
Volume 18 Issue 6 Article 13

FAST BLOCK MOTION ESTIMATION WITH EDGE ALIGNMENT ON H.264 FAST BLOCK MOTION ESTIMATION WITH EDGE ALIGNMENT ON H.264
VIDEO CODING VIDEO CODING

Chi-Han Chuang
Department of Computer Science and Engineering, National Taiwan Ocean University, 2, Pei-Ning Road, Keelung
20224, Taiwan, R.O.C.

Chien-Hua Su
Department of Computer Science and Engineering, National Taiwan Ocean University, 2, Pei-Ning Road, Keelung
20224, Taiwan, R.O.C.

Shyi-Chyi Cheng
Department of Computer Science and Engineering, National Taiwan Ocean University, 2, Pei-Ning Road, Keelung
20224, Taiwan, R.O.C., csc@mail.ntou.edu.tw

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Chuang, Chi-Han; Su, Chien-Hua; and Cheng, Shyi-Chyi (2010) "FAST BLOCK MOTION ESTIMATION WITH EDGE
ALIGNMENT ON H.264 VIDEO CODING," Journal of Marine Science and Technology: Vol. 18: Iss. 6, Article 13.
DOI: 10.51400/2709-6998.1947
Available at: https://jmstt.ntou.edu.tw/journal/vol18/iss6/13

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and
Technology.

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol18
https://jmstt.ntou.edu.tw/journal/vol18/iss6
https://jmstt.ntou.edu.tw/journal/vol18/iss6/13
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol18%2Fiss6%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol18%2Fiss6%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol18/iss6/13?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol18%2Fiss6%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages

FAST BLOCK MOTION ESTIMATION WITH EDGE ALIGNMENT ON H.264 VIDEO FAST BLOCK MOTION ESTIMATION WITH EDGE ALIGNMENT ON H.264 VIDEO
CODING CODING

Acknowledgements Acknowledgements
This work was supported in part by National Science Council, Taiwan under Grant: NSC
96-2221-E-019-047-.

This research article is available in Journal of Marine Science and Technology: https://jmstt.ntou.edu.tw/journal/
vol18/iss6/13

https://jmstt.ntou.edu.tw/journal/vol18/iss6/13
https://jmstt.ntou.edu.tw/journal/vol18/iss6/13

Journal of Marine Science and Technology, Vol. 18, No. 6, pp. 883-894 (2010) 883

FAST BLOCK MOTION ESTIMATION WITH EDGE
ALIGNMENT ON H.264 VIDEO CODING

Chi-Han Chuang*, Chien-Hua Su*, and Shyi-Chyi Cheng*

Key words: fast block matching, edge alignment, H.264, motion
estimation.

ABSTRACT

This paper presents a novel block matching scheme with
edge alignment strategy on H.264 video coding, which uses
multiple references and multiple block sizes for motion esti-
mation in order to improve the rate-distortion performance. In
H.264, the computational complexity is linearly dependent on
the number of allowed reference frames and block sizes using
the full exhaustive search. Many fast block-matching algo-
rithms reduce the computational complexity of motion esti-
mation by carefully designing the search patterns with different
shapes or sizes which have significant impact on the
search speed and distortion performance. However, the search
speed and the distortion performance conflict often with each
other for these methods. In this paper, given a block in the
current frame, we first apply a fast approximate method based
on edge alignment to obtain a good initial motion vector as
well as a tight initial bound of distortion measure. Then, con-
sidering the edge orientation of the block, a modified hexagon
search is used to fine tune the motion vector in low computa-
tional complexity. The proposed algorithm also pays atten-
tions to the characteristics of multiple reference frames and
multiple block sizes in H.264. Computer simulation results
show that the proposed method gives good performance and
spans a new way to design a cost-effective real-time video
coding system.

I. INTRODUCTION

As the Internet advances, the demand of new ways to rep-
resent, integrate, store and exchange multimedia information
(such as text, image, audio, and video) has increased. A re-
markable change occurred in the video-driven applications
such as teleconference, videophone, and image-based multi-
media services, because of the increased role of synthetic
information and new two-way communication systems. Ad-
vanced video coding techniques that yield reconstructed im-

ages with good subjective image quality to make efficient use
of the available bandwidth facilitate the development of video-
based applications over the Internet. Among these methods,
H.264 is an emerging international video coding standard,
made by Joint Video Team (JVT) consisting of ITU-T Video
Coding Experts Group (VCEG) and ISO/IEC MPEG Video
Coding Group [5]. Comparing to MPEG-4 [9], H.263 [23],
and MPEG-2 [10], H.264 achieves 39%, 49%, and 64% of
bit-rate reduction, respectively [12].

The performance improvement achieved by H.264 comes
mainly from the prediction part [5], [24] involving the motion
estimation (ME) at quarter-pixel with variable block sizes and
multiple reference frames. These novel techniques greatly
reduce the prediction errors. In H.264, there are seven kinds of
block size (16 × 16, 16 × 8, 8 × 16, 8 × 8, 8 × 4, 4 × 8, 4 × 4) and
up to 5 reference frames for motion compensation (MC). The
simulation results of the reference software of H.264 [13] show
that it achieves more than 15% of bit rate reduction compared
with only using block size 16 × 16 using variable block sizes
and 5%-10% of bit rate reduction using multiple reference
frames [22]. However, the complexity of ME in developing
H.264 is obviously very high. Hence, it is a crucial issue to
reduce the complexity of ME for H.264-based real-time video
applications. In H.264, the factors to affect the performance of
ME include: (1) the complexity of mode decision when doing
motion estimation [25]; (2) the complexity of reference frames
when doing motion estimation [8]; (3) the number of search
points to complete a motion estimation process. As reported by
Huang et al. [8], it takes more than 80% of execution time on
doing motion estimation for the reference software of H.264/
AVC, JM [13] to encode a video sequence.

The block-matching algorithm (BMA) is adopted by H.264.
Among all BMAs, the well-known full-search block-matching
algorithm (FSBMA) aims at finding the position with minimal
block distortion from all possible candidate motion vectors
over a predetermined neighborhood search window. Although
FSBMA produces the best quality, it demands the most com-
putation. Many fast BMAs, such as three-step search (TSS)
[15], Diamond Search (DS) [28], and Hexagon Based Search
(HEXBS) [22, 27] have been proposed to speed up the
FSBMA with acceptable distortion performance. In [26], Xu
and He introduce an additional early termination scheme with
adaptive thresholds for Hybrid Unsymmetrical-Cross Multi-
Hexagon-Grid Search (UMHES) [2]. Gonzalez-Diaz and

Paper submitted 03/12/09; revised 07/13/09; 08/20/09; accepted 11/12/09.
Author for correspondence: Shyi-Chyi Cheng (e-mail: csc@mail.ntou.edu.tw).
*Department of Computer Science and Engineering, National Taiwan Ocean
University, 2, Pei-Ning Road, Keelung 20224, Taiwan, R.O.C.

