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ABSTRACT 

In this paper, the penetration of a long bubble through a 
Newtonian fluid in a horizontal circular tube is studied by 
numerical simulation.  We simulate the evolution of the as-
ymptotic bubble profiles with an interface-tracking method by 
conservative level set method. 

The ratio of the asymptotic bubble width to the radius of the 
circular tube, i.e. λ, dominates not only the type of the flow 
patterns but also the location of the stagnation point.  Three 
flow patterns suggested by Taylor in front of the bubble, namely 
the complete bypass flow, the transient flow and the recircu-
lation flow are shown graphically.  They make a good agree-
ment with the study of Giavedoni and Hsu respectively.  The 
stagnation point moves downstream as λ increases.  The stag- 
nation point moves here downstream with an almost constant 
rate of λ while 0.72 ≦ λ ≦ 0.9. 

I. INTRODUCTION 

Many researchers have been involved in the study of the 
displacing of liquid expelled by gas.  A variety of practical 
applications have been developed such as gas-assisted injec-
tion molding [11], fluidized bed [23], and two-phase flow in 
micro tubes [4]. 

From the beginning of the early bubble studies, the shape of 
the bubble is very attractive to the researchers.  A shape profile 
equation, as the water penetrated the oil in a Hele-Shaw cell, 
was published by Saffman & Taylor (1958) [18].  They also 
defined the ratio λ as the fraction of the channel was occupied 
by the bubble.  The bubble profile agreed very well with their 
shape equation only when λ = 0.5. 

Later, a modified shape equation of the bubble front was 
proposed by Pitts (1980) [16] shown as Eq. (1).  It agreed very 
well with the bubble profile observed as λ = 0.54, 0.67, 0.77. 

 
π π

exp cos 1
2 2

x y

λ λ
    =   
   

 (1) 

where x, y are the Cartesian coordinates of the bubble profile. 
By comparing their observing results with the work of Pitts, 

a formula for the axisymmetric case was proposed by Hsu [9].  
They observed the bubble profile passing through the silicon 
oil in a circular tube experimentally by CCD camera and some 
image process procedures such as binarization and thinning etc. 

Three flow patterns were suggested by Taylor [21]: two 
kinds of recirculating flows with a low capillary number and 
bypass flow with a high capillary number.  Huzyak and Koel-
ling [10] observed the bubble profile in a circular tube experi- 
mentally by CCD camera.  Gauri and Koelling [5] measured 
the flow field near the bubble tip using the Particle Tracking 
Velocimetry (PTV) technique and presented the two typical 
flow patterns suggested by Taylor [21].  Zhong et al. [23] 
observed the flow patterns and transitions in a rectangular 
spout-fluid bed by a high-resolution digital CCD camera. 

Some researchers simulated the formation of bubbles by 
numerical methods.  The volume of fraction method (VOF) [7] 
and the level set method (LS) [19] are two most popular in-
terface tracking methods used in multi-phase problem simu-
lations. 

Tomiyama [22] simulated a two-dimensional single bubble 
in a stagnant liquid and in a linear shear flow, which were con- 
ducted in the present study using the volume of fluid method. 

Osher and Sethian [15] devised the level set algorithms 
based on Hamilton-Jacobi to tracking moving interfaces of the 
multi-phase flow.  It is very powerful to deal with the shape 
and the normal.  In many implementations, it was even very 
excellent to deal with the shape and normal of the geometry.  
However, the level set method was found to be a very large 
consumption of computer resources.  Adalsteinsson [1] pre-
sented a fast level set method for propagating interfaces by 
using only points close to the curve at every time step to im-
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prove the computation efficiency of the standard level set 
method.  Nagrath et al. [13] simulated the incompressible 
bubble dynamics with a stabilized finite element level set 
method. 

