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ABSTRACT 

This paper presents a novel block matching scheme with 
edge alignment strategy on H.264 video coding, which uses 
multiple references and multiple block sizes for motion esti-
mation in order to improve the rate-distortion performance.  In 
H.264, the computational complexity is linearly dependent on 
the number of allowed reference frames and block sizes using 
the full exhaustive search.  Many fast block-matching algo-
rithms reduce the computational complexity of motion esti-
mation by carefully designing the search patterns with different 
shapes or sizes which have significant impact on the 
search speed and distortion performance.  However, the search 
speed and the distortion performance conflict often with each 
other for these methods.  In this paper, given a block in the 
current frame, we first apply a fast approximate method based 
on edge alignment to obtain a good initial motion vector as 
well as a tight initial bound of distortion measure.  Then, con-
sidering the edge orientation of the block, a modified hexagon 
search is used to fine tune the motion vector in low computa-
tional complexity.  The proposed algorithm also pays atten-
tions to the characteristics of multiple reference frames and 
multiple block sizes in H.264.  Computer simulation results 
show that the proposed method gives good performance and 
spans a new way to design a cost-effective real-time video 
coding system. 

I. INTRODUCTION 

As the Internet advances, the demand of new ways to rep-
resent, integrate, store and exchange multimedia information 
(such as text, image, audio, and video) has increased.  A re-
markable change occurred in the video-driven applications 
such as teleconference, videophone, and image-based multi-
media services, because of the increased role of synthetic 
information and new two-way communication systems.  Ad-
vanced video coding techniques that yield reconstructed im-

ages with good subjective image quality to make efficient use 
of the available bandwidth facilitate the development of video- 
based applications over the Internet.  Among these methods, 
H.264 is an emerging international video coding standard, 
made by Joint Video Team (JVT) consisting of ITU-T Video 
Coding Experts Group (VCEG) and ISO/IEC MPEG Video 
Coding Group [5].  Comparing to MPEG-4 [9], H.263 [23], 
and MPEG-2 [10], H.264 achieves 39%, 49%, and 64% of 
bit-rate reduction, respectively [12]. 

The performance improvement achieved by H.264 comes 
mainly from the prediction part [5], [24] involving the motion 
estimation (ME) at quarter-pixel with variable block sizes and 
multiple reference frames.  These novel techniques greatly 
reduce the prediction errors.  In H.264, there are seven kinds of 
block size (16 × 16, 16 × 8, 8 × 16, 8 × 8, 8 × 4, 4 × 8, 4 × 4) and 
up to 5 reference frames for motion compensation (MC).  The 
simulation results of the reference software of H.264 [13] show 
that it achieves more than 15% of bit rate reduction compared 
with only using block size 16 × 16 using variable block sizes 
and 5%-10% of bit rate reduction using multiple reference 
frames [22].  However, the complexity of ME in developing 
H.264 is obviously very high.  Hence, it is a crucial issue to 
reduce the complexity of ME for H.264-based real-time video 
applications.  In H.264, the factors to affect the performance of 
ME include: (1) the complexity of mode decision when doing 
motion estimation [25]; (2) the complexity of reference frames 
when doing motion estimation [8]; (3) the number of search 
points to complete a motion estimation process.  As reported by 
Huang et al. [8], it takes more than 80% of execution time on 
doing motion estimation for the reference software of H.264/ 
AVC, JM [13] to encode a video sequence. 

The block-matching algorithm (BMA) is adopted by H.264.  
Among all BMAs, the well-known full-search block-matching 
algorithm (FSBMA) aims at finding the position with minimal 
block distortion from all possible candidate motion vectors 
over a predetermined neighborhood search window.  Although 
FSBMA produces the best quality, it demands the most com-
putation.  Many fast BMAs, such as three-step search (TSS) 
[15], Diamond Search (DS) [28], and Hexagon Based Search 
(HEXBS) [22, 27] have been proposed to speed up the 
FSBMA with acceptable distortion performance.  In [26], Xu 
and He introduce an additional early termination scheme with 
adaptive thresholds for Hybrid Unsymmetrical-Cross Multi- 
Hexagon-Grid Search (UMHES) [2].  Gonzalez-Diaz and 
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Diaz-de-Maria propose a motion classification-based search 
(MCS), which use a classifier based on  some motion cues to 
choose the best search patterns [7].  These algorithms can save 
a lot of search points compared with FSBMA through care-
fully designing the search patterns. 

Although the computing power of processors has been rap-
idly improved for the past decade, software-based real-time 
video encoders remain as a challenge even with the help of fast 
BMAs.  Given a block in the current frame, the process to find 
the best match from previous frames using a fast BMA cannot 
be interrupted; traditional BMAs stop only when all the search 
points confined by a specific search pattern are examined.  Thus, 
the search process might violate the real-time constraint –the 
time the process allowed to complete its work.  A computa-
tion-aware scheme for software-based block motion estimation 
was proposed by Tai et al. [20] to allow the search process of 
block matching to stop once a specific amount of computation 
has been performed.  However, the computation-aware BMA 
faces two problems.  First, it brings another time-consuming 
operator –to dynamically determine the target amount of com-
putation power allocated to a frame, and then allocates this to 
each block on a computation-distortion-optimization manner 
[20].  To solve the problem, some heuristic approaches, which 
offer faster decisions on real-time constraints but lead to larger 
distortion, were used in [20].  Second, as indicated in [20], 
Tsai’s computation aware BMA scheme allocates more com-
putation power to the macroblock with the largest distortion 
among the entire frame in a step-by-step fashion.  This implies 
that random access of macroblocks is required.  The random 
access flow requires a huge amount of memory accesses for all 
macroblocks to store the up-to-date minimum distortions, best 
motions vectors, and search steps.  Chen et al. [1] proposed an 
adaptive computation-aware BMA to reduce the memory size 
requirement and further speed up tradition BMAs with better 
computation-distortion performance. 

