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ABSTRACT 

This paper investigates the boundary particle method (BPM) 
coupled with truncated singular value decomposition (TSVD) 
regularization technique on the solution of inverse Cauchy 
problems of inhomogeneous Helmholtz equations.  Unlike the 
other boundary discretization methods, the BPM does not 
require any inner nodes to evaluate the particular solution, 
since the method uses the recursive composite multiple re-
ciprocity technique to reduce an inhomogeneous problem to a 
series of higher-order homogeneous problems.  The BPM is 
particular attractive to solve inverse problems thanks to its 
truly boundary-only meshless merit.  In this study, numerical 
experiments demonstrate that the BPM in conjunction with the 
TSVD is highly accurate, computationally efficient and stable 
for inverse Cauchy problems. 

I. INTRODUCTION 

Inverse problems, especially Cauchy problems, are typical 
ill-posed problems and very difficult to solve both numerically 
and analytically, since their solutions do not depend continu-
ously on the prescribed boundary conditions.  That is, a small 
perturbation in measured data may result in an enormous 
effect in the numerical solution.  The Cauchy problem of the 
Helmholtz equations is often encountered in many branches of 
science and engineering [1, 19, 31], such as wave propagation 
and scattering, vibration, electromagnetic field, and heat 
conduction. 

The measured data in inverse problems of practical sig-
nificance are usually observed only on a part of the boundary.  

Therefore, the boundary-type methods have a prominent edge 
over the domain-type methods.  And the boundary element 
method (BEM) with iterative or regularization techniques has 
been applied for the Cauchy problems in the literature [24, 25].  
However, the BEM requires the evaluation of singular inte-
grals due to the singularity of the fundamental solution, and 
the high-quality meshing of the irregular domain is nontrivial.  
Moreover, the traditional BEM requires the inner nodes in 
handling inhomogeneous problems and loses its essential 
merit to some extent for inverse problems. 

To overcome mesh generation problem, facing the tradi-
tional mesh-based BEM, a variety of boundary-type meshless 
methods, in recent years, have been developed and attract a lot 
of attention, for example, method of fundamental solution 
(MFS) [4, 11, 22], boundary knot method (BKM) [10], plane 
wave method (PWM) [3, 29], collocation Trefftz method 
(CTM) [21] and regularized meshless method (RMM) [5, 32], 
among which the former three methods also do not involve the 
singular integration.  MFS [26, 30, 33], BKM [17, 18], PWM 
[16] and CTM [23] have been successfully applied to the 
inverse Cauchy problems.  All these boundary meshless meth- 
ods can solve homogeneous problems with boundary-only 
discretization, but require inner nodes to handle inhomoge-
neous problems. 

The dual reciprocity method (DRM) [28] and the multiple 
reciprocity method (MRM) [27] are two techniques of the 
most popular in handling inhomogeneous problems in con-
junction with boundary discretization methods.  The striking 
advantage of the MRM over the DRM is that it does not re-
quire inner nodes at all for evaluating the particular solution.  
To take advantage of this truly boundary-only merit, Chen [6] 
developed the MRM-based meshless boundary particle 
method (BPM).  The BPM is truly meshless and integration- 
free and applies either high-order nonsingular general solu-
tions or singular fundamental solutions [9, 15] as the radial 
basis functions.  Recently, Chen and Jin [7, 8] develop the 
recursive composite multiple reciprocity method (RC-MRM) 
to expand the application territory of the BPM to a broader 
territory of inhomogeneous problems. 

In this paper, we extend the RC-MRM BPM combined with 
truncated singular value decomposition (TSVD) regulariza-
tion techniques to inverse Cauchy problems of different in-

Author for correspondence: Wen Chen (e-mail: chenwen@hhu.edu.cn). 
*Center for Numerical Simulation Software in Engineering and Sciences,
Department of Engineering Mechanics, College of Civil Engineering, Hohai 
University, Nanjing 210098, P.R. China 
Supported by a research project funded by the National Natural Science 
Foundation of China (Project No. 10672051) 



158 Journal of Marine Science and Technology, Vol. 17, No. 3 (2009) 

 

homogeneous Helmholtz equations.  The Generalized cross- 
validation (GCV) is one of strategies to estimate an appropri-
ate regularization parameter of the TSVD and is employed in 
our numerical experiments. 