The level set technique is powerful in the automatic han-
dling of topological changes, but it is poor at the mass con-
servation of the fluid [12].  The volume of fluid method 
conserves the mass exactly, but it is limited by its complexity 
of the reconstruction procedure [2].  Many researchers made 
much efforts to improve these disadvantages, e.g. Sussman et 
al. [20] showed a method by combining the advantages of the 
volume-of-fluid method with the level set method.  Olsson and 
Kreiss [14] described the conservative level set method, which 
combines the merits of the volume-of-fluid method with the 
level set method.  Bonometti and Magnaudet [2] presented an 
interface-capturing method borrowing some features from the 
volume of fluid method as well as from the level set technique. 

Some researchers also simulated the flow field solving the 
Stokes equations by numerical methods.  Giavedoni and Saita 
[9] simulated the interfacial shape and flow in front of a long 
bubble by the finite element method. 

Polynkin et al. [17] simulated the flow patterns ahead of the 
gas bubble by using the finite element method.  Hsu et al. [8] 
showed ranges of the three flow patterns suggested by Taylor 
[21] in 1961 by using a finite difference method (FDM) with 
successive over-relaxation (SOR). 

In this paper, we aim to study the penetration of a long 
bubble through a Newtonian fluid in a circular tube by nu-
merical simulation.  The Navier-Stokes equations are used 
neglecting the inertial forces effects.  The type of the flow 
patterns and the location of the stagnation point are solved by 
the finite difference method. 

In stead of using an empirical deduced bubble profile for-
mula in [8], our interface information is generated by an in-
terface-tracking method.  The evolution of the interface is 
performed by the conservative level set method [14].  Unlike 
other researchers focus on the study of smaller bubbles (λ ≦ 
0.8), we focus on the bigger bubbles with the range of 0.7 ≦ 
λ ≦ 0.9 in a lower speed 0 ≦ Re ≦ 400. 

II. MODEL FORMULATION 

1. Model Representation 

A circular tube with radius R, is filled with viscous fluid.  
Air is injected into the tube from the entrance located on the 
left end of the tube.  A long bubble is formed as the air steadily 
expels the viscous fluid.  The model schematic drawing is 

shown in Fig. 1.  As an axial-symmetrical problem, FC  is the 

symmetrical axis of the circular tube.  DE  is the bubble front 

profile, i.e. the interface of the air and fluid, and EFR =  is 

the radius of the bubble.  FC 6 ,R=  FD 3 ,R=  DC 3R=  and 

Hagen–Poiseuille law are obeyed in the far downstream BC  

and the far upstream AE  [3].  The bubble elongates steadily  

A

E

F
D Z

C

B

RrGas

Tube wall

Viscous fluid

 
Fig. 1. The schematic of bubble and coordinates. 

 
 

to the right with a constant velocity U, and the origin locates 
on the tip of the bubble front, i.e. point D.  As a dynamic co-
ordinates system, the coordinates system also moves steadily 
with the same velocity U to the right.  The ratio λ is defined as 
the ratio of the asymptotic bubble width to the radius of the 

circular tube, i.e. 
EF

BC
λ = . 

2. Governing Equations 

The axisymmetric equations of momentum are expressed as: 
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  (2) 

The boundary conditions are: 
 

1. Both the gas and liquid fit the continuity equation and are 
incompressible fluids with finite velocity. 

 
( )1

0r z
ru u

r r z

∂ ∂
+ =

∂ ∂
 (3) 

 where u
�

 is the velocity of the fluid, and ur and uz are the 
velocity components along r and z. 

2. No-slip condition is assumed on the wall of the tube. 

 , 3 3 , 0r R R z R u= − ≤ ≤ =
�

 (4) 

3. Neglect the effect of gravity. 
4. A fully developed flow assumption is made at the far up-

stream [3]. 