884 Journal of Marine Science and Technology, Vol. 18, No. 6 (2010)

Diaz-de-Maria propose a motion classification-based search
(MCS), which use a classifier based on some motion cues to
choose the best search patterns [7]. These algorithms can save
a lot of search points compared with FSBMA through care-
fully designing the search patterns.

Although the computing power of processors has been rap-
idly improved for the past decade, software-based real-time
video encoders remain as a challenge even with the help of fast
BMAs. Given a block in the current frame, the process to find
the best match from previous frames using a fast BMA cannot
be interrupted; traditional BMAs stop only when all the search
points confined by a specific search pattern are examined. Thus,
the search process might violate the real-time constraint –the
time the process allowed to complete its work. A computa-
tion-aware scheme for software-based block motion estimation
was proposed by Tai et al. [20] to allow the search process of
block matching to stop once a specific amount of computation
has been performed. However, the computation-aware BMA
faces two problems. First, it brings another time-consuming
operator –to dynamically determine the target amount of com-
putation power allocated to a frame, and then allocates this to
each block on a computation-distortion-optimization manner
[20]. To solve the problem, some heuristic approaches, which
offer faster decisions on real-time constraints but lead to larger
distortion, were used in [20]. Second, as indicated in [20],
Tsai’s computation aware BMA scheme allocates more com-
putation power to the macroblock with the largest distortion
among the entire frame in a step-by-step fashion. This implies
that random access of macroblocks is required. The random
access flow requires a huge amount of memory accesses for all
macroblocks to store the up-to-date minimum distortions, best
motions vectors, and search steps. Chen et al. [1] proposed an
adaptive computation-aware BMA to reduce the memory size
requirement and further speed up tradition BMAs with better
computation-distortion performance.

Traditional BMAs perform motion estimation with every
block in the current frame as the basic unit, which independ-
ently search the best location in the search window from the
reference frame. FSBMA checks 1089 points in P-frame when
referring to one frame for MPEG-4 but needs 223245 search
points in P-frame when referring to five reference frames and
seven block sizes for H.264. Considering two neighboring
blocks in the current frame, most of the search points for in-
dividual blocks are the same, since their search windows are
obviously overlapped. In H.264, the search window and the
centers of all seven block sizes are all the same, and thus the
matching errors of 4 × 4 blocks can be reused to calculate the
matching errors of larger block sizes. In this way, the com-
putation load of variable block sizes can be reduced. More
concisely, we can estimate the matching errors for all the 4 × 4
blocks in a macroblock first, and then estimate the matching
errors for larger sizes.

Let it contain k sub-blocks in a macroblock. For each sub-
block, we aim at finding the best match from the search window
using block matching. To estimate motion vectors for all the

sub-blocks simultaneously, it is possible to first apply a k-
nearest neighbors searching scheme to quickly find the k can-
didates by removing a large amount of non-relevant search
points. Then, for each block, we can easily find its corre-
sponding best match from the candidate set of small size. The
k-nearest neighbors searching problem has been studied exten-
sively for a wide range of scientific and engineering applica-
tions including pattern recognition [21], object recognition [19],
data clustering [11], vector quantization [16], and content-based
image retrieval [4]. Many algorithms are also proposed to
speed up the searching process [14, 17, 18]. Unfortunately,
these fast k-nearest neighbors searching algorithms cannot
speed up the block matching much since they have a common
characteristic: the query point is not a set of blocks.

Edge features, which are recognized as an important aspect
of human visual perception, are commonly used in shape
analysis. Decomposition of images into low-frequency blocks
and blocks containing visually important features (such as
edges or lines) suggest visual continuity and visual disconti-
nuity constraints. A block is visually continuous if the values
of all the pixels in the block are almost the same. In contrast, if
the variations of the pixel values in the block are noticeable, it
is a visually discontinuous block. The mean of a visually
continuous block is enough to represent the block. If a block is
visually discontinuous and if a strong orientation is associated
with it, then it should be coded as a kind of visually important
feature. Using coded edges, we can represent the structure of
an image without explicitly extracting visual features.

In this paper, a fast block motion estimation algorithm is
proposed based on the application of the moment-preserving
technique to detect a visually important feature, namely an
edge in a given image block. Each given image is divided into
non-overlapping square blocks and coded block by block.
Edge features used to code an ordinary image, produce ex-
cellent image quality according to human perception and
provide a promising approach for the representation of the
image content with a compact code [3]. Simple and analytical
formulae to transform the block content into the corresponding
visual pattern code are derived in our previous work [3], which
makes the computation very fast. Many fast block-matching
algorithms reduce the computational complexity of motion
estimation by carefully designing the search patterns with
different shapes or sizes which have significant impact on the
search speed and distortion performance. However, the search
speed and the distortion performance conflict often with each
other for these methods. The proposed method offers a fast
solution for block motion estimation on H.264 video coding
systems. For each basic 4 × 4 block of a macroblock, we first
apply a fast approximate method based on edge alignment to
obtain a good initial motion vector as well as a tight initial
bound of distortion measure. Then, considering the edge
orientation of the block, a hexagon search modified from [27]
is used to fine tune the motion vector in low computational
complexity. Finally, we design a fast intermode decision
method to achieve better rate-distortion performance for

 C.-H. Chuang et al.: Fast Block Motion Estimation with Edge Alignment on H.264 Video Coding 885

H.264. Computer simulation results show that the proposed
method gives good performance and spans a new way to de-
sign a cost-effective real-time video coding system.

The remainder of this paper is organized as follows. In
Section II, a fast block matching based on edge alignment is
first discussed. In Section III, the proposed block motion es-
timation algorithm for H.264 is presented. Experimental re-
sults are shown in Section IV. Finally, Section V gives a brief
conclusion.

II. BLOCK MATCHING USING EDGE
ALIGNMENT

In H.264, each frame is divided into multiple nonoverlap-
ping blocks of size 16 × 16 pixels. Each block is further di-
vided into several sub-blocks of variable sizes according to a
rate-distortion optimization scheme. Each of the sub-blocks
then performs block motion estimation to remove the temporal
redundancy of the video sequence. In this work, a 16 × 16
block is initially divided into 16 4 × 4 sub-blocks with their
motion vectors found based on a fast block matching using
edge alignment.

