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ABSTRACT 

Marine water quality models are complicated because of 
their multi-parameter and multi-response characteristics.  One 
major difficulty with water quality models is the accurate 
estimation of model parameters.  In this paper, a new method 
based on a data-driven model (DDM) is developed to retrieve 
the value of model parameters.  All training data are calculated 
by numerical water quality models from results of multi- 
parameter matching design cases so the physical properties are 
not disturbed.  The concept is to find the relationship between 
model parameters and the pollution concentration values of 
interior stations.  Field data are imported into the relationship 
for inversing optimal parameters or near-optimal parameters, 
ultimately an optimal or near-optimal prediction method is 
applied to validate the long-term stability of inversion results.  
Case tests were carried out in the Bohai Sea, China.  Chemical 
oxygen demand (COD), dissolved inorganic nitrogen (DIN), 
chlorophyll (Chl) and their sensitive parameters were consid-
ered for validating the present method.  The optimal solution 
determination method is applied for DIN and Chl owing to 
existence of the same sensitive parameters.  Case studies show 
that the present method can make a more satisfactory estima-
tion for this practical problem. 

I. INTRODUCTION 

Substantial uncertainties exist in marine ecosystems [21], 
which mainly have originated from a scarcity of understanding 
of biochemical processes, the values of pollution source, pol-
lution background field, field data and model parameters [4, 
19]. 

One of the most significant difficulties is the estimation of 
model parameters for model calibration.  Since Shastry et al. 
[17] estimated the parameter of the BOD-DO model, many 
estimation methods have been developed [1, 2, 11, 13, 24-26].  
Trial and error [5] is a widely used technique for model cali-
bration [16].  How close the model comes to real conditions 
depends on the abundance of field data.  Data assimilation 
methods have been employed for model calibration with the 
abundance of satellite data, with the adjoint technique being 
the most widely used one.  Lawson et al. [9] introduced the 
adjoint method for data assimilation in a simple predator-prey 
model, the Lagrange operator method is employed to construct 
the adjoint equation, model parameter and initial field condi-
tions were estimated successfully.  Subsequently Lawson et al. 
[8] used this method into a complex marine ecosystem model 
that includes five state variables.  Performing optimizations 
with synthetically produced data, they investigated necessary 
sampling rates to recover the model’s parameters values.  A 
large effort by Vallino [20] tested the ability of various data 
assimilation methods to incorporate mesocosm experiment 
data into a marine ecosystem model and indicated numerical 
instability of adjoint approach.  A NPZD model with its ad-
joint equations was applied in the Bohai Sea and the Yellow 
Sea by Xu et al. [22, 23].  Although optimal estimation for 
parameters, initial and boundary conditions can be obtained by 
this technique, both water quality model equations and adjoint 
equations need to be calculated.  Adjoint equations are as com- 
plicated as water quality model equations, so much time is 
needed for calibration.  When an adjoint technique is chosen 
for practical engineering, many uncertainties originating from 
the absence of field data might exist in the calibrated model 
because of the investment limitation.  The application of a data 
assimilation method is also limited [12]. 

This paper aims to develop a more practical technique for 
optimal estimation of model parameters.  In the technique, 
optimal parameters are estimated by a data-driven model [18] 
based on artificial neural network.  The Osaka Daigaku Estu-
ary Model [14] is employed to simulate the marine water quality 
in interested area. 

The structure of this paper is as follows.  In Section II, 
the basic idea and theory of the data-driven model, Back- 
Propagation Neural Network (BPNN) and water quality model 
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(ODEM) are introduced.  The detailed steps about how to in- 
verse model parameters are described in Section III.  In Sec-
tion IV, the method in Section III is verified with an entitative 
ocean.  In Section V, the conclusions are made. 

II. NUMERICAL MODEL 

1. Data-Driven Model 

So-called data-driven models are different from knowledge- 
driven models (physically based model) because they are 
based on limited knowledge of the modeling process and rely 
purely on the data describing input and output characteristics.  
They make abstractions and generalizations of the process, 
and so often play a complementary role to physically based 
model.  Data-driven models can use results from artificial 
neural networks (ANN), expert systems, fuzzy logic concepts, 
rule-induction and machine learning systems.  The fundamen- 
tal expression is as follows: 

 1 1( , ..., , ... ) ( , ..., , ... )i m i ny y y F x x x=  (1) 

(x1, …, xi, …xn) and (y1, …, yi, …ym) are the input and output 
variables respectively, F is the objective function that needs to 
be dug by the model.  In this paper, the results of ANN are 
used for the fitting of F. 