Traditional BMAs perform motion estimation with every 
block in the current frame as the basic unit, which independ-
ently search the best location in the search window from the 
reference frame.  FSBMA checks 1089 points in P-frame when 
referring to one frame for MPEG-4 but needs 223245 search 
points in P-frame when referring to five reference frames and 
seven block sizes for H.264.  Considering two neighboring 
blocks in the current frame, most of the search points for in-
dividual blocks are the same, since their search windows are 
obviously overlapped.  In H.264, the search window and the 
centers of all seven block sizes are all the same, and thus the 
matching errors of 4 × 4 blocks can be reused to calculate the 
matching errors of larger block sizes.  In this way, the com-
putation load of variable block sizes can be reduced.  More 
concisely, we can estimate the matching errors for all the 4 × 4 
blocks in a macroblock first, and then estimate the matching 
errors for larger sizes. 

Let it contain k sub-blocks in a macroblock.  For each sub-
block, we aim at finding the best match from the search window 
using block matching.  To estimate motion vectors for all the 

sub-blocks simultaneously, it is possible to first apply a k- 
nearest neighbors searching scheme to quickly find the k can-
didates by removing a large amount of non-relevant search 
points.  Then, for each block, we can easily find its corre-
sponding best match from the candidate set of small size.  The 
k-nearest neighbors searching problem has been studied exten-
sively for a wide range of scientific and engineering applica-
tions including pattern recognition [21], object recognition [19], 
data clustering [11], vector quantization [16], and content-based 
image retrieval [4].  Many algorithms are also proposed to 
speed up the searching process [14, 17, 18].  Unfortunately, 
these fast k-nearest neighbors searching algorithms cannot 
speed up the block matching much since they have a common 
characteristic: the query point is not a set of blocks. 

Edge features, which are recognized as an important aspect 
of human visual perception, are commonly used in shape 
analysis.  Decomposition of images into low-frequency blocks 
and blocks containing visually important features (such as 
edges or lines) suggest visual continuity and visual disconti-
nuity constraints.  A block is visually continuous if the values 
of all the pixels in the block are almost the same.  In contrast, if 
the variations of the pixel values in the block are noticeable, it 
is a visually discontinuous block.  The mean of a visually 
continuous block is enough to represent the block.  If a block is 
visually discontinuous and if a strong orientation is associated 
with it, then it should be coded as a kind of visually important 
feature.  Using coded edges, we can represent the structure of 
an image without explicitly extracting visual features. 

In this paper, a fast block motion estimation algorithm is 
proposed based on the application of the moment-preserving 
technique to detect a visually important feature, namely an 
edge in a given image block.  Each given image is divided into 
non-overlapping square blocks and coded block by block.  
Edge features used to code an ordinary image, produce ex-
cellent image quality according to human perception and 
provide a promising approach for the representation of the 
image content with a compact code [3].  Simple and analytical 
formulae to transform the block content into the corresponding 
visual pattern code are derived in our previous work [3], which 
makes the computation very fast.  Many fast block-matching 
algorithms reduce the computational complexity of motion 
estimation by carefully designing the search patterns with 
different shapes or sizes which have significant impact on the 
search speed and distortion performance.  However, the search 
speed and the distortion performance conflict often with each 
other for these methods.  The proposed method offers a fast 
solution for block motion estimation on H.264 video coding 
systems.  For each basic 4 × 4 block of a macroblock, we first 
apply a fast approximate method based on edge alignment to 
obtain a good initial motion vector as well as a tight initial 
bound of distortion measure.  Then, considering the edge 
orientation of the block, a hexagon search modified from [27] 
is used to fine tune the motion vector in low computational 
complexity.  Finally, we design a fast intermode decision 
method to achieve better rate-distortion performance for 
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H.264.  Computer simulation results show that the proposed 
method gives good performance and spans a new way to de-
sign a cost-effective real-time video coding system. 

The remainder of this paper is organized as follows.  In 
Section II, a fast block matching based on edge alignment is 
first discussed.  In Section III, the proposed block motion es- 
timation algorithm for H.264 is presented.  Experimental re-
sults are shown in Section IV.  Finally, Section V gives a brief 
conclusion. 

II. BLOCK MATCHING USING EDGE 
ALIGNMENT 

In H.264, each frame is divided into multiple nonoverlap-
ping blocks of size 16 × 16 pixels.  Each block is further di-
vided into several sub-blocks of variable sizes according to a 
rate-distortion optimization scheme.  Each of the sub-blocks 
then performs block motion estimation to remove the temporal 
redundancy of the video sequence.  In this work, a 16 × 16 
block is initially divided into 16 4 × 4 sub-blocks with their 
motion vectors found based on a fast block matching using 
edge alignment. 

