveguides 
can be solved analytically for simple geometries or numeri- 
cally for complex domains. 

There are many numerical schemes proposed to deal with 
the eigenproblems and can be approximately classified as mesh- 
dependent and meshless or meshfree methods.  The meshless 
numerical methods are more attractive to researchers than 
mesh-dependent methods, since the meshless numerical meth- 
ods do not need the mesh generation and numerical quadrature.  
For example, Jiang et al. [3] used the radial basis functions 
collocation method (RBFCM), one of the popular meshless 
methods, to analyze the eigenproblem of the elliptic waveguides.  
The boundary nodes and the interior nodes are all required 
during the computation; hence the requirement of huge num-
ber of nodes in the calculation will limit the application of the 
RBFCM.  Young et al. [12] in contrast adopted the method of 
fundamental solutions (MFS) with the singular value decom- 
position (SVD) technique to examine the eigenproblems of the 
waveguides.  The MFS is a boundary-type meshless numerical 
method, since only the boundary nodes are required in the 
numerical procedure of the MFS.  Therefore, the MFS is an 
ideal alternative in comparing with mesh-dependent and mesh- 
less domain-type methods. 

The homogeneous partial differential equations and homo- 
geneous boundary conditions are both essential in the eigen-
problems, so the MFS usually needs to cooperate with the 
SVD [12] or direct determinant search method (DDSM) [10, 
11] to find out the eigenvalues.  The computations of deter-
minant in the DDSM or singular values in the SVD are time-
consuming.  Reutskiy [6-9] recently proposed a novel nu-
merical scheme utilizing the method of external sources (MES) 
and without using the SVD or DDSM to deal with the eigen-
problems.  This MES numerical scheme is based on the meas- 
urement of resonant response of the eigenproblem exposed to 
an external excitation.  This method, marked here as the MFS- 
ES, is used in this paper to analyze the eigenfrequencies for 
different waveguides. 

It is worthwhile to notice that the spurious eigenvalues will 
generally appear when either the MFS [11] or boundary ele-
ment method (BEM) [1] is used to analyze the eigenproblems 
in multiply-connected domains.  The mathematical derivation 
and rationale of the spurious eigenvalues in multiply-connected 
domains can be found in Ref. [1, 11].  Since the MFS-ES 
transfers the eigenproblems from a homogeneous problem into 
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a sequence of inhomogeneous problem, the spurious eigen-
values in multiply-connected domains will never happen and 
this is proven in our numerical experiments. 

After brief ly reviewing the numerical methods for waveguide 
eigenproblems, we delineate the governing equations and the 
present numerical procedures in the following sections.  Then 
the numerical analyses of square, elliptic, concentric annular 
and eccentric annular waveguides are performed in the section 
of numerical results.  The last section is the conclusions and 
discussions based on the numerical experiments. 

II. GOVERNING EQUATIONS 

The governing equations of the propagation of the elec-
tromagnetic waves are the well-known Maxwell’s equations.  
In waveguide problems, some simplifications will reduce the 
governing equations into the Helmholtz equation, if harmonic 
waves are allowed, 

 2 2 0.kφ φ∇ + =  (1) 

When φ = Ez it represents for the transverse magnetic (TM) 
waves, and φ = Hz accounts for the transverse electric (TE) 
waves.  Here k is the cutoff wavenumber.  The TM waves 
satisfy the following Dirichlet boundary condition, 

 0.zE
Γ

=  (2) 

The TE waves satisfy the following Neumann boundary con- 
dition, 

 0.zH

n Γ

∂
=

∂
 (3) 

Here Γ is the boundary which surrounds the computational 
domain Ω. 