Block matching for motion estimation is an approach to
shift or warp image blocks relative to each other and to look at
how much the pixels agree according to certain criteria. On
such function, often used in video coding because of its speed,
is the sum of absolute differences (SAD) metric, i.e.,

1 1

,
1 1

(,) | (,)
N N

x y t
i j

SAD u v I x i y j
− −

= =

= + +∑∑

 1(,) |tI x u i y v j−− + + + + (1)

where (,)u u v=�

 is the displacement and | (,)tI x i y j+ + −

1(,) |tI x u i y v j− + + + + is called the displaced frame differ-
ence. Given a block in the current frame, the full searching
technique tries all possible alignments and is too slow in
practice. Besides block matching techniques with full or par-
tial pixel information, feature-based alignment methods are
possible to speed up the process of motion estimation.

At the lowest level of computer vision, potentially useful
visual patterns such as edges and line segments can be ex-
tracted from an image without any priori knowledge of the
image content. In our approach, segmentation and detailed
object representation are not required. A given image is par-
titioned into a set of non-overlapping square blocks. Each
block is coded as either a uniform block or an edge block. The
edge in each block is detected by the moment-preserving edge
detection technique which was proposed in our previous work
[3], and the image can be reconstructed according to the pa-
rameters of these blocks. The continuous two-dimensional
edge model specified by four parameters, two representative
gray (color) values h1 and h2, an edge translation l, and an
orientation angle θ for an edge in square block B is shown in
Fig. 1. The edge translation l is defined as the length from the

x

y

-1 1

-1

1

0

C

B

+(x−, y−)l
h1

h2

θ

Fig. 1. An edge model in a 4 × 4 block B. The circle C is inscribed in B,

and x y(,) are the coordinates of the centers of gravity of the
gray (color) values inside C.

center of the edge model to the transition, and is confined

within the range of 2− to 2+ . The parameter θ specified
the direction of the edge and is confined within the range of 0
to 180 degrees. The solution to the edge detection problem in
a given block is analytic and this means that the edge detection
process can be performed very fast for large-database appli-
cations with no need for special hardware.

In our approach, there are two cases to align the edge pat-
terns of two blocks. First, given a pair of edge blocks (B, B’)
with the same edge orientation, the edge of B is said to be
aligned properly with that of B’ by translating B’ if necessary
such that the edge pattern of B’ exactly coincides with that of B,
shown in Fig. 2(a). What would happen to the process of edge
alignment if the edge orientations for B and B’ are different?
In this case, the edge pattern of B is first translated and then
rotated by an angle which is equal to the difference between
the edge orientations of B and B’ in order to overlap the two
edge patterns, shown in Fig. 2(b). Obviously, the former is a
special case of the second. The problem is what is the amount
of translation for the second case?

Given two edge blocks B and B’ characterized with the
edge orientation and translation as (,)lθ and (,)lθ ′ ′ , respec-
tively, we would like to align the edge pattern of B with that of
B’ by rotating and translating the edge pattern of B, shown in
Fig. 3. The proposed edge alignment process consists of two
steps. First, we translate the center of B’ to the center of B,
which results in the first displacement for B’:

 1 (,)C C C Cu x x y y′ ′= − −�

 (2)

where (,)C Cx y and (,)C Cx y′ ′ are the center coordinates of B

and B’, respectively. Then, we further translate B’ by

 2 (cos , sin)l lu Nd Ndθ θ=
�

 (3)

886 Journal of Marine Science and Technology, Vol. 18, No. 6 (2010)

B

B’

B

B’

Edge Alignment

(a)

B

B’

B

B’

Edge Alignment

(b)
Fig. 2. The process of edge alignment is to transform the edge pattern of

a block to that of the other by translation and rotation: (a) the
edge orientations for blocks B and B’ are the same; (b) the edge
orientations for blocks B and B’ are different.

l

Rotate by |θ' − θ |

l secθ

dl cosθ'

θ'

θ

θ'

dl sinθ'

dl = l' − secθ

Edge of B’

Edge of B

Fig. 3. Given two edge blocks B and B’ charactering with the edge ori-

entation and translation as (θ, l) and (θ', l'), respectively, the edge
patterns of B’ and B are aligned by rotating and translating the
edge pattern of B’.

where | sec |ld l l θ′= − is the translation distance to align the
edge pattern of B with that of B’ when the centers of B and B’

B
B̂B′

Reference Frame

Current Frame
4 × 4 coded blocks

Fig. 4. The boundary of the matches B̂s for a given edge block B in the

current frame might not be coincided with that of coded blocks in
the reference frames.

are coincided and N is the size of block. Combining (2) and
(3), we obtain the final motion vector

 1 2u u u= +
� � �

. (4)

Given a reference frame, the edge blocks play a role as the
references to search the possible matches for each edge block
of the current frame. For each edge block in the current frame,
we scan the edge blocks within the search window from the
reference image one-by-one in the fashion of left-to-right and
up-to-down to find its possible best match. Let B be an edge
block in the current frame. Given an edge block B’ corre-
sponding to one of the search point of B in the reference frame,
we could locate the possible match block B̂ in the reference
frame for B using (4) when aligning the edge patterns of B and
B’, shown in Fig. 4. The SAD value between B and B̂ are
then computed to judge the match degree. Assuming the size
of searching window is 32 × 32, the number of search points to
find the best match block is 8 × 8 for a 4 × 4 edge block using
the proposed edge alignment technique. This dramatically
reduces the number of check points using the full searching
technique when doing block motion estimation.

In practice, it is not necessary to align the edge patterns for
a pair of edge blocks of absolutely different orientations be-
cause these two blocks are impossible to be the best match
with each other. The process of edge alignment can be further
simplified if we assume the orientations for a match pair of
blocks are very similar. Let the edge block 1 2(, , ,)B h h lθ=

centered at (,)B Bx y in the current frame, and the edge block

1 2
ˆ ˆ ˆˆˆ (, , ,)B h h lθ= centered at ˆ ˆ(,)

B B
x y be the candidate best

match of B in the reference frame. Suppose that B’ is one of
the regularly partitioned blocks in the reference frame nearby

B̂ , 1 2(, , ,)B h h l θ′ ′ ′ ′ ′= plays the role as the referencing point to

 C.-H. Chuang et al.: Fast Block Motion Estimation with Edge Alignment on H.264 Video Coding 887

find the parameters of B̂ , shown in Fig. 4. Obviously, the

orientation of B̂ equals to that of B’, that is ˆ .θ θ ′= Fur-

thermore, we should have l̂ l= for B̂ to be one of the possi-
ble matches of B. The actual problem is: where should the

center ˆ ˆ(,)
B B

x y of B̂ be? Obviously, the location of B̂ can

be obtained by solving the following linear system

ˆ ˆ

cos sinB BB B
x x y y

l l
N N

θ θ′ ′− −
′ ′ ′− − =

 ˆ ˆtan ()B BB B
y y x xθ′ ′′− = × − (5)