 0 , 3 , 0, 0z
r

u
r R z R v

z

∂
< < = − = =

∂
 (5) 

5. Similarly, a fully developed flow assumption is made at the 
far downstream. 
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 0 , 3 , 0, 0z
r

u
r R z R v

z

∂
< < = = =

∂
 (6) 

6. The axial symmetry condition is considered on the sym-
metrical axis. 

 0, 0, 3 3 , 0, 0z
r

u
r R z R v

rθ
∂∂ = = − ≤ ≤ = =

∂ ∂
 (7) 

7. The evolution of the interface is expressed in the conser-
vation form of the level set function 

 ( ) 0
d

u
dt

ϕ ϕ+ ∇ ⋅ =�

 (8) 

where ( , )z ru u u=
�

 is the velocity vector.  The function φ is 
defined as φ = 0 for the gas phase, φ = 1 for the liquid phase, 
and φ = 0.5 for the interface between liquid and gas. 

8. Initially, the tube is completely filled with the liquid. 

 0, 0 , 3 3 , 1t r R R z R ψ= ≤ ≤ − ≤ ≤ =  (9) 

9. The gas is inducted from the entrance. 

 0, 0 , 3 , 0.t r EF z R ψ> ≤ ≤ = − =  (10) 

3. Numerical Scheme 

In this study, the finite difference method is used to discre-
tize the differntial equations shown as (2).  The terms, which 
contain the velocity components ur and uz, are replaced with ψ 
and ω by substituting the stream function ψ and the vorticity 
function ω in (2). 

The stream function ψ is defined as 

 
1 1

,r zu u
r z r r

ψ ψ∂ ∂= − =
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 (11) 

And the vorticity ω is defined as: 

 
2 2

2 2

1 1
V

r r rr z

ψ ψ ψω
 ∂ ∂ ∂= ∇× = − + − ∂∂ ∂ 

�

 (12) 

A uniform grid with grid points (zi, rj) = 0 0( , )z i z r j r+ +� �  
is applied to the discretized system.  After repeated testing, the 
most appropriate  resolution is 100 × 600 grid points. 

The finite difference formulas are obtained from the terms 
discretized by FDM with SOR method mentioned above.  The 
differential terms of the stream function and the vorticity 
function are discretized by a second order central difference 
method.  The velocity of grids is calculated from the stream 
function by a forward difference method.  The discretized sys- 
tem could be shown as [8]: 

( )1 1 1
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where α is the over-relaxation factor.  k is the iterative index.  
i and j are the indices along z-direction and r-direction re-
spectively.  z� and r�  are the grid sizes along z-direction and 
r-direction respectively. 

Equations (13) and (14) could be solved numerically.  The 
value of the over-relaxation factor α is 1.5 for Re = 0.  The 
value of α is adjusted from 0.5 to 0.025 as Re increases from 
10 to 400.  The values of ω and ψ are calculated iteratively 
with an over-relaxation factor α until the converge criterion 
shown as (15) is reached for some specified ratio εψ 

 
+1

, ,

,

k k
i j i j

k
i j

ψ
ψ ψ

ε
ψ

−
≤  (15) 

III. INTERFACE TRACKING SCHEME 

The evolution of the interface is expressed in the conser-
vation form of the level set function shown in (8).  The evo-
lution of the interface is performed by the conservative level 
set method [14]. 

As the uniform grid (zi, rj) mentioned previously, the grid 
function is defined as φi, j = φ(zi, rj).  The value of φi, j is ranged 
from 0 to 1: φi, j = 0 for the gas phase, φi, j = 1 for the liquid 
phase, and φi, j = 0.5 for the interface between liquid and gas. 

The interface is adverted by a given velocity field u
�

 = 
(ur, uz) obtained from (11) by a first order forward difference 
method.  The discretized equation of (8) with a uniform grid 
(zi, rj) can be written as 

 
1

, ,
1 1 1 1

, , , ,
2 2 2 2

1 1
k k
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F F G G

t z r

ϕ ϕ+

+ − + −

   −
= − − − −      ∆ ∆   �

 

  (16) 

where ∆t is the time step, and , ( , )k
i j i jz rϕ ϕ=  at the time step 

k. 
The flux on the grid (zi, rj) is represented as: 

 ( )1 , 1, 1
, ,

2 2

0.5 i j i j
i j i j

F uϕ ϕ ++ +
= +  (17) 

 ( )1 , , 1 1
, ,

2 2

0.5 i j i j
i j i j

G vϕ ϕ ++ +
= +  (18) 

The velocity on the grid (zi, rj) is represented as 
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The normals of the interface can be obtained as 
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Fig. 2. The comparison of bubble contours by experiment observation, 

numerical simulation and Pitts equation (λ = 0.8). 