2. Back-Propagation Neural Network 

The BPNN proposed by Rumelhart et al. [15] is the most 
commonly used among the artificial neural networks.  The 
BPNN uses the gradient steepest descent method to determine 
the weights of connective neurons.  The key point is the error 
back propagation technique.  In the learning process of the 
BPNN, the interconnection weights are adjusted from back 
layers to front layers to minimize the output error.  The merit 
of the BPNN is that it can approach any nonlinear continuous 
functions after being trained [7].  Some of the numerical de-
tails of the BPNN are described in the following section. 

1) Data Normalization 

All of the input and output layers data are normalized to a 
range from 0 to 1 by function (2): 

 min

max min

i
i

Y Y
Y

Y Y

−=
−

 (2) 

iY is the value of data after normalization, Yi is the value of 
data before normalization, Ymax is the maximum of all data, 
and Ymin is the minimum of all data. 

To consider the nonlinearity, the sigmoid transfer function 
is used: 
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θ is the threshold value of hidden neurons. 

2) Learning Rate η and Appended Momentum 

The efficiency and speed of convergence of the BPNN 
learning algorithm are affected by the learning rate η and 
appended momentum (L&A).  L&A are control parameters of 
BPNN training algorithms, which control the step size when 
weights are iteratively adjusted.  An L&A that is too low 
makes the network learn at a very slow pace.  An L&A that is 
too high makes the weights and objective function diverge, 
therefore, learning is nil.  The value of L&A depends on 
whether the time series change too much.  If they do, the value 
of L&A should be increased.  L&A range from 0 to 1.  The 
learning rate is set to be 0.05 and the appended momentum is 
0.5 in present research after testing. 

3) Error Function 

The root mean squared error (RMSE) is used to evaluate the 
accuracy of prediction and is defined as: 
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n is the number of data, Yi is the value of the field data, and iY�  
is the value predicted by the neural network. 

4) Structure of the Neural Network 

The structure of the neural network, including the number 
of hidden layers and neurons, is determined by the complexity 
of the problem to be solved.  Although the increase in the 
number of hidden layers and neurons can reflect the com-
plexity of the problem and decrease the number of iteration 
steps, it is not helpful in increasing precision and maybe lead 
to over-fitness.  Therefore, throughout the present study, one 
hidden layer is chosen. 

The number of neurons for the hidden layer can be calcu-
lated by: 

 
2

NNI NNO
NNH

+=  (5) 

Where NNH is the number of neurons in the hidden layer, 
NNI is the number of neurons in the input layer, and NNO is 
the number of neurons in the output layer.  Detailed informa-
tion can be found in Li et al. [10]. 

In this paper, NNI is the number of output data by hours in 
the water quality model and NNO is the number of sensitive 
parameters. 

3. Water Quality Model 

A water quality model is fundamental because it attempts to 
explain underlying physical processes.  There are many water 
quality models that can retrieve entitative ocean conditions  
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Fig. 1. Schematic diagram of matter circulation in the ODEM. 

 

 
with great precision.  ODEM developed by Nakatuji is one of 
them.  ODEM has been used not only for water quality mod-
eling but for coastal waters studies. 

Figure 1 shows the schematic diagram of matter circulation 
in ODEM.  The main processes in the model are that phyto-
plankton release nonliving organics (organic nitrogen, organic 
phosphorus, COD) and dissolved oxygen by evacuation, death 
and production.  Parts of nonliving organics sink into sediment 
with detritus, and others are decomposed into inorganic nu-
trients combined with dissolved oxygen.  The phytoplankton 
growth is controlled by inorganic nutrients, temperature and 
solar radiation. 

III. OPTIMAL ESTIMATON FOR MODEL 
PARAMETERS 

1. Optimal Estimation Method 

Tens or even hundreds integral computations have been re- 
peated in the process of trial and error for the estimation of 
model parameters.  The results, however, are only approximate.  
In this paper, a new technique was developed that combines a 
data-driven model with a water quality model automatically.  
In the technique, the water quality model repeats a series of 
designed computations.  Then, a data set that contains the 
corresponding relationship between model parameters’ values 
[(x1, …, xi, …xn) in (1)] and the values of interior stations for 
pollution (state variables) [(y1, …, yi, …ym) in (1)] are stored.  
The task of the data-driven model is to find the relationship 
[F in (1)] between (x1, …, xi, …xn) and (y1, …, yi, …ym).  After 
the field data are transported into the model, optimal model 
parameter values will be inversed.  The detailed technique is 
as follows: 

 
Step 1: Choice of control variables 

There are many parameters in the water quality model and 
they act with each other.  If all of them are included, the com- 
putation cost is excessive and uncertainty increases [3], there-
fore sensitive model parameters have been analyzed that aim 
to select control variables [6]. 