That is

ˆ

ˆ

() cos

()sin
BB

BB

x x N l l

y y N l l

θ
θ

′

′

′ ′+ −
= ′ ′+ −

 (6)

Then, the displacement vector for B is easily obtained from

 ˆ ˆ(,)B BB B
u x x y y= − −�

 (7)

if B̂ is used to predict B.
To complete the discussion of edge alignment for block

matching, we can not ignore the problem of fast block
matching for uniform blocks. Before answering the problem,
we first define the rule to decide the type of a block --an edge
type or a uniform type. An image block B is defined to be an
edge block if

 2 1| |h h τ− > (8)

where 2 1| |h h− are the block contrast of B and τ is a prede-
fined threshold. Obviously, many image blocks will be clas-
sified as edge blocks if we use a small value of τ. In this work,
we set the value of τ to be a half of the average of the block
contrasts from current frame in order to avoid resulting too
many uniform blocks. However, we still have a lot of uniform
blocks whose motion vectors are not obtainable through em-
ploying the process of edge alignment. As a matter of fact, for
a small block size, the correlation between neighboring mo-
tion vectors is high. For each uniform block U, its motion
vector Uu

�

 is simply predicted by the motion vectors of the
edge blocks within the same macroblock as follows

 , 1U B B B
B E B E

u w u w
∈ ∈

= =∑ ∑
� �

 (9)

where E is the set of edge blocks of the macroblock containing
U, Bu

�

 is the motion vector of the edge block B, and Bw is the

weighting of B. The edge block which is far away from the
uniform block U is supposed to give little impact on the mo-
tion vector of U. Thus, the value of Bw is computed by

 max, 1 (,)B B B BB E
w a a a d B U d′′∈= = −∑ (10)

where d(B,U) is the Euclidean distance between B and U in
terms of center coordinates and dmax is the maximal distance to
U for all edge blocks in E. Similarly, we can interpolate the
potential gradient orientation of the uniform block U by Uθ =

,B B
B E

w θ
∈
∑ which is further used to fine tune the motion vector.

The advantages of the proposed edge alignment for block
matching are threefold: (1) it quickly determines the motion
vectors with lesser SAD values for an image block in the
current frame; (2) motion vectors of sub-pixel accuracy are
obtained; (2) edge information which is visually important to
human perception is preserved during video compression.
Without loss of generality, suppose we have an ideal object of
a single color moving on a uniform background. Given a
block B on the boundary of the object in the current frame, the
edge pattern of B can then be modeled as a step edge which
classifies the pixel values of B into two classes –one of them is

represented by 1
Bh and the other is represented by 2

Bh 1(Bh <

2)Bh . Let B̂ be the corresponding block of B in the reference

frame characterized with two representative pixel values
ˆ

1
Bh

and
ˆ ˆ ˆ

2 1 2()B B Bh h h< , too. Then, we have
ˆ

1 1
B Bh h≈ and

ˆ
2 2
B Bh h≈ .

As shown in Fig. 5(a), the value of SAD for B and B̂ with
their edge patterns aligned properly is

ˆ ˆ

1 1 1 1 2 2 2| | | |B B B BSAD n h h n h h= − + − (11)

where n1 and n2 are the numbers of pixels of B represented by

1
Bh and 2

Bh , respectively. Figures 5(b) and 5(c) show two

non-edge alignment cases and their SAD values are

ˆ ˆ

2 11 1 1 12 1 2| | | |B B B BSAD n h h n h h= − + −

ˆ

2 2 2 1 11 12| |, ,B Bn h h n n n+ − = +

ˆ ˆ

3 1 1 1 21 2 1| | | |B B B BSAD n h h n h h= − + −

ˆ

22 2 2 2 21 22| |, .B Bn h h n n n+ − = + (12)

Comparing (11) and (12), it is easy to prove that the value of
SAD1 is less than that of SAD2 or SAD3. Thus, the edge align-
ment process generates motion vectors with lesser SAD values.

In H.264, motion vectors are required to achieve sub-pixel
accuracy and this results in high computational complexity in
general. The line equation for an image block obtained by the
moment-preserving edge detector is itself with the sub-pixel ac-
curacy property, and then the motion vectors obtained through
the process of the proposed edge alignment process meet the
special requirement of H.264 without demanding additional
computations.

888 Journal of Marine Science and Technology, Vol. 18, No. 6 (2010)

B

h1
B

h2
B

B̂

(a)

h2
B

B

h1
B

B̂

(b)

h2
B

B

h1
B

h1
B

h1
B̂

h1
B̂

h1
B̂

h2
B̂

B̂

(c)

h2
B

h2
B

h1
B̂

h1
B̂

h1
B̂

h1
B

h1
B

h1
B

h1
B

h2
B

h2
B

h2
B̂

h2
B̂

h2
B̂

h2
B̂

h2
B̂
h2

B̂

h2
B̂

Fig. 5. Aligning two ideal step edges: (a) the edge patterns of B and B̂

are aligned properly; (b) and (c) are two cases that do not align
the edge patterns of B and B̂ properly.

III. THE PROPOSED FAST BLOCK MOTION
ESTIMATION

In combination of above analyses, given a block B, we
propose a new searching process which predicts the motion
vector of B through the process of edge alignment mentioned
above. The edge orientation of B is used to adaptively select
suitable hexagonal search pattern to accurately estimate the
final motion vector of B.

1. Predictive Motion Estimation Using Edge Alignment

Given an edge block in the current frame, the predictive
motion vector can be obtained by performing the proposed
edge alignment process. For the sake of illustration, the edge
alignment for block motion estimation is summarized as the
following algorithm.

Algorithm. Edge Alignment for Motion Estimation.
Input: a 4 × 4 block B.
Output: the motion vector Bu

�

 of B.

Method:
(1) Perform the moment-preserving edge detection to detect

the orientation θ and translation l of the edge pattern in B.
(2) If B is an edge block then

(2.1) Initialize SADB as a very large value.
(2.2) For each edge block B′ with translation l’ and

orientation θ’ within the search window of B in the
reference frame do
(2.2.1) If |θ - θ’ | < ξ//ξ is a predefined threshold.

(2.2.1.1) Use (6) to determine the location
of B̂ which is supposed to be
the block whose edge pattern
match well with that of B.