The remainder of the paper is organized as follows.  Section 
II introduces the Cauchy problem mathematically.  Section III 
describes the boundary particle method for the Cauchy prob-
lem associated with inhomogeneous Helmholtz equations, 
followed by the Section IV to numerically examine the effi-
ciency and stability of the present method in smooth and 
piecewise smooth boundary examples.  Finally, some conclu-
sions are given in Section V. 

II. FORMULATION OF INVERSE CAUCHY 
PROBLEM 

The paper is concerned with the inverse Cauchy problem, 
in which the unknown boundary condition on a part of 
boundary is to be estimated.  Consider an simply-connected 
open bounded domain in Ω ⊂ Rd, where d denotes the dimen-
sionality of the space, and assume that Ω is bounded by a 
smooth or piecewise smooth boundary ∂Ω.  Then the mathe-
matical formulation of the Cauchy problem can be presented 
as 

 ( )2 ( ) ( ),              ,k u x f x x∆ + = ∈ Ω  (1) 

where ∆ denotes the Laplace operator, k represents a complex 
number, and f(x) is a known function.  In this study, we con-
sider only the cases with real or purely imaginary k, called the 
Helmholtz and modified Helmholtz equations hereafter, re-
spectively.  The Helmholtz equation arises frequently in various 
physical problems, such as acoustics, electromagnetics and 
vibration, while the modified Helmholtz equation is encoun-
tered in heat-conduction, diffusion and convection-diffusion 
problems. 

The inverse Cauchy problem under investigation requires 
solving (1) subjected to the two types of boundary conditions 
prescribed on the accessible boundary  

 1 1( ) ( ),              ,u x g x x= ∈ Γ  (2) 

  2 1

( )
( ),              ,

u x
g x x

n

∂ = ∈ Γ
∂

 (3) 

where g1 and g2 are the prescribed functions, Г1 denotes the 
non-zero measurable boundary part, and n denotes the unit 
outward normal vector, and (2) and (3) denote the Dirichlet 
boundary condition and the Neumann boundary condition, 
respectively.  A necessary condition for the above inverse 
Cauchy problem to be identifiable is that the known boundary 
part is longer than the under-specified boundary part Г2.  And 
in this study, we focus on determining the under- 
prescribed functions on the inaccessible boundary Г2. 

III. BOUNDARY PARTICLE METHOD BASED 
ON RC-MRM 

The boundary particle method (BPM) is a truly bound-
ary-only collocation scheme, whose basis function is the 
high-order nonsingular general solution or singular funda-
mental solution.  The method can be illustrated as a two-step 
approach.  Firstly, a particular solution to the inhomogeneous 
problem is found, and secondly its homogeneous solution is 
obtained.  Hence the solution to the equation can be split as 
two parts. 

 ( ) ( ) ( ),p hu x u x u x= +  (4) 

where up(x) and uh(x) are the particular and homogeneous 
solutions, respectively.  To be more precise, up(x) satisfies 

 ( )2 ( ) ( ),              ,pk u x f x x∆ + = ∈ Ω  (5) 

but it does not necessarily satisfy the boundary condition.  And 
uh(x) satisfies the following homogeneous equations 

 ( )2 ( ) 0,              ,hk u x x∆ + = ∈ Ω    (6a) 

 1 1 1 1( ) ( ) ( ),              ,h pu x g x u x xΒ = − Β ∈ Γ  (6b) 

 2 2 2 1( ) ( ) ( ),              ,h pu x g x u x xΒ = − Β ∈ Γ  (6c) 

To evaluate the particular solution, this study uses the re-
cursive composite multiple reciprocity method (RC-MRM) to 
avoid the inner nodes [7, 8].  However, unlike the original 
MRM [27], the RC-MRM annihilates the inhomogeneous 
term by using a composite differential operator which can be 
different from the one in the original governing equation.  It 
eliminates the inhomogeneous term f(x) in (5) by iterative 
differentiations 