 
 
The values of φ run smoothly from zero to one on the 

neighboring interface.  The values of φi, j may fill up with 
either 0 or 1 except the neighboring interface, which is treated 
as a transition layer or a narrow-band in finite terms to assure 
the high efficiency performance. 

An adaptive strategy is applied to determine the values of 
time step ∆t in order to avoid the value of φi, j being less than 
0 or greater than 1.  The values of 1

,
2

,
i j

t F
+

∆ ⋅  1
,

2

,
i j

t F
−

∆ ⋅  

1
,

2

,
i j

t G
+

∆ ⋅  and 1
,

2
i j

t G
+

∆ ⋅  are controlled under the range be-

tween 0.2 and 0.4 by some numerical tests.  The values of φ 
are calculated iteratively till the steady-state criterion shown in 
(21) is reached 

 +1k k tϕϕ ϕ ε− ≤ ⋅ ∆∫  (21) 

for some specified tolerance εφ. 

IV. RESULTS AND DISCUSSION 

The shape profile equation proposed by Saffman & Taylor  
agrees very well with the bubble profile obtained by experi-
mental observation only when λ = 0.5 [18].  The modified 
shape equation proposed by Pitts  also agrees with only when 
λ = 0.54, 0.67, 0.77 [16]. 

The comparison of bubble contours by experiment obser-
vation, numerical simulation and Pitts equation as λ = 0.8 is 
shown in Fig. 2.  The contour plotted in solid line is the bubble 
profile observed experimently from [9].  The contour plotted 
in dashed line is the bubble profile obtained by numerical 
simulation (level set method).  The contour plotted in dots is 
the profile generated by Pitts formula. 

The error of the inspected contour is defined as 

 
exp

exp

Error
λ λ

λ

−
= ∫

∫
 (22) 
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Fig. 3. The comparison of bubble contours by experiment observation, 

numerical simulation and Pitts equation (λ = 0.9). 

 
 

where λ is the ratio of the inspected profile diameter to the 
diameter of the tube.  λexp is the ratio of the experimental pro-
file diameter to the diameter of the tube. 

The contour of Pitts profile is very close to the experimental 
profile at the rear of the asymptotic bubble profile.  But it 
overshoots at the front of the asymptotic bubble profile.  The 
radius of the numerical simulation contour is smaller than that 
of the experimental profile at the rear of the asymptotic bubble 
profile.  And it is very close to the experimental profile at the 
front of the asymptotic bubble profile.  The difference of both 
the numerical simulation profile and Pitts profile is about 3%. 

Figure 3 shows that the differences of the numerical simu-
lation profile and Pitts profile are 2.5% and 4.6% as λ = 08, 0.9, 
respectively.  The Pitts bubble profile equation is not very 
accurate as λ > 0.8.  It meets the result of the Pitts’ study [16].  
However, the numerical simulation contour maintains a stable 
level even as λ = 0.9. 

Since Taylor suggested three flow patterns in front of the 
bubble in 1961 [21], many researchers have found similar re- 
sults by experiement and numerical simulation.  In 1964, Cox 
[3] verified the existence of the two flow patterns in [21], and 
confirmed that the velocity distribution in the viscous fluid 
was simply the Poiseuille flow at a distance more than 1.5 
times the inner diameter of the tube in front of the bubble tip.  
In 1997, Giavedoni and Saita [6] reported that the stagnation 
point is located on the center-line between the upstream and 
the bubble tip in the transient flow pattern.  Polynkin et al. [17] 
presented the flow pattern ahead of the gas bubble and the 
transition criterion between by-pass and recirculating flow 
using the finite element method in 2005. 