An edge block
In current frame

The search window in the
reference frame

Aligned blocks

Missing possible
candidates blocks

Fig. 6. Possible candidate blocks for the best match might be missing

when doing block motion estimation using the proposed edge align-
ment strategy.

(2.2.1.2) Compute the SAD value

B̂
SAD

between B and B̂ using (1).

(2.2.1.3) If ˆ()BB
SAD SAD< then SADB =

ˆ ˆ ˆand (,)B B BB B B
SAD u x x y y= − −�

where (,)B Bx y and ˆ ˆ(,)
B B

x y are

the center coordinates of B and

B̂ , respectively.
(3) If B is a uniform block, interpolate Bu

�

 based on the mo-

tion vectors of the edge blocks nearby B in the current
frame using (9).

Actually, the algorithm is separated into two phases. In the

first phase, we determine the motion vectors for all the 4 × 4
edge blocks in the current frame. Then, in the second phase,
the motion vectors of remaindering uniform blocks are inter-
polated. These motion vectors cannot be the final motion
vectors for further processing since we just align the edge
patterns along the direction normal to the edge of B, shown in
Fig. 4. Some possible candidate points for finding the best
match might be missing if we do not consider aligning the
blocks along the edge direction, shown in Fig. 6. Thus, in-
corporating the edge alignment process, an orthogonal search
pattern, shown in Fig. 7, is added to fine tune the motion
vector of a block in the current frame in order to obtain better
image quality. In this work, we design a new search pattern to
work as the motion vector fine tune procedure.

2. Synchronization Schemes

The predictive hexagon search (PHS) patterns are config-
ured according to the types of blocks, which are obtained from
the orientations of blocks. The predictive hexagon search

 C.-H. Chuang et al.: Fast Block Motion Estimation with Edge Alignment on H.264 Video Coding 889

The block B to be aligned

Direction of edge alignment

Direction of match block searching

Fig. 7. An orthogonal block searching strategy: given a block B in the

current frame, the initial motion vector is obtained using the
proposed edge alignment process and then fine tune the motion
vector by matching the blocks along the direction of edge pattern
of B.

(a) (c)

(d)

(b)

(e)
Fig. 8. Predictive hexagon search patterns: (a) diamond search pattern

(DSP); (b) vertical edge search pattern (VESP); (c) horizontal
edge search pattern (HESP); (d) diagonal edge search pattern
(DESP); (e) anti-diagonal edge search pattern (ADESP).

pattern is shown in Fig. 8. Figure 8(a) shows a diamond
search pattern (DSP) which contains five checking points (left,
right, up, down dots with distance 1 around the center pot).
DSP is first applied to start our searching flow. Considering
the searching along edge directions of image blocks, four
search patterns –vertical edge search pattern (VESP), hori-
zontal edge search pattern (HESP), diagonal edge search pat-
tern (DESP), and anti-diagonal edge search pattern (ADESP)
shown in Figs. 8(b)-8(e), respectively, are used as the subse-
quent steps. In this paper, the block size 4 × 4 is adopted,
which can be assumed to be small for high-resolution images.
Instead of representing edges in any directions, the detected
edges are mapping to 4 different directions. This assumes that
the possible directions of an edge in a 4 × 4 block are limited to

(a) (b)

(d) (c)
Fig. 9. Four cases for the first two steps of the block searching with (a)

vertical edge type, (b) horizontal edge type, (c) diagonal edge type,
and (d) anti-diagonal edge type.

multiples of 45°, or equivalently, i × 45°, i = 0, 1, …, 3. If the
actual direction of an edge is not a multiple of 45°, it is quan-
tized to be the nearest multiple of 45°. After the direction of
an edge is given, we use the corresponding search pattern to
search the final best match block in the reference frames.

The purpose of the searching process is to find a search
point with minimum rate-distortion cost (RD-Cost) which is
defined as

 () ()J u SAD Rate uλ= + ×� �

 (13)

where λ is a regulation parameter. Given an edge block B with
the edge orientation θ in the current frame, the type of B is
determined according to the following rule

, 0 22.5 157.5 180

, 22.5 67.5

, 67.5 112.5

, 112.5 157.5

type

V if or

D if
B

H if

A if

θ θ
θ
θ
θ

 ≤ < ≤ <

≤ <
=

≤ <
 ≤ <

� � � �

� �

� �

� �

 (14)

where V, D, H, and A represent the vertical type, diagonal type,
horizontal type, and anti-diagonal type, respectively. Figure 9
illustrates four cases to start the block searching along the edge
directions for ,typeB V= ,typeB H= ,typeB D= and .typeB A=

For each case, the block searching procedure starts from ap-
plying the DSP which calculates the first 5 search points. The
search pattern for the successive steps to be applied depends
on the block type – VESP, HESP, DESP, and ADESP for

,typeB V= ,typeB H= ,typeB D= and ,typeB A= respectively.

Suppose that the minimum RD-Cost point is one of the corner
points in the first step, the minimum RD-Cost point will be the
center point in next searching step. It would calculate 4 new
points for { , },typeB V H∈ shown in Figs. 9(a) and 9(b) and 5

new points for { , },typeB D A∈ shown in Figs. 9(c) and 9(d). It

890 Journal of Marine Science and Technology, Vol. 18, No. 6 (2010)

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

1
1

1
1

1 2

2

2

2

2

3 3

3

4

4

4

5
5

5
5

Fig. 10. Search path example for an image block with edge type A to find

the motion vector (5, -2) in five steps.

is interesting to notice that no new points will be added to
calculate the RD-Cost using the block searching procedure if
the minimum RD-Cost point is located on the center point of
the edge search patterns. In this case, we apply the DSP as the
final step of the searching procedure. Figure 10 shows an
example of the block searching procedure for demonstration.
The performance of the searching procedure depends on the
length of a line in the search window with its orientation
similar to that of an input block.

The algorithm of the block searching procedure is summa-
rized as follows.

Algorithm. Proposed Block Searching Procedure.
Input: a 4 × 4 block B with center coordinates Bc

�

 and the

predictive motion vector Bu
�

.

Output: the final motion vector Bu
�

 of B.

Method:
(1) The DS with B Bc u+� �

 as the center point is used.

(2) If the minimum RD-Cost point is located on the center
point of DS, then return the center point as the final point
of the motion vector.

(3) Else do the following sub-steps:
(3.1) Decide typeB (the type of B) using (14).

(3.2) When the searching points are within the search
window of B do
(3.2.1) In case ,typeB V= perform the VESP with

the minimum RD-Cost point in the previ-
ous step as the center point. If the mini-
mum RD-Cost point is located on the
center point of VESP, then go to Step (3.3),
else go back to (3.2).