Block matching for motion estimation is an approach to 
shift or warp image blocks relative to each other and to look at 
how much the pixels agree according to certain criteria.  On 
such function, often used in video coding because of its speed, 
is the sum of absolute differences (SAD) metric, i.e., 

 
1 1

,
1 1

( , ) | ( , )
N N

x y t
i j

SAD u v I x i y j
− −

= =

= + +∑∑  

 1( , ) |tI x u i y v j−− + + + +  (1) 

where ( , )u u v=�

 is the displacement and | ( , )tI x i y j+ + −  

1( , ) |tI x u i y v j− + + + + is called the displaced frame differ-
ence.  Given a block in the current frame, the full searching 
technique tries all possible alignments and is too slow in 
practice.  Besides block matching techniques with full or par-
tial pixel information, feature-based alignment methods are 
possible to speed up the process of motion estimation. 

At the lowest level of computer vision, potentially useful 
visual patterns such as edges and line segments can be ex-
tracted from an image without any priori knowledge of the 
image content.  In our approach, segmentation and detailed 
object representation are not required.  A given image is par-
titioned into a set of non-overlapping square blocks.  Each 
block is coded as either a uniform block or an edge block.  The 
edge in each block is detected by the moment-preserving edge 
detection technique which was proposed in our previous work 
[3], and the image can be reconstructed according to the pa-
rameters of these blocks.  The continuous two-dimensional 
edge model specified by four parameters, two representative 
gray (color) values h1 and h2, an edge translation l, and an 
orientation angle θ for an edge in square block B is shown in 
Fig. 1.  The edge translation l is defined as the length from the 

x

y

-1 1

-1

1

0

C

B

+(x−, y−)l
h1

h2

θ

 
Fig. 1. An edge model in a 4 × 4 block B.  The circle C is inscribed in B, 

and x y( , )  are the coordinates of the centers of gravity of the 
gray (color) values inside C. 

 
 

center of the edge model to the transition, and is confined 

within the range of 2−  to 2+ .  The parameter θ specified 
the direction of the edge and is confined within the range of 0 
to 180 degrees.  The solution to the edge detection problem in 
a given block is analytic and this means that the edge detection 
process can be performed very fast for large-database appli-
cations with no need for special hardware. 

In our approach, there are two cases to align the edge pat-
terns of two blocks.  First, given a pair of edge blocks (B, B’) 
with the same edge orientation, the edge of B is said to be 
aligned properly with that of B’ by translating B’ if necessary 
such that the edge pattern of B’ exactly coincides with that of B, 
shown in Fig. 2(a).  What would happen to the process of edge 
alignment if the edge orientations for B and B’ are different?  
In this case, the edge pattern of B is first translated and then 
rotated by an angle which is equal to the difference between 
the edge orientations of B and B’ in order to overlap the two 
edge patterns, shown in Fig. 2(b).  Obviously, the former is a 
special case of the second.  The problem is what is the amount 
of translation for the second case? 

Given two edge blocks B and B’ characterized with the 
edge orientation and translation as ( , )lθ  and ( , )lθ ′ ′ , respec-
tively, we would like to align the edge pattern of B with that of 
B’ by rotating and translating the edge pattern of B, shown in 
Fig. 3.  The proposed edge alignment process consists of two 
steps.  First, we translate the center of B’ to the center of B, 
which results in the first displacement for B’: 

 1 ( , )C C C Cu x x y y′ ′= − −�

 (2) 

where ( , )C Cx y  and ( , )C Cx y′ ′  are the center coordinates of B 

and B’, respectively.  Then, we further translate B’ by 

 2 ( cos , sin )l lu Nd Ndθ θ=
�

 (3) 
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B

B’

B

B’

Edge Alignment

(a)

B

B’

B

B’

Edge Alignment

(b)  
Fig. 2. The process of edge alignment is to transform the edge pattern of 

a block to that of the other by translation and rotation: (a) the 
edge orientations for blocks B and B’ are the same; (b) the edge 
orientations for blocks B and B’ are different. 

 
 

l

Rotate by |θ' − θ |

l secθ

dl cosθ'

θ'

θ

θ'

dl sinθ'

dl = l' − secθ

Edge of B’

Edge of B

 
Fig. 3. Given two edge blocks B and B’ charactering with the edge ori-

entation and translation as (θ, l ) and (θ', l' ), respectively, the edge 
patterns of B’ and B are aligned by rotating and translating the 
edge pattern of B’. 

 
 

where | sec |ld l l θ′= − is the translation distance to align the 
edge pattern of B with that of B’ when the centers of B and B’ 

B
B̂B′

Reference Frame

Current Frame
4 × 4 coded blocks

 
Fig. 4. The boundary of the matches B̂s  for a given edge block B in the 

current frame might not be coincided with that of coded blocks in 
the reference frames. 