 { }2 1 ( ) 0,mL L L f x ≅…  (7) 

where L1, L2, …Lm are differential operators of the same or 
different kinds.  According to (7), Eq. (5) can be transformed 
into the following high-order homogeneous problem: 

 

( )

( ) ( )
( ) ( )

( )

2
2 1

2
2 1 2 1

2
1 1

2

( ) 0              

( ) ( )        

( ) ( )               

( ) ( )                         

mL L L k u x x

L L k u x L L f x x

L k u x L f x x

k u x f x x

 ∆ + = ∈ Ω



 ∆ + = ∈ ∂Ω
 ∆ + = ∈ ∂Ω


∆ + = ∈ ∂Ω

…

�

. (8) 

Now the particular solution up(x) can be evaluated by the 
high-order homogeneous equations (8).  Hence the Cauchy 
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Table 1.  Nonsingular general or harmonic solution of typical differential operators. 

L 2 dimension 3 dimension 

∆ ( ) ( )2 2
1 2 1 2exp ( ) cos 2c x x cx x− −  

2 2 2 2
1 2 1 2 2 3 2 3

2 2
3 1 1 3

exp( ( ))cos(2 ) exp( ( ))cos(2 )

exp( ( ))cos(2 )

c x x cx x c x x cx x

c x x cx x

− − + − − +

− −
 

∆ + k2
 0 ( )J kr  

sin( )kr

r
 

∆ − k2 0 ( )I kr  
sinh( )kr

r
 

∆ + v • ∇ − k2 2
0 ( )I kr e

•− v r

 
( )2 sinhe kr

r

•− v r

 

 
problem associated with inhomogeneous equation requires 
solving two homogeneous equations (6) and (8).  The corre-
sponding homogeneous solutions of different orders can be 
approximated by a linear combination of nonsingular general 
solutions of the governing differential operator 

 *

1

( ) ( ),            ,
N

j j
j

u x a u x y x
=

= − ∈ Ω∑�  (9) 

where N represents the number of source points, {yj} denotes 
the source points, {aj} are coefficients to be determined, and 
u*(x) means the nonsingular general or harmonic solution of 
the typical governing differential operator. 

Table 1 displays nonsingular general or harmonic solutions 
of typical differential operators [9, 15].  There is no suitable 
nonsingular general solution for Laplace equation, and this 
study uses the nonsingular harmonic function [8, 14].  Here c 
in harmonic function of Laplace operator is the shape pa-
rameter, ∇ denotes the gradient operator, v and r, respectively, 
represent the velocity vector and distance vector, and r denotes 
the Euclidean distance.  I0 and J0 represent the Bessel and modi- 
fied Bessel functions of the first kind of order zero, respec-
tively. 

IV. NUMERICAL RESULTS AND DISCUSSIONS 

The inverse Cauchy problems are of ill-posedness in nature.  
Thus, the solution is unstable regarding a small perturbation 
on the over-specified boundary Γ1.  Hence the standard meth-
ods, such as the Gauss elimination method and the Least- 
squares method, often fail to yield satisfactory results due to 
the combination of the ill-conditioning interpolation discerti-
zation matrix and data noise.  A few techniques available 
today mitigate this effect, such as the domain decomposition 
method [2], preconditioning technique based on approximate 
cardinal basis function, the fast multiple method [19], regu-
larization methods (e.g., the truncated singular value decom-
position (TSVD)) [12].  It is noted that the TSVD with GCV 
function choice criterion is employed to obtain accurate and 

stable results.  The Generalized cross-validation (GCV) is one 
of strategies to estimate an appropriate regularization pa-
rameter of the TSVD. 

To examine the BPM in conjunction with TSVD for the 
inverse Cauchy problems, this section presents numerical 
results of four benchmark examples of 2D inhomogeneous 
Helmholtz problems.  All the computational codes are pro-
grammed in MATLAB, partially including the MATLAB 
TSVD code developed by Hansen [13] for the discrete 
ill-posed problem. 