The homogeneous Helmholtz equation, Eq. (1), with the 
homogeneous boundary condition, Eq. (2) or (3), forms the ei- 
genproblems for the waveguides.  The cutoff wavenumber must 
be analytically or numerically determined.  Once the cutoff 
wavenumber is obtained, the cutoff wavelengths (λ) can be 
computed from the following formula [3, 12], 

 
2

.
k

πλ =  (4) 

III. NUMERICAL METHODS 

We solve the eigenproblem with an external source instead 
of starting with the original homogeneous system.  An external 
source with known strength can be located at any place other 
than the computational domain.  The position of the external 
source is denoted as ( ),ext ext extx x y=�

 and the problem be-

comes the following form of inhomogeneous partial differen-
tial equation, 

 ( ) ( ) ( )2 2 .extx k x x xφ φ δ∇ + = −� � � �

 (5) 

The boundary conditions remain the homogeneous Dirichlet 
or Neumann boundary condition.  Since the MFS is only ap-
plicable to solve the homogeneous problem with inhomoge-
neous boundary conditions, we have to decompose (5) into a 
homogeneous solution and a particular solution as the follow- 
ing form, 

 ( ) ( ) ( ).h px x xφ φ φ= +� � �

 (6) 

The ( )p xφ �

 is the particular solution which satisfies the 

inhomogeneous equation of (5) without boundary conditions 
from the method of particular solution (MPS).  The particular 
solution is also the fundamental solution of the Helmholtz 
equation and can be obtained by using the Fourier transform 
theory and is shown as follows [11]: 

 ( ) ( )(2)
0 .

4p ext

i
x H k x xφ = −� � �

 (7) 

Here ( )(2)
0H i is the Hankel function of the second kind of 

order zero.  ( )h xφ �

 is the homogeneous solution which satis-

fies the homogeneous equation and the modified inhomoge-
neous boundary conditions, 

 ( ) ( )2 2 0,h h
x k xφ φ∇ + =� �

 (8) 

 ( ) ( ) .B Bh p
L x L xφ φ   = −   

� �

 (9) 

Here LB[•] is the boundary partial differential operator which 
denotes the Dirichlet or the Neumann boundary condition.  
Now the eigenproblem is finally converted to the Helm- 
holtz equation with inhomogeneous boundary conditions, Eq. 
(9).  The MFS is very favorable to the solution of this system. 

The MFS is capable to solve the sequence of the eigen-
problems with inhomogeneous boundary conditions which 
correspond to different cutoff wavenumber.  The MFS solu-
tions can be expressed as a linear combination of fundamental 
solutions with unknown source strengths, αj, 

 ( ) ( )
1

, .
N

h j j
j

x G k xφ α ξ
=

= −∑
�

� �

 (10) 

Here N is the number of source points and αj are the un-
known coefficients or source intensities which will be ob-
tained by the method of collocation through the boundary 

conditions.  ( ), jG k x ξ−
�

�

 is the fundamental solution of the 

Helmholtz equation and it is identical to (7).  jξ
�

 is the 
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Source node 
Boundary node 

(a) simply-connected domain 

(b) multiply-connected domain  
Fig. 1. The schematic diagrams of point distributions in the MFS for (a) 

simply-connected domain and (b) multiply-connected domain. 

 
position of the j-th source node which is located outside the 
computational domain to avoid the singularity when the 
source points approach boundary or field points, as shown on 
Fig. 1. 

By collocating the boundary conditions, a linear matrix 
equation is formed, 

 { } { }.ij j iA bα  =   (11) 

The components of [Aij] are constructed via the funda-
mental solution and {bi} is formulated by the inhomogeneous 
boundary conditions.  After inverting the matrix system, the 
unknown coefficients can be obtained. 

Since the numerical procedure is based on the response of 
the system to an external source, we have to introduce the 
norm of the solution as [6]: 

 ( ) ( ) 2

1

1
,

tN

h j
jt

F k x
N

φ
=

= ∑
�

 (12) 

 ( ) ( ) ( )0 .dF k F k F k=  (13) 

Here Fd (k) is a dimensionless value.  k0 is a reference wave- 
number which is set as unit in our study.  Nt is the number of 
measurement points randomly distributed inside the domain.  
We need to increase the wavenumber and solve for every 
eigenproblem which corresponds to different wavenumber.  If 
the input wavenumber hits the exact eigenfrequency of the 
system, the norm will show a peak as depicted in the resonance 
curves of the following figures.  Sometimes the figure may not 
be smooth; hence we have to introduce a smoothing procedure 
by a shift of the wavenumber [6-9].  The wavenumber of the 
external source will be shifted by a constant ∆k.  Now the 
particular solution becomes the following form, 

 ( ) ( )( )(2)
0 .