(3.2.2) In case ,typeB H= perform the HESP with

the minimum RD-Cost point in the previ-
ous step as the center point. If the mini-
mum RD-Cost point is located on the
center point of VESP, then go to Step (3.3),
else go back to (3.2).

(3.2.3) In case ,typeB D= perform the DESP with

the minimum RD-Cost point in the previ-
ous step as the center point. If the mini-
mum RD-Cost point is located on the
center point of DESP, then go to Step (3.3),
else go back to (3.2).

(3.2.4) In case ,typeB A= perform the ADESP with

the minimum RD-Cost point in the previ-
ous step as the center point. If the mini-
mum RD-Cost point is located on the
center point of ADESP, then go to Step
(3.3), else go back to (3.2).

(3.3) Perform the DS with the minimum RD-Cost point
in the previous step as the center point, and return
the final minimum RD-Cost point as the final point
of the motion vector.

3. Extension Method

At the beginning of mode decision in the reference software
baseline encoder [13], SADs of the 16 4 × 4 blocks for a
macroblock are calculated at all search points in all reference
frames. These SAD values are then reused for other blocks of
larger sizes because they share the same search window. In
order to support fast algorithms for multiple frames motion
estimation, for the first reference frame, we calculate the mo-
tion vectors of the 16 4 × 4 blocks for a macroblock first. Then,
we predict the motion vector for other 6 types of block sizes.
For other reference frames, we predict the motion vector as the
motion vector of the same block size at previous reference
frame.

Figure 11 shows the correlation between motion vectors of
variable block sizes. The motion vectors of other blocks of
larger sizes can be predicted using the motion vectors of the 16
4 × 4 blocks for a macroblock. For the block size 16 × 16, we
use all the motion vectors of 4 × 4 blocks to calculate the
predictive motion vector as expressed by

3 3

16 16 4 4

0 0

1

16 ij
i j

u u× ×

= =
= ∑∑

� �

. (15)

For the upper (bottom) 16 × 8 block, we use 4 motion vectors
of upper (bottom) two rows of 4 × 4 blocks for calculation as
shown in Fig. 11. Similarly, for the left (right) 8 × 16 block, we
use 4 motion vectors of left (right) two columns of 4 × 4 blocks
for calculation. The 16 4 × 4 blocks are divided into four
quarter parts, each of them consisting of 4 4 × 4 blocks is used to
predict the motion vector for a 8 × 8 block. For each block of
size 8 × 4 or 4 × 8, the motion vectors for the 2 4 × 4 blocks

 C.-H. Chuang et al.: Fast Block Motion Estimation with Edge Alignment on H.264 Video Coding 891

4 × 4u00

4 × 8u00
4 × 8u01

4 × 8u02
4 × 8u03

4 × 8u10
4 × 8u11

4 × 8u12
4 × 8u13

8 × 8u00

8 × 4u00

8 × 4u10

8 × 4u20

8 × 4u30

8 × 4u01

8 × 4u11

8 × 4u21

8 × 4u31

8 × 8u01

8 × 8u10
8 × 8u11

4 × 4u01
4 × 4u02

4 × 4u03

4 × 4u10
4 × 4u11

4 × 4u12
4 × 4u13

4 × 4u20
4 × 4u21

4 × 4u22
4 × 4u23

4 × 4u30
4 × 4u31

16 × 8uu

8 × 16ul

16 × 16u

8 × 16ur

16 × 8ub

4 × 4u32
4 × 4u33

Fig. 11. The correlation between motion vectors of variable block sizes.

covered by the block are used for calculation as shown in Fig.
11. The equations are listed in (16)-(19) and expressed as:

1 3
16 8 4 4

0 0

3 3
16 8 4 4

2 0

1

8

1

8

u ij
i j

b ij
i j

u u

u u

× ×

= =

× ×

= =

=

 =

∑∑

∑∑

� �

� �

 (16)

3 1
8 16 4 4

0 0

3 3
8 16 4 4

0 2

1

8

1

8

l ij
i j

r ij
i j

u u

u u

× ×

= =

× ×

= =

=

 =

∑∑

∑∑

� �

� �

 (17)

2 12 1

8 8 4 4

2 2

1
, 0 , 1

4

ji

ij st
s i t j

u u i j
++

× ×

= =
= ≤ ≤∑ ∑

� �

 (18)

1
8 4 4 4

1
4 8 4 4

1
, 0 3, 0 1

2

1
, 0 1, 0 3

2

j

ij it
t j

i

ij it
s i

u u i j

u u i j

+
× ×

=

+
× ×

=

= ≤ ≤ ≤ ≤

 = ≤ ≤ ≤ ≤

∑

∑

� �

� �

 (19)

In addition, we calculate the orientation for each block of
larger size by averaging the orientation values of the 4 × 4
blocks covered by the block. Combining the predictive mo-
tion vectors listed in (15)-(19) and the proposed block search
procedure, we obtain one motion vector for a 16 × 16 block,
two motion vectors for 16 × 8 blocks, two motion vectors for
8 × 16 blocks, four motion vectors for 8 × 8 blocks, eight
motion vectors for 8 × 4 blocks, eight motion vectors for 4 × 8
blocks, and 16 motion vectors for 4 × 4 blocks. The SAD
values for all blocks of variable block sizes are also obtained.

IV. SIMULATION RESULT

In order to evaluate the proposed approach, a series of ex-
periments was conducted on a 1.8 GHz PC with 960 MB main
memory. For motion estimation, the search window is from
-16 to 16, the number of reference frame is 5, and the number
of block types is 7. The methods simulated for performance
comparison with Full Search (FS) using seven test video se-
quences –‘Container,’ ‘Foreman,’ ‘News,’ ‘Silent,’ ‘Paris,’
‘Mobile,’ and ‘Tempete’ include UMHEX [2], Xu and He’s
Method [26], Motion Classification-based Search (MCS) [7],
and the proposed method. All the methods are implemented
into the H.264/AVC reference software JM11.0 [13]. In our
environment the UMHEX is adopted with the early termina-
tion here. All the test sequences are in QCIF format.

Table 1 illustrates the number of search points with different
methods and different video sequences. For block-matching,
the number of search points decides the computational com-
plexity of motion estimation. Based on the simulation results of
Table 1, except MCS, the number of search points by the pro-
posed method is much smaller than the compared methods. The
proposed edge alignment process is used to generate the predic-
tive motion vector (PMV) quickly and the proposed predictive
hexagon search (PHS) is used to further enhance the accuracy of
the motion vector. We include the experimental results obtained
from the proposed method with and without PHS to demon-
strate the effectiveness of the edge alignment process. In our
method, the information (h1, h2, and θ) for every block in the
previous frames is properly indexed, which is used to locate the
most similar block for a block in the current frame. Thus, the
predictive motion vector based on the edge alignment process
does not introduce additional search points. Figure 12 shows
the performance comparison in terms of search points using the
7 test video sequences. Table 2 shows the average PSNR per
frame. In order to have a fair comparison, the PSNR values for
the reconstructed frames using the compared methods are al-
most the same. Accordingly, the proposed method has better
capability in filtering unnecessary search points.