Designed
Cases with

Multi
Control

Variables
Combination

A   

Simulated
 Results of
Designed

Cases
B

Water Quality Model (ODEM)

ORMP
Simulated results

of ORMP 

Data-Driven Model

Field data of
gauge station 

1 2

33

4 5

67

8
Compare

Water Quality Simulation Module for Regional Water Quality Model 

Optimal Estimation Module with Data-Driven Model 

Note: ORMP: Optimal Resolution of Model Parameter  
Fig. 2. Diagram of optimal estimation of model parameter using data- 

driven model combined with water quality model. 

 
 

Step 2: Cases computation by the water quality model 
In water quality numerical models, the governing equations 

have to be discretized into computation domain.  In this paper, 
initial guess values for all the control variables are assumed 
and their corresponding ranges are set.  If the number of con-
trol variables is m, and n values are taken for one control 

variable, there are as many as 1 m
n ii m

C n
=
 ∏ =   designed cases.  

All the designed cases are computed by ODEM one by one.  
The results of pollution concentration are output and stored 
for the data-driven model. 
 
Step 3: Model parameters’ estimation by the data-driven model 

The results of pollution concentrations at interior stations 
and their corresponding parameters’ values are input into data- 
driven model.  After training, the relationship of interior stations 
and model parameters is generalized. 

Input the field data of interior stations into the above rela-
tionship and obtain the optimal solution. 

 
Step 4: Verification of optimal solution 

Input the optimal solution into the water quality model and 
repeat the computation.  The RMSE between measurement 
and results of numerical computation is calculated. 

In Fig. 2, the process of model parameter estimation is de-
scribed.  The sequence is one through eight.  In the entire proc- 
ess, there are two modules—water quality and optimal esti-
mation.  The computation of the designed cases and the final 
verification are finished by the water quality module.  The 
optimal estimation module is responsible for the analysis of 
water quality model results and generalization of the rela-
tionship between model parameters and interior stations.  A 
and B comprise the database of the two modules. 

2. The Optimal Solution Determination Method 

The marine water quality model has the characteristics of 
being multi-parameter and multi-response.  Multi-state vari-
ables may have common sensitive parameters, so the inverse  
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Fig. 3. The location of computation domain. 

 
 

problem has a characteristic of being multi-solutions, which 
are near-optimal solutions for the water quality model.  Equa-
tion (6) is used to obtain a model optimal solution based on 
multi-near-optimal solutions, in which state variables practical 
engineering attention extent and sensitivity extent for pa-
rameters are applied for calculating weight factor q. 

 1 1
1

, ..., , ..., , ..., , ...,
m

o o o
j n i i ji ni

i

v v v q v v v
=

   = ×    ∑  (6) 

In (6), n is the number of sensitive parameters, m is the num- 

ber of state variables, o
jv  is the optimal solution of sensitive 

parameter j and vji is the i near-optimal solution of the sensitive 
parameter j. 

The optimal solution solving through optimization theory 
cannot be the real solution of the inversion problem, so a near- 
optimal and optimal prediction method is applied to verify the 
long-term stability of solutions. 

IV. CASE STUDY 

Case tests were carried out in the Bohai Sea, China, which 
is a semi-closed sea with a mean depth of 18.7 m and an area 
of more than 80000 km2.  The sea is divided into four parts: 
Laizhou Bay, Bohai Bay, Liaodong Bay and the central part.  
Its bottom is very flat with average slope is 28”.  Figure 3 
shows the location of computation domain. 

In the numerical simulation, the area was discretized as 4 
km × 4 km horizontally and 17 levels in depth.  To save com- 
putational time and improve accuracy, the level thickness 
varied non-uniformly in water depth.  The level thickness was  

Table 1.  State variables and sensitive parameters. 

State 
variable 

Sensitive parameters Unit 

COD 
Non-organism settlement velocity (NOSV) 
Decomposed rate of COD (DRCD) 

1/d 
1/d 

DIN 

Fastest growth rate of phytoplankton 
(VMMAX) 

Most suitable growth temperature of  
phytoplankton (TEMPS) 

Decomposed rate of DIN (DRDN) 

1/d 
 

°C 
 

1/d 

Chl 

Fastest growth rate of phytoplankton 
(VMMAX) 

Most suitable growth temperature of  
phytoplankton (TEMPS) 

1/d 

 
°C 

 
 

Table 2.  Values of sensitive parameters. 