This study involves the two types of solution domain.  The 
first computational domain is a smooth circular domain cen-

tered at origin ( ){ }2 2
1 1 2 1 2, | 1x x x xΩ = + <  with the measured 

boundary part ( ){ }1 , | 1,0 3 / 2 ,r rθ θ πΓ = = ≤ ≤  and the un-

measured boundary part ( ){ }2 , | 1,3 / 2 2 ,r rθ π θ πΓ = = ≤ ≤   

where (r, θ) is the plane polar coordinate. 
The second computational domain is a piecewise smooth 

square ( ){ }2 1 2 1 2, | 0 , 1x x x xΩ = < < with the measured bound- 

ary part ( ){ } ( ){ } ( ){ }1 2 2 2 2 1 10, | 0 1 1, |0 1 ,1 |0 1x x x x x xΓ = ≤ ≤ ∪ ≤ ≤ ∪ ≤ ≤  

and the unmeasured boundary part ( ){ }2 1 1,0 | 0 1 .x xΓ = ≤ ≤  

Example 1. Inhomogeneous Helmholtz equation on above- 

defined smooth circular domain Ω1 with 2k = .  The exact 
solution u(x) = sin(x1)sin(x2) + x1 + sin(x2), and the forcing 
term f(x) = 2x1 + sin(x2), and its annihilating operator of this 
case in (7) is (∆ + 1)∆. 

Example 2. Inhomogeneous Helmholtz equation on above- 

defined piecewise smooth square Ω2, with 2k = .  The exact 
solution u(x) = sin(x1)sin(x2) + x1 + sin(x2), and the forcing 
term f(x) = 2x1 + sin(x2), and its annihilating operator of this 
case in (7) is (∆ + 1)∆. 

Example 3. Inhomogeneous Helmholtz equation on above- 

defined circular domain Ω1, with 2k = .  The exact solution 
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is 1 2 1 2 1( ) sin( 2 ) exp( ),u x x x x x x= + − +  and the forcing term 

f(x) = 2x1 – 2x2 + 3exp(x1), and its annihilating operator of this 
case in (7) is (∆ – 1)∆. 
 
Example 4. Inhomogeneous Helmholtz equation on above- 

defined square Ω2, with 2k = .  The exact solution u(x) = 
2 3

1 2 1 2 1 2sin( )cosh( 3 ) cos( )sinh( 3 ) ,x x x x x x+ + −  and the forc- 

ing term 2 3
1 2 2( ) 2 2 6 2 ,f x x x x= − − +  and its annihilating op-

erator of this case in (7) is ∆2. 
The measured data in practical problems always goes with 

errors.  To investigate the stability of the BPM, the man-made 
noisy data is generated by  

 1 1( ) ( )(1 ( ) ),g x g x randn i e= +  (10a) 

 2 2( ) ( )(1 ( ) ),g x g x randn i e= +  (10b) 

where g1 and  g2 denote the prescribed function with the exact 
data given in (2) and (3).  The random number is chosen with a 
standard normal distribution, which is fixed at each example, 
and e denotes the noise level. 

The numerical accuracy is calculated by the relative root 
mean square errors 

 

( )2

1

2

1

1
( ) ( )

( ) ,
1

( )

NT

i i
i

NT

i
i

u x u x
NT

Rerr u

u x
NT

=

=

−
=

∑

∑

�

 (11) 

 

( )2

1

2

1

1
( ) ( )

( ) ,
1

( )

NT

i i
i

NT

i
i

q x q x
NT

Rerr q

q x
NT

=

=

−
=

∑

∑

�

 (12) 

where u(xi) (q(xi)) and ( )iu x� ( )( )iq x� are respectively the ana-

lytical and numerical results evaluated at xi, flux q(xi) = 
( )

,iu x

n

∂
∂

 n denotes the unit outward normal vector, and NT is 

the number of test nodes on the under-specified boundary Г2.  
In this study, NT is 40, and the points are distributed uniformly 
on the under-specified boundary Г2. 