892 Journal of Marine Science and Technology, Vol. 18, No. 6 (2010)

Table 1. The number of search points with different methods and different video sequences. The search range is from
-16 to 16, the number of reference frame is 5, and the number of block types is 7.

 Container Foreman News Silent Paris Mobile Tempete
UMHEX [2] 118513207 140448962 125966243 136739720 550826115 620525963 628025257
Xu&He’s method [26] 36739094 43539178 39049535 42389313 170756095 192363048 194687830
MCS [7] 7347819 25280813 15745780 19827259 76014004 108592044 72222905
Proposed 29318729 34797289 30636668 31907496 154862912 155006181 164159478

Table 2. Average PSNR per frame with different methods and different video sequences. The search range is from -16 to
16, the number of reference frame is 5, and the number of block types is 7.

 Container Foreman News Silent Paris Mobile Tempete
Full Search 36.03 35.54 36.48 35.71 34.92 33.19 33.68
UMHEX [2] 36.01 35.41 36.46 35.70 34.91 33.11 33.61

Xu & He‘s method [26] 35.99 35.41 36.45 35.71 34.90 33.10 33.60
MCS [7] 35.93 35.51 36.37 35.73 34.88 33.15 33.63

Proposed (without PHS) 34.90 34.57 35.31 34.96 34.41 33.16 33.53
Proposed 35.89 35.28 36.31 35.65 34.73 33.18 33.67

Table 3. Total execution time (ms) per video sequence with different methods and different video sequences. The search
range is from -16 to 16, the number of reference frame is 5, and the number of block types is 7.

 Container Foreman News Silent Paris Mobile Tempete
Full Search 1842132 1994310 1549468 2454158 8795171 9715372 9283706
UMHEX [2] 399481 368286 380669 352663 2793489 3267793 3151528
Xu & He’s method [26] 314032 284943 270503 262064 2035057 2616522 2209211
MCS [7] 282034 262588 304535 265435 2128639 2320133 2146191
Proposed (without PHS) 197736 248529 210508 231333 1892125 2120844 2106194
Proposed 263367 259730 239658 264434 2064770 2311310 2304615

× 108

7

6

5

4

3

2

1

0

Se
ar

ch
 P

oi
nt

s

1 2 3 4
Test Video Sequences

5 6 7

UMHEX [2]
MCS [7]
Xu & He’s method [26]
Proposed
Proposed (without PHS)

Fig. 12. Performance comparison in terms of average search points per

macro block using 10 test video sequences.

Table 3 shows the total execution time in terms of micro

seconds (ms) to encode a video sequence with different
methods and different video sequences. Figure 13 shows the
performance comparison in terms of speedup improvement
which is defined as

UMHEX [2]
MCS [7]
Xu & He’s method [26]
Proposed
Proposed (without PHS)

95

90

85

80

75

65

70

55

60

Sp
ee

d
U

p
(%

)

1 2 3 4
Test Video Sequences

5 6 7

Fig. 13. Performance comparison in terms of speedup improvement using
10 test video sequences.

 Speedup(A) = (1 - f(A)/f (FSBMA)) * 100%

where f(A) is the execution time to encode a video sequence
using method A. In average, the proposed method has 84%
speedup improvement as compared with FS. However,

 C.-H. Chuang et al.: Fast Block Motion Estimation with Edge Alignment on H.264 Video Coding 893

(a) (b) (c) (d) (e)
Fig. 14. Reconstructed frame 100 of ‘Foreman’: (a) original image; (b) FSBMA; (c) UMHEX; (d) proposed method (e) proposed method without PHS.

UMHEX, MCS and Xu and He’s method have 74%, 82% and
81% speedup improvement, respectively. The proposed method
is obviously faster than the compared methods.

The effectiveness of edge alignment affects the perform-
ance of the proposed video coding scheme. The quality of the
reconstruction sequences (up to PSNR 40 db) for all compared
methods is good. Figure 14 shows an example of recon-
structed frame 100 for ‘Forman’ using FSBMA, UMHEX, the
proposed method, and the proposed method without PHS.
According to the experimental results, the proposed method
achieves good performance when the input data contain ob-
vious edges. In this case, the edge information extracted from
the proposed moment-preserving edge detector is relatively
accurate and produce a better predictive motion vector which
reduces the complexity of further PHS operators. For example,
the proposed method outperforms the compared methods using
the test sequence ‘Mobile’ which contains many human-made
objects. On the other hand, the performance of the proposed
method is slightly degraded for ill-defined edges which can be
founded in low-resolution video frames. The accuracy of edge
detection affects the effectiveness of edge alignment. An
improper edge alignment process leads to quality degradation
in the proposed video coding scheme. Fortunately, this prob-
lem is not serious to our coding scheme since the color in-
formation in a block is also used to make sure the effectiveness
of edge alignment. Although the proposed method has 0.1db
PSNR degradation in the quality of reconstructed images, it
does not produce noticeable artifacts in the reconstructed
images. Hence, the proposed method meets the requirement
of encoding high quality videos quickly. As shown in Fig. 14
(e), the reconstructed frame 100 of ‘Foreman’ using the pro-
posed method without PHS is good and this demonstrates that
the proposed edge alignment method has the benefits of the
low complexity and still keeps good quality.

V. CONCLUSION

Motion estimation is the most critical part to realize H.264
which is the latest standard for video compression to support
video applications with high video quality and low bit rates. In
this paper we have presented a fast block matching for video
coding based on edge alignment. A video encoding strategy
based on the low-level computer vision also makes the coded
results following the human perception without the main

disadvantage of high-computational complexity for traditional
block motion estimation. It applies some simple equations to
calculate the predictive motion vector of a current block based
on the concept of edge alignment. Then, considering the edge
orientation of the block, a modified hexagon search is used to
fine tune the motion vector in low computational complexity.
The proposed algorithm also pays attentions to the character-
istics of multiple reference frames and multiple block sizes in
H.264. The proposed method is not only fast but also encod-
ing video sequences in very high quality.

ACKNOWLEDGMENTS

This work was supported in part by National Science
Council, Taiwan under Grant: NSC 96-2221-E-019-047-.