State 
variable 

Sensitive 
parameter 

Values 

NOSV 0.18 0.3 0.42 
COD 

DRCD 0.012 0.02 0.028 
VMMAX 1.44 2.5 3.36 
TEMPS 15 25 35 

DIN 
Chl 

DRDN 0.012 0.022 0.028 
 
 

4 m × 1, 2 m × 4, 3 m × 5, 4 m × 3, 5 m × 2, 6 m × 2 from top to 
bottom respectively.  The model time step is 30s.  The surface 
height along the open boundary is given by interpolating re-
sults between Dachangshan Dao (39°16'N, 122°35′E) and 
Jiming Dao (37°27′N, 122°35′E).  Five main tidal constituents 
M2, S2, K1, O1, and N2 are input in two open boundary control 
stations.  The gauge station (40°24'31′′N, 121°19′12′′E) lo-
cates in the Liaodong Bay. 

1. Choices of Control Variable 

In this paper, COD, DIN and Chl as state variables are 
considered to verify the present optimal estimation method.  
Coefficient of variation is computed by the Monte Carlo method 
[6] to validate the sensitivity of model parameters.  State vari- 
ables and its sensitive parameters are listed in Table 1. 

In Table 1, DIN and Chl have the same two sensitive pa-
rameters, so optimal solution determination method is used 
for VMMAX and TEMPS.  Control variable corresponding 
ranges are set among initial guess values in Table 2. 

In Table 2, the values of control variables are listed.  For 
each control variable, 3 values are taken in its range, 9 de-
signed cases are obtained for COD and 27 designed cases for 
DIN and Chl. 

2. Optimal Estimation 

Nine or 27 cases of pollution concentration data are ac-
quired by 9 or 27 times model computation of 80 hours.  After 
inputting the 9 or 27 COD, Chl and DIN data of 80 hours and  
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relative sensitive parameters data in Table 2 into the data- 
driven model, the relationship is generalized.  Figure 4 shows 
the network structure for the data-driven model, and the 
number of neurons in the three layers is shown in Table 3. 

In this paper, the so-called “twin experiment” method [3] is 
used to verify the efficiency of optimal estimation method. 

The parameters in Table 4 are as real values and were 
input into ODEM for the pollution concentration data as 
pseudo-field data.  The optimal model parameters in Table 5 
are inversed by inputting the pseudo-field data into the above 
relationship. 

The optimal and near-optimal solutions are listed in Table 
5.  Because VMMAX and TEMPS are common sensitive pa- 
rameters of DIN and Chl, there are two near-optimal solutions.  
Their optimal solution (OS) can be obtained by Eq. (6). 

3. Verification of Optimal Solution 

Pseudo-field data in the validation part are transported into 
the relationship in step 3 for model parameters and used to 
verify the optimal solution as step 4.  Pseudo-field data in the 
forecasted part are used to validate the long-term stability of 
the optimal solution for water quality model. 

Table 3.  The number of neurons. 

Neurons’ number 
Network 

Input layer Hidden layer Output layer 

COD 80 41 2 
Chl 80 41 2 
DIN 80 42 3 

 
 

Table 4.  Design of twin experiment. 

State variable Sensitive parameter 

NOSV DRCD 
COD 

0.2 0.015 
VMMAX TEMPS DRDN DIN 

Chl 2.4 26 0.02 
 
 

Table 5. Optimal and near-optimal solution of control vari- 
ables. 

State variable Sensitive parameter 

NOSV DRCD 
COD 

0.1881 0.018 
 VMMAX TEMPS DRDN 

DIN 2.533114 26.56910 0.02002 
Chl 2.537788 26.93573  
OS 2.535451 26.752415 0.02002 
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Fig. 5. The validation and forecasted results of COD optimal solution. 

 
 
COD and its two sensitive parameters are verified in Fig. 5, 

the validation and forecasted data are closed to field data and 
the RMSE is 0.000625.  Figure 6 is the corresponding scatter 
plot of Fig. 5.  The correlation coefficient computed by (7)-(9) 
is 0.9999 in Fig. 6. 