4p ext

i
x H k k x xφ = + ∆ −� � �

 (14) 

Once the eigenfrequency is determined, the eigenfunction 
can be found by (6) which satisfies the original homogeneous 
equation and boundary conditions in the computational do-
main. 

IV. NUMERICAL RESULTS 

The distributions of nodes for simply- and multiply- 
connected domains are depicted respectively in Fig. 1, and it is 
noticed that the source nodes are located outside the compu-
tational domain to avoid the singularity.  In this section we will 
investigate the square, elliptic, concentric annular and eccen-
tric annular waveguides to test the feasibility of the adopted 
meshless numerical scheme.  The following numerical ex-
periments will also examine the influences of the location of 
the external source and the magnitude of the shift of wavenum- 
ber.  Moreover, the spurious eigenvalues are not found in the 
concentric annular waveguide.  By observing the numerical 
results, it can be shown that the present meshless method is a 
very powerful and stable numerical scheme for the determi-
nation of the eigenfrequencies for waveguides as comparing 
to other comparable numerical schemes. 

1. Square Waveguide 

The square waveguide is considered as the first validating 
eigenproblem and the corresponding resonance curve of the 
square waveguide is shown in Fig. 2.  There are five peaks 
appeared in the range from zero to twelve so only the first five 
eigenfrequencies exist in the studying range.  N and ∆k are set 
as 40 and 0.1 respectively in this numerical experiment.  The 
external source is located at (10, 10).  The details of the com- 
parison are illustrated in Table 1.  In Table 1(a), the numerical 
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Table 1.  Comparison of the first five eigenfrequencies for square waveguide. 

(a) Comparison of the numerical solutions with analytical and other numerical results. 

 Analytical Solution 
MFS-ES 
(N = 24) 

MFS-ES 
(N = 32) 

MFS-ES 
(N = 40) 

GDQ method 
(N = 144) [2] 

GDQ method 
(N = 324) [2] 

1 4.4429 4.4429 4.4429 4.4429 4.4429 4.4429 

2 7.0248 7.0248 7.0248 7.0248 7.0248 7.0248 

3 8.8858 8.8857 8.8858 8.8858 8.8857 8.8858 

4 9.9346 9.9349 9.9346 9.9346 9.9469 9.9346 

5 11.3237 11.3267 11.3237 11.3237 11.3448 11.3237 

(b) Numerical solutions obtained by using different ∆k. 

 Analytical Solution ∆k = 0.1 ∆k = 1 ∆k = 10 

1 4.4429 4.4429 4.4429 4.4429 

2 7.0248 7.0248 7.0248 7.0248 

3 8.8858 8.8858 8.8858 8.8858 

4 9.9346 9.9346 9.9346 9.9346 

5 11.3237 11.3237 11.3237 11.3237 

(c) Numerical solutions obtained by different locations of external source. 

 Analytical Solution extx =
�

 (10, 10) extx =
�

(100, 100) extx =
�

 (1000, 1000) 

1 4.4429 4.4429 4.4429 4.4429 

2 7.0248 7.0248 7.0248 7.0248 

3 8.8858 8.8858 8.8858 8.8858 

4 9.9346 9.9346 9.9346 9.9346 

5 11.3237 11.3237 11.3237 11.3237 

 
solutions with 24, 32 and 40 nodes are presented.  Those re-
sults are compared well with analytical solutions and other 
numerical results obtained by the generalized differential 
quadrature (GDQ) method [2].  We can obtain the excellent 
solution by few collocating points when compared with the 
GDQ method, since the MFS-ES is a boundary-type numerical 
method.  Tables 1(b) and 1(c) examine the influences of the 
shift of wavenumber and the locations of the external source 
on the numerical results.  In our studying ranges, these two 
factors will not influence the accuracy of the solutions.  There- 
fore, the numerical scheme is very stable and robust on de-
termining the eigenfrequencies. 