REFERENCES

1. Chen, C.-Y., Huang, Y.-W., Lee, C.-L., and Chen, L.-G., “One-pass
computation-aware motion estimation with adaptive search strategy,”
IEEE Transactions on Multimedia, Vol. 8, No. 4, pp. 698-706 (2006).

2. Chen, Z., Zhou, P., and He, Y., “Fast integer pel and fractional pel motion
estimation for AVC,” presented at the 6th JVT-Fo17 Meeting, Awaji
Island, Japan (2002).

3. Cheng, S.-C., “Content-based image retrieval using moment-preserving
edge detection,” Image and Vision Computing, Vol. 21, No. 9, pp. 809-
826 (2003).

4. Cheng, S.-C. and Wu, T.-L., “Fast indexing method for image retrieval
using k nearest neighbors searches by principal axis analysis,” Journal of
Visual Communication and Image Representation, Vol. 17, pp. 42-56
(2006).

5. Draft ITU-T Recommendation and Final Draft International Standard of
Joint Video Specification. ITU-T Rec. H.264 and ISO/IEC 14 496-10
AVC, Joint Video Team (2003).

6. Faloutsos, C., Ranganthan, M., and Manolopoulos, Y., “Fast subsequent
matching in time-series databases,” Proceedings of the ACM SIGMOD
International Conference on Management of Data, Minneapolis, Min-
nesota, pp. 419-429 (1994).

7. Gonzalez-Diaz, I. and Diaz-de-Maria, F., “Adaptive multipattern fast block-
matching algorithm based on motion classification techniques,” IEEE
Transactions on Circuits and Systems for Video Technology, Vol. 18, No.
10, pp. 1369-1382 (2008).

8. Huang, Y. H., Hsieh, B. Y., Wang, T. C., Chen, S. Y., Ma, S. Y., Shen,
C. F., and Chen, L. G., “Analysis and complexity reduction of multiple
reference frames motion estimation in H.264/AVC,” IEEE Transactions
on Circuits and Systems for Video Technology, Vol. 16, No. 4, pp. 507-522
(2006).

9. Information Technology—Coding of Audio-Visual Objects—Part 2:
Visual, ISO/IEC 14 496-2 (1999).

894 Journal of Marine Science and Technology, Vol. 18, No. 6 (2010)

10. Information Technology—Generic Coding of Moving Pictures and Asso-
ciated Audio Information: Video, ISO/IEC 13 818-2 and ITU-T Rec.H.
262 (1996).

11. Jain, A. K. and Dubes, R. C., Algorithms for Clustering Data, Prentice
Hall, NJ (1988).

12. Joch, A., Kossentini, F., Schwarz, H., Wiegand, T., and Sullivan, G. J.,
“Performance comparison of video coding standards using lagragian
coder control,” IEEE International Conference on Image Processing,
New York, pp. 501-504 (2002).

13. Joint Video Team Reference Software JM11.0 Aug. (2007) [Online].
Available: http://bs.hhi.de/~suehring/tml/download/.

14. Kim, T., “Side match and overlap match vector quantizers for images,”
IEEE Transactions on Image Processing, Vol. 1, No. 2, pp. 170-185 (1992).

15. Koga, T., Iinuma, K., Hirano, A., Iijima, Y., and Ishiguro, T., “Motion
compensated interframe coding for video conferencing,” Proceeding of
the National Telecommunications Conference, New Orleans, LA, pp.
C9.6.1-C9.6.5 (1981).

16. Lai, J. Z. C. and Liaw, Y.-C., “Fast searching algorithm for vector quan-
tization using projection and triangular inequality,” IEEE Transactions
on Image Processing, Vol. 13, No. 12, pp. 1554-1558 (2004).

17. Lai, J. Z. C., Liaw, Y.-C., and Liu, J., “Fast k-nearest-neighbor search
based on projection and triangular inequality,” Pattern Recognition, Vol.
40, pp. 351-359 (2007).

18. McNames, J., “A fast nearest-neighbor algorithm based on a principal
axis search tree,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 23, No. 9, pp. 964-976 (2001).

19. Murase, H. and Nayar, S. K., “Visual learning and recognition of 3D
objects from appearance,” International Journal of Computer Vision, Vol.

14, No. 1, pp. 5-24 (1995).
20. Tai, P.-L., Huang, S.-Y., Liu, C.-T., and Wang, J.-S., “Computation-aware

scheme for software-based block motion estimation,” IEEE Transactions
on Circuits and Systems for Video Technology, Vol. 13, No. 9, pp. 901-913
(2003).

21. Theodridis, S. and Koutroumbas, K., Pattern Recognition, second Ed.,
Academic Press, Salt Lake City, USA (2003).

22. Tsai, T.-H. and Pan, Y. N., “A novel 3-D hexagon search algorithm for fast
block motion estimation on H.264 video coding,” IEEE Transactions on
Circuits and Systems for Video Technology, Vol. 16, No. 12, pp. 1542-1549
(2006).

23. Video Coding for Low Bit Rate Communication, ITU-T Rec. H.263 (1998).
24. Wiegand, T., Sullivan, G. J., Bjntegaard, G., and Luthra, A., “Overview of

the H.264/AVC video coding standard,” IEEE Transactions on Circuits
and Systems for Video Technology, Vol. 13, No. 7, pp. 560-576 (2003).

25. Wu, D., Pan, F., Lim, K. P., Wu, S., Li, Z. G., Lin, X., Rahardja, S., and
Ko, C. C., “Fast intermode decision in H.264/AVC video coding,” IEEE
Transactions on Circuits and Systems for Video Technology, Vol. 15, No.
7, pp. 953-958 (2005).

26. Xu, X. and He, Y., “Improvements on fast motion estimation strategy for
H.264/AVC,” IEEE Transactions on Circuits and Systems for Video Tech-
nology, Vol. 18, No. 3, pp. 285-293 (2008).

27. Zhu, C., Lin, X., and Chau, L. P., “Hexagon-based search pattern for fast
block motion estimation,” IEEE Transactions on Circuits and Systems for
Video Technology, Vol. 12, No. 5, pp. 349-355 (2002).

28. Zhu, S. and Ma, K. K., “A new diamond search algorithm for fast block-
matching motion estimation,” IEEE Transactions on Image Processing,
Vol. 9, No. 2, pp. 287-290 (2000).

	FAST BLOCK MOTION ESTIMATION WITH EDGE ALIGNMENT ON H.264 VIDEO CODING
	Recommended Citation

	FAST BLOCK MOTION ESTIMATION WITH EDGE ALIGNMENT ON H.264 VIDEO CODING
	Acknowledgements

	tmp.1628202243.pdf.a8eVD