 
 
are coincided and N is the size of block.  Combining (2) and 
(3), we obtain the final motion vector 

 1 2u u u= +
� � �

. (4) 

Given a reference frame, the edge blocks play a role as the 
references to search the possible matches for each edge block 
of the current frame.  For each edge block in the current frame, 
we scan the edge blocks within the search window from the 
reference image one-by-one in the fashion of left-to-right and 
up-to-down to find its possible best match.  Let B be an edge 
block in the current frame.  Given an edge block B’ corre-
sponding to one of the search point of B in the reference frame, 
we could locate the possible match block B̂  in the reference 
frame for B using (4) when aligning the edge patterns of B and 
B’, shown in Fig. 4.  The SAD value between B and B̂  are 
then computed to judge the match degree.  Assuming the size 
of searching window is 32 × 32, the number of search points to 
find the best match block is 8 × 8 for a 4 × 4 edge block using 
the proposed edge alignment technique.  This dramatically 
reduces the number of check points using the full searching 
technique when doing block motion estimation. 

In practice, it is not necessary to align the edge patterns for 
a pair of edge blocks of absolutely different orientations be-
cause these two blocks are impossible to be the best match 
with each other.  The process of edge alignment can be further 
simplified if we assume the orientations for a match pair of 
blocks are very similar.  Let the edge block 1 2( , , , )B h h lθ=  

centered at ( , )B Bx y  in the current frame, and the edge block 

1 2
ˆ ˆ ˆˆˆ ( , , , )B h h lθ=  centered at ˆ ˆ( , )

B B
x y  be the candidate best 

match of B in the reference frame.  Suppose that B’ is one of 
the regularly partitioned blocks in the reference frame nearby 

B̂ , 1 2( , , , )B h h l θ′ ′ ′ ′ ′=  plays the role as the referencing point to  
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find the parameters of B̂ , shown in Fig. 4.  Obviously, the 

orientation of B̂  equals to that of B’, that is ˆ .θ θ ′=   Fur-

thermore, we should have l̂ l=  for B̂  to be one of the possi-
ble matches of B.  The actual problem is: where should the 

center ˆ ˆ( , )
B B

x y  of B̂  be?  Obviously, the location of B̂  can 

be obtained by solving the following linear system 

 
ˆ ˆ

cos sinB BB B
x x y y

l l
N N

θ θ′ ′− −
′ ′ ′− − =  

 ˆ ˆtan ( )B BB B
y y x xθ′ ′′− = × −  (5) 

That is 

 
ˆ

ˆ

( ) cos

( )sin
BB

BB

x x N l l

y y N l l

θ
θ

′

′

′ ′+ −   
=   ′ ′+ −  

 (6) 

Then, the displacement vector for B is easily obtained from 

 ˆ ˆ( , )B BB B
u x x y y= − −�

 (7) 

if B̂  is used to predict B. 
To complete the discussion of edge alignment for block 

matching, we can not ignore the problem of fast block 
matching for uniform blocks.  Before answering the problem, 
we first define the rule to decide the type of a block --an edge 
type or a uniform type.  An image block B is defined to be an 
edge block if 

 2 1| |h h τ− >  (8) 

where 2 1| |h h−  are the block contrast of B and τ is a prede-
fined threshold.  Obviously, many image blocks will be clas-
sified as edge blocks if we use a small value of τ.  In this work, 
we set the value of τ to be a half of the average of the block 
contrasts from current frame in order to avoid resulting too 
many uniform blocks.  However, we still have a lot of uniform 
blocks whose motion vectors are not obtainable through em-
ploying the process of edge alignment.  As a matter of fact, for 
a small block size, the correlation between neighboring mo-
tion vectors is high.  For each uniform block U, its motion 
vector Uu

�

 is simply predicted by the motion vectors of the 
edge blocks within the same macroblock as follows 

 , 1U B B B
B E B E

u w u w
∈ ∈

= =∑ ∑
� �

 (9) 

where E is the set of edge blocks of the macroblock containing 
U, Bu

�

 is the motion vector of the edge block B, and Bw  is the 

weighting of B.  The edge block which is far away from the 
uniform block U is supposed to give little impact on the mo-
tion vector of U.  Thus, the value of Bw  is computed by 

 max, 1 ( , )B B B BB E
w a a a d B U d′′∈= = −∑  (10) 

where d(B,U) is the Euclidean distance between B and U in 
terms of center coordinates and dmax is the maximal distance to 
U for all edge blocks in E.  Similarly, we can interpolate the 
potential gradient orientation of the uniform block U by Uθ =  

,B B
B E

w θ
∈
∑  which is further used to fine tune the motion vector. 

The advantages of the proposed edge alignment for block 
matching are threefold: (1) it quickly determines the motion 
vectors with lesser SAD values for an image block in the 
current frame; (2) motion vectors of sub-pixel accuracy  are 
obtained; (2) edge information which is visually important to 
human perception is preserved during video compression.  
Without loss of generality, suppose we have an ideal object of 
a single color moving on a uniform background.  Given a 
block B on the boundary of the object in the current frame, the 
edge pattern of B can then be modeled as a step edge which 
classifies the pixel values of B into two classes –one of them is 

represented by 1
Bh  and the other is represented by 2

Bh  1( Bh <  

2 )Bh .  Let B̂  be the corresponding block of B in the reference 

frame characterized with two representative pixel values 
ˆ

1
Bh  

and 
ˆ ˆ ˆ

2 1 2( )B B Bh h h< , too.  Then, we have 
ˆ

1 1
B Bh h≈  and 

ˆ
2 2
B Bh h≈ .  