2. Elliptic Waveguide (eccentricity = e= 0.9) 

Figure 3 shows the resonance curves for the TM mode and 
TE mode for the elliptic waveguide.  The MFS computation 
with the external source located at (10, 10) only uses 24 nodes.  
Nt and ∆k are set to be 20 and 0.1 respectively.  Figures 4 and 5 
respectively display the first four eigenmodes for the TM and 
TE waves of the elliptic waveguide.  Table 2 illustrates the 

40 8 12
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40

80

120

160

Fd
(k
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Fig. 2.  Resonance curve for square waveguide. 
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Fig. 3.  Resonance curves for elliptic waveguide (a) TM mode and (b) TE mode. 
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Fig. 4.  The first four eigenmodes for elliptic waveguide (TM mode) . 
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Fig. 5.  The first four eigenmodes for elliptic waveguide (TE mode). 
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Table 2.  Comparison of the first nine cutoff wavelengths for elliptic waveguide. 

(a) TM mode 

 Analytical Solution RBFCM (N = 256) [3] MFS-SVD (N = 20) [12] MFS-ES (N = 20) MFS-ES (N = 24) 

1 1.4906 1.4906 1.4908 1.4906 1.4906 

2 1.1607 1.1607 1.1607 1.1607 1.1607 

3 0.9375 0.9376 0.9375 0.9375 0.9375 

4 0.8093 0.8093 0.8093 0.8093 0.8093 

5 0.7803 0.7804 0.7799 0.7803 0.7803 

6 0.7083 0.7083 0.7071 0.7083 0.7083 

7 0.6651 0.6649 0.6642 0.6652 0.6651 

8 0.6262 0.6263 0.6260 0.6263 0.6262 

9 0.5780 0.5781 0.5761 0.5779 0.5780 

(b) TE mode 

  Analytical Solution RBFCM (N = 256) [3] MFS-SVD (N = 20) [12] MFS-ES (N = 16) MFS-ES (N = 20) 

1 3.3482 3.3479 3.3481 3.3482 3.3482 

2 1.8287 1.8284 1.8287 1.8287 1.8287 

3 1.5650 1.5650 1.5649 1.5650 1.5650 

4 1.2654 1.2656 1.2654 1.2654 1.2654 

5 1.2292 1.2293 1.2292 1.2292 1.2292 

6 0.9986 0.9984 0.9986 0.9986 0.9986 

7 0.9698 0.9750 0.9698 0.9696 0.9698 

8 0.8340 0.8385 0.8340 0.8327 0.8340 

9 0.8177 0.8180 0.8175 0.8177 0.8177 

 
details of the comparisons of the elliptic waveguide.  The 
numerical results compare well with the analytical solutions 
and other numerical results [3, 12]. 

3. Concentric Annular Waveguide 

The radii of the inner and outer boundaries of the concentric 
annular waveguide are 0.5 and 2 respectively.  The center of 
the inner and outer boundaries is (0, 0).  The eigenfrequencies 
for the TM waves of the concentric annular waveguide can be 
obtained analytically, and it is proven that the spurious ei-
genvalues will exist if the inner sources are placed as a circle 
with radius R1 [1, 8, 11], 

 ( )1 0.nJ kR =  (15) 

Here Jn(•) is the Bessel function of the first kind of order n.  
In our experiment, R1 is set as 0.4, hence the first spurious 
eigenvalue will be 6.012.  By observing Fig. 6, the spurious 
eigenvalues do not occur.  The existence of the spurious ei-
genvalues is due to direct solution of the homogeneous equa-
tion and boundary conditions [1, 8, 11].  Accordingly, it is 
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Fig. 6  Resonance curve for concentric annular waveguide. 
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Table 3.  Comparison of the first five eigenfrequencies for concentric annular waveguide. 