Hsu et al. [8] showed the ranges of the three flow patterns 
where the complete bypass flow appears as λ ≦ 0.7071, the 
transient flow pattern appears as 0.7071 ≦ λ ≦ 0.715, and the 
recirculation flow pattern occurs as λ ≧ 0.715 by the finite 
difference method in 2005. 

Three flow patterns with various λ value are shown in Fig. 4.  
The flow patterns are determined by the distribution of stream- 
line and vorticity.  The stream lines closed to the length of z = 
3R are all parallel to each other.  It fits the characteristic of  
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Fig. 4. The contours of the bubble front and the distribution of stream-

line and vorticity for λ = 0.7, 0.71, 0.72, 0.8, 0.9. 

 

 
Poiseuille flow [3]. 

The complete bypass flow appears as λ = 0.7.  And the 
transient flow pattern, which stagnation point is located on the 
center-line between the upstream and the bubble tip, appears 
as λ = 0.71.  It is consistents with the study of Giavedoni and 
Saita [9].  Figure 4 also indicates that the recirculation flow 
pattern, which  stagnation point is located on the bubble con- 
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Fig. 5. The relations of the location of the stagnation, λ and Re in the 

recirculation flow region. 

 

 
tour, appears as λ ≧ 0.72.  It is consistent with the result of 
Hsu et al. [8]. 

The relation of the location of the stagnation point zsp and λ 
with respect to different Reynolds number is shown in Fig. 5.  
The value of zsp decreases when the value of λ or the Reynolds 
number increases.  The stagnation point moves downstream as 
λ increases linearly in the range of 0.72 ≦ λ ≦ 0.9 with fixed 
Reynolds number.  The stagnation point also moves down-
stream as Reynolds number increases linearly in the range of 
0 ≦ Re ≦ 400 with fixed λ.  As Reynolds number increasing 
from 0 to 400, the difference of zsp is 0.02 and 0.05 with fixed 
λ = 0.72 and λ = 0.9, respectively. 

The curve with “+” denoting the location of the stagnation 
point zsp as Re = 0, and the curve with “*” denoting that for 
Re = 400, are borrowed from the study of Hsu et al. [8].  As 
Reynolds number increasing from 0 to 400, the difference of 
zsp is 0.03 and 0.06 with fixed λ = 0.72 and λ = 0.8, respec-
tively. 

The result is plotted in a slender band with a more gentle 
slope compared to the result of [8] for the differences in the 
bubble contours generated by Pitts and the Level Set Method.  
Even the difference causing by the different bubble profile, yet 
the same tendency keeps in Fig. 5. 

V. CONCLUSION 

In this paper, we have studied the penetration of a long 
bubble through a Newtonian fluid in a horizontal circular tube 
by numerical simulation.  We simulated the evolution of the 
asymptotic bubble profiles with the interface-tracking method 
by the conservative level set method.  The numerical simula-
tion contour fits the experimental profile very well and stably 
even as λ = 0.9. 

The type of the flow patterns was correlative to the ratio 
of asymptotic bubble width to the radius of the circular tube.  

Three flow patterns suggested by Taylor in front of the bubble, 
namely the complete bypass flow, the transient flow and the 
recirculation flow are shown graphically.  They all make a good 
agreement with the study of Giavedoni  and Hsu, respectively. 

The location of the stagnation point zsp is obviously also 
correlated with λ.  The stagnation point moves downstream as 
λ increases.  A linear character between zsp and λ is revealed as 
0.72 ≦ λ ≦ 0.9.  The stagnation point moves downstream 
with an almost constant rate of λ in the range of 0.72 ≦ λ ≦ 
0.9 and 0 ≦ Re ≦ 400. 
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