As shown in Fig. 5(a), the value of SAD for B and B̂  with 
their edge patterns aligned properly is 

 
ˆ ˆ

1 1 1 1 2 2 2| | | |B B B BSAD n h h n h h= − + −  (11) 

where n1 and n2 are the numbers of pixels of B represented by 

1
Bh and 2

Bh , respectively.  Figures 5(b) and 5(c) show two 

non-edge alignment cases and their SAD values are 

 
ˆ ˆ

2 11 1 1 12 1 2| | | |B B B BSAD n h h n h h= − + −  

ˆ

2 2 2 1 11 12| |, ,B Bn h h n n n+ − = +  

 
ˆ ˆ

3 1 1 1 21 2 1| | | |B B B BSAD n h h n h h= − + −  

ˆ

22 2 2 2 21 22| |, .B Bn h h n n n+ − = +  (12) 

Comparing (11) and (12), it is easy to prove that the value of 
SAD1 is less than that of SAD2 or SAD3.  Thus, the edge align- 
ment process generates motion vectors with lesser SAD values. 

In H.264, motion vectors are required to achieve sub-pixel 
accuracy and this results in high computational complexity in 
general.  The line equation for an image block obtained by the 
moment-preserving edge detector is itself with the sub-pixel ac- 
curacy property, and then the motion vectors obtained through 
the process of the proposed edge alignment process meet the 
special requirement of H.264 without demanding additional 
computations. 
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Fig. 5. Aligning two ideal step edges: (a) the edge patterns of B and B̂  

are aligned properly; (b) and (c) are two cases that do not align 
the edge patterns of B and B̂  properly. 

 

III. THE PROPOSED FAST BLOCK MOTION 
ESTIMATION 

In combination of above analyses, given a block B, we 
propose a new searching process which predicts the motion 
vector of B through the process of edge alignment mentioned 
above.  The edge orientation of B is used to adaptively select 
suitable hexagonal search pattern to accurately estimate the 
final motion vector of B. 

1. Predictive Motion Estimation Using Edge Alignment 

Given an edge block in the current frame, the predictive 
motion vector can be obtained by performing the proposed 
edge alignment process.  For the sake of illustration, the edge 
alignment for block motion estimation is summarized as the 
following algorithm. 

 
Algorithm. Edge Alignment for Motion Estimation. 
Input: a 4 × 4 block B. 
Output: the motion vector Bu

�

 of B. 

Method: 
(1) Perform the moment-preserving edge detection to detect 

the orientation θ  and translation l of the edge pattern in B. 
(2) If B is an edge block then 

(2.1) Initialize SADB  as a very large value. 
(2.2) For each edge block B′  with translation l’ and 

orientation θ’ within the search window of B in the 
reference frame do 
(2.2.1) If |θ - θ’ | < ξ//ξ is a predefined threshold. 

(2.2.1.1) Use (6) to determine the location 
of B̂  which is supposed to be 
the block whose edge pattern 
match well with that of B. 

An edge block
In current frame

The search window in the
reference frame 

Aligned blocks

Missing possible
candidates blocks 

 
Fig. 6. Possible candidate blocks for the best match might be missing 

when doing block motion estimation using the proposed edge align- 
ment strategy. 

 

 
(2.2.1.2) Compute the SAD value 

B̂
SAD  

between B and B̂  using (1). 

(2.2.1.3) If ˆ( )BB
SAD SAD<  then SADB = 

ˆ ˆ ˆand ( , )B B BB B B
SAD u x x y y= − −�

where ( , )B Bx y  and ˆ ˆ( , )
B B

x y are 

the center coordinates of B and 

B̂ , respectively. 
(3) If B is a uniform block, interpolate Bu

�

 based on the mo-

tion vectors of the edge blocks nearby B in the current 
frame using (9). 

 
Actually, the algorithm is separated into two phases.  In the 

first phase, we determine the motion vectors for all the 4 × 4 
edge blocks in the current frame.  Then, in the second phase, 
the motion vectors of remaindering uniform blocks are inter-
polated.  These motion vectors cannot be the final motion 
vectors for further processing since we just align the edge 
patterns along the direction normal to the edge of B, shown in 
Fig. 4.  Some possible candidate points for finding the best 
match might be missing if we do not consider aligning the 
blocks along the edge direction, shown in Fig. 6.  Thus, in-
corporating the edge alignment process, an orthogonal search 
pattern, shown in Fig. 7, is added to fine tune the motion 
vector of a block in the current frame in order to obtain better 
image quality.  In this work, we design a new search pattern to 
work as the motion vector fine tune procedure. 

2. Synchronization Schemes 

The predictive hexagon search (PHS) patterns are config-
ured according to the types of blocks, which are obtained from 
the orientations of blocks.  The predictive hexagon search 
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The block B to be aligned 

Direction of edge alignment

Direction of match block searching

 
Fig. 7. An orthogonal block searching strategy: given a block B in the 

current frame, the initial motion vector is obtained using the 
proposed edge alignment process and then fine tune the motion 
vector by matching the blocks along the direction of edge pattern 
of B. 