 Analytical Solution FEM [1] BEM [1] MFS-DDSM [11] MFS-ES (N = 40) 

1 2.05 2.03 2.06 2.05 2.05 

2 2.23 2.20 2.23 2.22 2.23 

3 2.66 2.62 2.67 2.66 2.66 

4 3.21 3.15 3.22 3.21 3.21 

5 3.80 3.71 3.81 3.80 3.80 

Table 4.  Comparison of the first five eigenfrequencies for eccentric annular waveguide. 
(a) TM mode 

 Lin et al. (2001) [5] Kuttler (1984) [4] MFS-ES (N = 60) MFS-ES (N = 100) MFS-ES (N = 140) 

1 4.8129 4.8119 4.8105 4.8106 4.8106 

2 5.5252 5.5125 5.5112 5.5114 5.5114 

3 6.2099 6.1735 6.1719 6.1724 6.1724 

4 6.8375 6.8002 6.7989 6.7991 6.7991 

5 7.4619 7.3957 7.3942 7.3945 7.3945 

(b) TE mode 

 Lin et al. (2001) [5] Kuttler (1984) [4] MFS-ES (N = 60) MFS-ES (N = 100) MFS-ES (N = 140) MFS-ES (N = 200) 

1 1.3614 1.3522 1.3535 1.3522 1.3522 1.3522 

2 1.4122 1.4097 1.4092 1.4079 1.4079 1.4079 

3 2.7155 2.6840 2.6852 2.6839 2.6839 2.6839 

4 2.7331 2.6862 2.6874 2.6861 2.6861 2.6861 

5 3.9723 3.9298 3.9308 3.9296 3.9295 3.9295 

 
reasonable to expect that the spurious eigenvalues do not exist 
in this numerical scheme, since the homogeneous system has 
been converted into an inhomogeneous system with an ex-
ternal source.  Table 3 shows the details of the comparison of 
the concentric annular waveguide with analytical and other 
numerical methods such as finite element method (FEM), 
BEM and MFS. 

4. Eccentric Annular Waveguide 

The computational domain of the eccentric annular waveguide 
is the same as that of Ref. [4, 5].  100 nodes are used and the 
external source is located at (10, 10).  Nt and ∆k are set to be 20 
and 0.1 respectively.  Figure 7 depicts the TM and TE reso-
nance curves of the eccentric annular waveguide.  The first 
four eigenmodes for the TM and TE modes are displayed in 
Figs. 8 and 9, respectively.  Table 4 lists the details of com-
parison of the eccentric annular waveguide with other nu-
merical solutions.  It is remarkable to observe the present 
algorithm will find the eigenfrequencies at very coarse collo-
cating points such as less than 100 points as comparing to 
other numerical methods [4, 5]. 

V. CONCLUSIONS AND DISCUSSIONS 

This article uses a novel meshless numerical method, the 
combination of the MFS and MPS following the lead of 
Reutskiy, to determine the eigenfrequencies of four different 
waveguides.  The responses of a system exposed to an external 
source are recorded to estimate the cutoff wavenumber of the 
waveguides through the resonant excitation.  Instead of adopt- 
ing the homogeneous equation and boundary conditions in the 
eigenproblems as treated by other numerical methods such as 
the FEM, BEM, GDQ, RBFCM and MFS; the eigenproblems 
are instead converted to a sequence of inhomogeneous prob-
lems by adding an external source outside the computational 
domain so that we can employ the meshless MPS and MFS to 
solve the system.  The square, elliptic, concentric annular and 
eccentric annular waveguides are examined to validate the 
capability and robustness of the present meshless numerical 
method.  It is worthy to notice that the common spurious ei-
genvalues in multiply-connected domains suffered in analyz-
ing eigenproblems by other boundary-type numerical methods 
will not happen in this meshless method.  Moreover, our nu- 
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Fig. 7.  Resonance curves for eccentric annular waveguide (a) TM mode and (b) TE mode. 
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Fig. 8.  The first four eigenmodes for eccentric annular waveguide (TM mode). 
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Fig. 9.  The first four eigenmodes for eccentric annular waveguide (TE mode). 

 
merical results compare well with analytical solutions and other 
numerical methods although very few collocating points are 
used in this study. 
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