 
( )( )

( ) ( )22

o o p p

o o p p

CC
η η η η

η η η η

− −
=

− −

∑

∑ ∑
 (7) 

 o
o n

η
η = ∑  (8) 



776 Journal of Marine Science and Technology, Vol. 18, No. 5 (2010) 

 

0 1 2 3 4 5 6 7 8 9 10 11 12
Simulated data

0

1

2

3

4

5

6

7

8

9

10

11

12

Fi
el

d 
da

ta

CC = 0.9999

 
Fig. 6. The validation and forecasted correlation coefficient results of 

COD optimal solution. 
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Fig. 7. The validation and forecasted results of DIN optimal parameter. 
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Fig. 8. The validation and forecasted correlation coefficient results of 

DIN optimal parameter (simulated data 1). 
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Fig. 9. The validation and forecasted correlation coefficient results of 

DIN optimal parameter (simulated data 2). 
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Fig. 10. The validation and forecasted results of Chl optimal parameter. 

 
 

 p
p n

η
η = ∑  (9) 

Where CC is the correlation coefficient, ηo is field data, ηp 
is simulated data, and n is the number of data.  The over bar 
indicates the mean value. 

Two near-optimal solutions of VMMAX and TEMPS are 
imported into ODEM for verification of DIN and Chl, near- 
optimal solution inversed by Chl are computed for simulated 
data 1 and DIN for simulated data 2.  Therefore for DIN, the 
precision of simulated data 2 is superior to simulated data 1 in 
Figs. 7-9, but the precision of simulated data 2 is same as 
simulated data 1 for Chl in Figs. 10-12.  This is due to pa-
rameter sensitivity of VMMAX and TEMPS for DIN being 
higher than for Chl. 

The OS of VMMAX and TEMPS obtained by (6) is vali-
dated in Figs. 13-16, the simulated accuracy indicates the 
present optimal estimation method can inverse realistic model  
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Fig. 11. The validation and forecasted correlation coefficient results of 

Chl optimal parameter (simulated data 1). 
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Fig. 12. The validation and forecasted correlation coefficient results of 

Chl optimal parameter (simulated data 2). 
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Fig. 13. The validation and forecasted results of DIN optimal solution. 
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Fig. 14. The validation and forecasted correlation coefficient results of 

DIN optimal solution. 
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Fig. 15. The validation and forecasted results of Chl optimal solution. 
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Fig. 16. The validation and forecasted correlation coefficient results of 

Chl optimal solution. 
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Table 6.  Error measures. 

Fig. 7 Fig. 10 
Error measure Fig. 5 

S1 S2 S1 S2 
Fig. 13 Fig. 15 

RMSE 0.000625 0.059836 0.050869 0.011202 0.009514 0.05534 0.010358 
CC 0.9999 0.9983 0.9988 0.9999 0.9999 0.9986 0.9999 

 
 

parameters.  The correlation coefficient for DIN is 0.9986 in 
Fig. 14 lies between 0.9983 in Fig. 8 and 0.9988 in Fig. 9, be- 
cause of comprehensive consideration for every near-optimal 
solution in (6). 

The RMSE and CC of Figs. 5, 7, 10, 13, and 15 are shown 
in the Table 6, S1 and S2 stand for the errors of simulation data 
1 and simulation data 2 respectively. 

Compared with the adjoint method, the present method 
has two superiorities.  One is simplicity.  There is no need to 
deduce and solve complicated adjoint equations.  The data- 
driven model based on BPNN is easy to develop.  The other is 
its flexibility.  In the adjoint method, the different adjoint 
equations need to be deduced according to different numerical 
models.  If the basic equations change, the adjoint equations 
need to alter accordingly.  In present method, the data-driven 
model can be kept unchanged when different water quality 
models are used.  The adjoint technique has to repeat the com- 
putation for both water quality model equations and adjoint 
equations.  Even with good initial guesses, more time is con-
sumed compared with the present method. 

V. CONCLUSION 

In this paper, a new method is developed to estimate model 
parameters’ values.  In this method, the data-driven model and 
water quality model are coupled automatically.  Water quality 
model repeats a number of computations for designed cases, 
the results of pollution concentration data are output and stored 
for data-driven model.  The data-driven model generalizes the 
relationship between model parameters and interior stations.  
After the field data are imported, optimal solutions are ob-
tained. 

In realistic case study, pseudo-field data of concentration 
and optimal solution determination method are both used to 
estimate the model parameters.  A near-optimal and optimal 
prediction method is applied to verify long-term stability of 
multi-solutions.  The results show the present estimation method 
is suitable for the inverse problem. 

Compared with the adjoint method, the present method is 
simple, flexible and less time-consuming. 
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