 
 

(a) (c) 

(d)

(b)

(e)  
Fig. 8. Predictive hexagon search patterns: (a) diamond search pattern 

(DSP); (b) vertical edge search pattern (VESP); (c) horizontal 
edge search pattern (HESP); (d) diagonal edge search pattern 
(DESP); (e) anti-diagonal edge search pattern (ADESP). 

 
 

pattern is shown in Fig. 8.  Figure 8(a) shows a diamond 
search pattern (DSP) which contains five checking points (left, 
right, up, down dots with distance 1 around the center pot).  
DSP is first applied to start our searching flow.  Considering 
the searching along edge directions of image blocks, four 
search patterns –vertical edge search pattern (VESP), hori-
zontal edge search pattern (HESP), diagonal edge search pat-
tern (DESP), and anti-diagonal edge search pattern (ADESP) 
shown in Figs. 8(b)-8(e), respectively, are used as the subse-
quent steps.  In this paper, the block size 4 × 4 is adopted, 
which can be assumed to be small for high-resolution images.  
Instead of representing edges in any directions, the detected 
edges are mapping to 4 different directions.  This assumes that 
the possible directions of an edge in a 4 × 4 block are limited to  

(a) (b)

(d) (c)  
Fig. 9. Four cases for the first two steps of the block searching with (a) 

vertical edge type, (b) horizontal edge type, (c) diagonal edge type, 
and (d) anti-diagonal edge type. 

 
 

multiples of 45°, or equivalently, i × 45°, i = 0, 1, …, 3.  If the 
actual direction of an edge is not a multiple of 45°, it is quan-
tized to be the nearest multiple of 45°.  After the direction of 
an edge is given, we use the corresponding search pattern to 
search the final best match block in the reference frames. 

The purpose of the searching process is to find a search 
point with minimum rate-distortion cost (RD-Cost) which is 
defined as 

 ( ) ( )J u SAD Rate uλ= + ×� �

 (13) 

where λ is a regulation parameter.  Given an edge block B with 
the edge orientation θ in the current frame, the type of B is 
determined according to the following rule 

, 0 22.5 157.5 180

, 22.5 67.5

, 67.5 112.5

, 112.5 157.5

type

V if or

D if
B

H if

A if

θ θ
θ
θ
θ

 ≤ < ≤ <


≤ <
= 

≤ <
 ≤ <

� � � �

� �

� �

� �

 (14) 

where V, D, H, and A represent the vertical type, diagonal type, 
horizontal type, and anti-diagonal type, respectively.  Figure 9 
illustrates four cases to start the block searching along the edge 
directions for ,typeB V= ,typeB H= ,typeB D=  and .typeB A=   

For each case, the block searching procedure starts from ap-
plying the DSP which calculates the first 5 search points.  The 
search pattern for the successive steps to be applied depends 
on the block type – VESP, HESP, DESP, and ADESP for 

,typeB V= ,typeB H= ,typeB D=  and ,typeB A=  respectively.  

Suppose that the minimum RD-Cost point is one of the corner 
points in the first step, the minimum RD-Cost point will be the 
center point in next searching step.  It would calculate 4 new 
points for { , },typeB V H∈  shown in Figs. 9(a) and 9(b) and 5 

new points for { , },typeB D A∈  shown in Figs. 9(c) and 9(d).  It  
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Fig. 10. Search path example for an image block with edge type A to find 

the motion vector (5, -2) in five steps. 

 
 

is interesting to notice that no new points will be added to 
calculate the RD-Cost using the block searching procedure if 
the minimum RD-Cost point is located on the center point of 
the edge search patterns.  In this case, we apply the DSP as the 
final step of the searching procedure.  Figure 10 shows an 
example of the block searching procedure for demonstration.  
The performance of the searching procedure depends on the 
length of a line in the search window with its orientation 
similar to that of an input block. 

The algorithm of the block searching procedure is summa-
rized as follows. 

 
Algorithm.  Proposed Block Searching Procedure. 
Input: a 4 × 4 block B with center coordinates Bc

�

 and the 

predictive motion vector Bu
�

. 

Output: the final motion vector Bu
�

 of B. 

Method: 
(1) The DS with B Bc u+� �

 as the center point is used. 

(2) If the minimum RD-Cost point is located on the center 
point of DS, then return the center point as the final point 
of the motion vector. 

(3) Else do the following sub-steps: 
(3.1) Decide typeB (the type of B) using (14). 

(3.2) When the searching points are within the search 
window of B do 
(3.2.1) In case ,typeB V=  perform the VESP with 

the minimum RD-Cost point in the previ-
ous step as the center point.  If the mini-
mum RD-Cost point is located on the 
center point of VESP, then go to Step (3.3), 
else go back to (3.2). 

(3.2.2) In case ,typeB H=  perform the HESP with 

the minimum RD-Cost point in the previ-
ous step as the center point.  If the mini-
mum RD-Cost point is located on the 
center point of VESP, then go to Step (3.3), 
else go back to (3.2). 

(3.2.3) In case ,typeB D=  perform the DESP with 

the minimum RD-Cost point in the previ-
ous step as the center point.  If the mini-
mum RD-Cost point is located on the 
center point of DESP, then go to Step (3.3), 
else go back to (3.2). 