Figure 1(a) shows the BPM convergence curves for exam-
ple 1.  Roughly speaking, with an increasing number of nodes 
on the prescribed Neumann and Dirichlet boundary conditions, 
the numerical accuracy of estimated solution improves in an 
oscillatory fashion.  The minimum relative root mean square 
errors are found less than 10-2.  We can see that the estimated 
accuracy of u(x) on the under-specified boundary is a little 
higher than that of flux q(x) with the increasing measured 
points. 
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Fig. 1. BPM numerical accuracy variation with respect to (a) the number 

of measurement points with 2% noise level, and (b) the noise level 
percentage when using 36 measurement points for example 1. 

 
Figure 1(b) depicts the numerical accuracy variation with 

respect to various levels of noise in the data.  It is observed that 
the curves of the relative root mean square error decays with 
the decreasing noise data.  It is found that the numerical solu-
tions achieve best accuracy with noise-free data. 

Figures 2-5 illustrate exact solutions and BPM estimated 
results under various levels of noise for examples 2-4, re-
spectively.  It can be seen from Figs. 2 and 3 that estimated 
results of examples 2 and 3 agree quite well with the analytical 
solutions under 2% noise level.  It is also noted from Figs. 4 
and 5 that numerical estimated results of example 4 are not 
satisfactory using 36 boundary nodes, but are significantly 
improved when the more boundary nodes (75) are used. 

Table 2 compares the numerical accuracy of the BPM and 
the reference method [18].  It is seen that these two methods 
have similar solution accuracy.  It is stressed that the reference 
method [18] requires using the points inside and outside do-
main to evaluate the particular solution, whereas the BPM can 
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Fig. 2. (a) The analytical solution u(x) and the BPM solution ( )�u x ,  and (b) the analytical solution q(x) and the BPM solution ( )�q x  using 36 measure- 

ment points for example 2 with 0%, 1% and 2% noise levels. 
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Fig. 3. (a) The analytical solution u(x) and the BPM solution ( )�u x ,  and (b) the analytical solution q(x) and the BPM solution ( )�q x  using 36 measure- 

ment points for example 3 with 0%, 1% and 2% noise levels. 
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Fig. 4. (a) The analytical solution u(x) and the BPM solution ( )�u x ,  and (b) the analytical solution q(x) and the BPM solution ( )�q x  using 36 measure- 

ment points for example 4 with 0%, 1% and 2% noise levels. 
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Fig 5. (a) The analytical solution u(x) and the BPM solution ( )�u x ,  and (b) the analytical solution q(x) and the BPM solution ( )�q x  using 75 measure- 

ment points for example 4 with 0%, 1% and 2% noise levels. 

 
Table 2. BPM (36 boundary nodes) versus BKM (20 boundary nodes + 400 additional points) solutions when 2% noise 

measurement data of Examples 3 and 4. 

Boundary particle method Boundary knot method [17] 
Example 

Cond Rerr(u) Rerr(q) Cond Rerr(u) Rerr(q) 
3 1.49E+17 9.40E-03 1.00E-02 3.88E+18 3.45E-02 2.42E-02 
4 3.43E+18 8.23E-02 8.71E-02 3.59E+18 2.94E-02 4.52E-02 

 

 
solve inhomogeneous Cauchy problems with boundary-only 
discretization.  It does not require any additional nodes, which 
is especially attractive to solve the inverse and optimization 
problems of high-dimensional irregular domains. 

V. CONCLUSIONS 

This paper extends the boundary particle method in con-
junction with the truncated singular value decomposition 
regularization technique to the inverse Cauchy problem of 
inhomogeneous Helmholtz equations.  Our numerical verifi-
cation shows that the present numerical scheme can obtain an 
accurate and stable numerical solution and is convergent with 
respect to decreasing levels of noise.  It is stressed that the 
present method is a truly boundary-only numerical scheme 
and solves the inverse Cauchy problems of the inhomogene-
ous Helmholtz equations without using any inner nodes, 
which is far more attractive than the other existing numerical 
methods in the solution of inverse and optimization problems, 
where only a part of boundary data are usually accessible. 
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