(3.2.4) In case ,typeB A=  perform the ADESP with 

the minimum RD-Cost point in the previ-
ous step as the center point.  If the mini-
mum RD-Cost point is located on the 
center point of ADESP, then go to Step 
(3.3), else go back to (3.2). 

(3.3) Perform the DS with the minimum RD-Cost point 
in the previous step as the center point, and return 
the final minimum RD-Cost point as the final point 
of the motion vector. 

3. Extension Method 

At the beginning of mode decision in the reference software 
baseline encoder [13], SADs of the 16 4 × 4 blocks for a 
macroblock are calculated at all search points in all reference 
frames.  These SAD values are then reused for other blocks of 
larger sizes because they share the same search window.  In 
order to support fast algorithms for multiple frames motion 
estimation, for the first reference frame, we calculate the mo-
tion vectors of the 16 4 × 4 blocks for a macroblock first.  Then, 
we predict the motion vector for other 6 types of block sizes.  
For other reference frames, we predict the motion vector as the 
motion vector of the same block size at previous reference 
frame. 

Figure 11 shows the correlation between motion vectors of 
variable block sizes.  The motion vectors of other blocks of 
larger sizes can be predicted using the motion vectors of the 16 
4 × 4 blocks for a macroblock.  For the block size 16 × 16, we 
use all the motion vectors of 4 × 4 blocks to calculate the 
predictive motion vector as expressed by 

 
3 3

16 16 4 4

0 0

1

16 ij
i j

u u× ×

= =
= ∑∑

� �

. (15) 

For the upper (bottom) 16 × 8 block, we use 4 motion vectors 
of upper (bottom) two rows of 4 × 4 blocks for calculation as 
shown in Fig. 11.  Similarly, for the left (right) 8 × 16 block, we 
use 4 motion vectors of left (right) two columns of 4 × 4 blocks 
for calculation.  The 16 4 × 4 blocks are divided into four 
quarter parts, each of them consisting of 4 4 × 4 blocks is used to 
predict the motion vector for a 8 × 8 block.  For each block of 
size 8 × 4 or 4 × 8, the motion vectors for the 2 4 × 4 blocks  
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Fig. 11.  The correlation between motion vectors of variable block sizes. 

 
 
covered by the block are used for calculation as shown in Fig. 
11.  The equations are listed in (16)-(19) and expressed as: 
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In addition, we calculate the orientation for each block of 
larger size by averaging the orientation values of the 4 × 4 
blocks covered by the block.  Combining the predictive mo-
tion vectors listed in (15)-(19) and the proposed block search 
procedure, we obtain one motion vector for a 16 × 16 block, 
two motion vectors for 16 × 8 blocks, two motion vectors for 
8 × 16 blocks, four motion vectors for 8 × 8 blocks, eight 
motion vectors for 8 × 4 blocks, eight motion vectors for 4 × 8 
blocks, and 16 motion vectors for 4 × 4 blocks.  The SAD 
values for all blocks of variable block sizes are also obtained. 

IV. SIMULATION RESULT 

In order to evaluate the proposed approach, a series of ex-
periments was conducted on a 1.8 GHz PC with 960 MB main 
memory.  For motion estimation, the search window is from 
-16 to 16, the number of reference frame is 5, and the number 
of block types is 7.  The methods simulated for performance 
comparison with Full Search (FS) using seven test video se-
quences –‘Container,’ ‘Foreman,’ ‘News,’ ‘Silent,’ ‘Paris,’ 
‘Mobile,’ and ‘Tempete’ include UMHEX [2], Xu and He’s 
Method [26], Motion Classification-based Search (MCS) [7], 
and the proposed method.  All the methods are implemented 
into the H.264/AVC reference software JM11.0 [13].  In our 
environment the UMHEX is adopted with the early termina-
tion here.  All the test sequences are in QCIF format. 

Table 1 illustrates the number of search points with different 
methods and different video sequences.  For block-matching, 
the number of search points decides the computational com-
plexity of motion estimation.  Based on the simulation results of 
Table 1, except MCS, the number of search points by the pro-
posed method is much smaller than the compared methods.  The 
proposed edge alignment process is used to generate the predic- 
tive motion vector (PMV) quickly and the proposed predictive 
hexagon search (PHS) is used to further enhance the accuracy of 
the motion vector.  We include the experimental results obtained 
from the proposed method with and without PHS to demon-
strate the effectiveness of the edge alignment process.  In our 
method, the information (h1, h2, and θ) for every block in the 
previous frames is properly indexed, which is used to locate the 
most similar block for a block in the current frame.  Thus, the 
predictive motion vector based on the edge alignment process 
does not introduce additional search points.  Figure 12 shows 
the performance comparison in terms of search points using the 
7 test video sequences.  Table 2 shows the average PSNR per 
frame.  In order to have a fair comparison, the PSNR values for 
the reconstructed frames using the compared methods are al-
most the same.  Accordingly, the proposed method has better 
capability in filtering unnecessary search points. 
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Table 1. The number of search points with different methods and different video sequences.  The search range is from 
-16 to 16, the number of reference frame is 5, and the number of block types is 7. 

 Container Foreman News Silent Paris Mobile Tempete 
UMHEX [2] 118513207 140448962 125966243 136739720 550826115 620525963 628025257 
Xu&He’s method [26] 36739094 43539178 39049535 42389313 170756095 192363048 194687830 
MCS [7] 7347819 25280813 15745780 19827259 76014004 108592044 72222905 
Proposed 29318729 34797289 30636668 31907496 154862912 155006181 164159478 

 
 

Table 2. Average PSNR per frame with different methods and different video sequences.  The search range is from -16 to 
16, the number of reference frame is 5, and the number of block types is 7. 

 Container Foreman News Silent Paris Mobile Tempete 
Full Search 36.03 35.54 36.48 35.71 34.92 33.19 33.68 
UMHEX [2] 36.01 35.41 36.46 35.70 34.91 33.11 33.61 

Xu & He‘s method [26] 35.99 35.41 36.45 35.71 34.90 33.10 33.60 
MCS [7] 35.93 35.51 36.37 35.73 34.88 33.15 33.63 

Proposed (without PHS) 34.90 34.57 35.31 34.96 34.41 33.16 33.53 
Proposed 35.89 35.28 36.31 35.65 34.73 33.18 33.67 

 
 

Table 3. Total execution time (ms) per video sequence with different methods and different video sequences.  The search 
range is from -16 to 16, the number of reference frame is 5, and the number of block types is 7. 

 Container Foreman News Silent Paris Mobile Tempete 
Full Search 1842132 1994310 1549468 2454158 8795171 9715372 9283706 
UMHEX [2] 399481 368286 380669 352663 2793489 3267793 3151528 
Xu & He’s method [26] 314032 284943 270503 262064 2035057 2616522 2209211 
MCS [7] 282034 262588 304535 265435 2128639 2320133 2146191 
Proposed (without PHS) 197736 248529 210508 231333 1892125 2120844 2106194 
Proposed  263367 259730 239658 264434 2064770 2311310 2304615 
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Fig. 12. Performance comparison in terms of average search points per 

macro block using 10 test video sequences. 
 
 
Table 3 shows the total execution time in terms of micro 

seconds (ms) to encode a video sequence with different 
methods and different video sequences.  Figure 13 shows the 
performance comparison in terms of speedup improvement 
which is defined as 
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Fig. 13. Performance comparison in terms of speedup improvement using 
10 test video sequences. 

 
 

 Speedup(A) = (1 -  f(A)/f (FSBMA)) * 100% 

where f(A) is the execution time to encode a video sequence 
using method A.  In average, the proposed method has 84% 
speedup improvement as compared with FS.  However,  
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(a) (b) (c) (d) (e)  
Fig. 14.  Reconstructed frame 100 of ‘Foreman’: (a) original image; (b) FSBMA; (c) UMHEX; (d) proposed method (e) proposed method without PHS. 

 
 
UMHEX, MCS and Xu and He’s method have 74%, 82% and 
81% speedup improvement, respectively.  The proposed method 
is obviously faster than the compared methods.  

The effectiveness of edge alignment affects the perform-
ance of the proposed video coding scheme.  The quality of the 
reconstruction sequences (up to PSNR 40 db) for all compared 
methods is good.  Figure 14 shows an example of recon-
structed frame 100 for ‘Forman’ using FSBMA, UMHEX, the 
proposed method, and the proposed method without PHS.  
According to the experimental results, the proposed method 
achieves good performance when the input data contain ob-
vious edges.  In this case, the edge information extracted from 
the proposed moment-preserving edge detector is relatively 
accurate and produce a better predictive motion vector which 
reduces the complexity of further PHS operators.  For example,   
the proposed method outperforms the compared methods using 
the test sequence ‘Mobile’ which contains many human-made 
objects.  On the other hand, the performance of the proposed 
method is slightly degraded for ill-defined edges which can be 
founded in low-resolution video frames.  The accuracy of edge 
detection affects the effectiveness of edge alignment.  An 
improper edge alignment process leads to quality degradation 
in the proposed video coding scheme.  Fortunately, this prob-
lem is not serious to our coding scheme since the color in-
formation in a block is also used to make sure the effectiveness 
of edge alignment.  Although the proposed method has 0.1db 
PSNR degradation in the quality of reconstructed images, it 
does not produce noticeable artifacts in the reconstructed 
images.  Hence, the proposed method meets the requirement 
of encoding high quality videos quickly.  As shown in Fig. 14 
(e), the reconstructed frame 100 of ‘Foreman’ using the pro-
posed method without PHS is good and this demonstrates that 
the proposed edge alignment method has the benefits of the 
low complexity and still keeps good quality. 

V. CONCLUSION 

Motion estimation is the most critical part to realize H.264 
which is the latest standard for video compression to support 
video applications with high video quality and low bit rates.  In 
this paper we have presented a fast block matching for video 
coding based on edge alignment.  A video encoding strategy 
based on the low-level computer vision also makes the coded 
results following the human perception without the main 

disadvantage of high-computational complexity for traditional 
block motion estimation.  It applies some simple equations to 
calculate the predictive motion vector of a current block based 
on the concept of edge alignment.  Then, considering the edge 
orientation of the block, a modified hexagon search is used to 
fine tune the motion vector in low computational complexity.  
The proposed algorithm also pays attentions to the character-
istics of multiple reference frames and multiple block sizes in 
H.264.  The proposed method is not only fast but also encod-
ing video sequences in very high quality. 
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