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ABSTRACT 

The problem of finding a Hamilton decomposition of the 
complete 3-uniform hypergraph 3

nK  has been solved for n ≡ 
2(mod 3), n ≡ 4(mod 6) [2], n ≡ 1(mod 6), n ≡ 0(mod 3) 
(for 3 ,nK I−  the complete 3-uniform hypergraph minus a 1- 
factor) [5].  In this paper, we give the concept of the bipartite 
hypergraphs and find a Hamilton decomposition of the com-
plete bipartite hypergraph 3

,m mK  for m be prime. 

I. INTRODUCTION 

A k-uniform hypergraph H is a pair (V, ε), where V = {v1, 
v2, …, vn} is a set of n vertices and ε is a family of k-subset of V 
called hyperedges.  If ε consists of all k-subset of V, then H is a 
complete k-uniform hypergraph on n vertices and is denoted 
by .k

nK   At the same time, we may refer to a vertex vi ∈ V as 
vi+n.  A cycle of length l of H is a  sequence of the form (v1, e1, 
v2, e2, …, vl, el, e1),  where v1, v2, …, vn are distinct vertices, 
and e1, e2, …, el are k-edges of H, satisfying: 

 
(i) vi, vi+1 ∈ ei 1 ≤ i ≤ l, where addition on the subscripts is 

modulo n, and 
(ii) ei ≠ ej for i ≠ j 
 
This cycle is known as a Berge cycle, having been intro-

duced by Berge in his book [1].  A Hamilton cycle of a hy-
pergraph H on n vertices is a cycle of length n, and a Hamilton 
decomposition of H is a partition of the hyperedges of H into 
Hamilton cycles. 

Definition 1.  Let H be a hypergraph on V.  H is called bi-
partite if V can be partitioned into two subsets V1 and V2 such 
that e ∩  V1 ≠ φ and e ∩  V2 ≠ φ for any e ∈ ε.  Furthermore, if 
|e| = r for any e ∈ ε then we call H a bipartite r-uniform hy-
pergraph, written Hr(V1, V2).  H is called the complete bipartite 

r-uniform hypergraph with vertex-set V = V1 ∪  V2, V1 ∩  V2 = 
φ if ε = {e: e ⊆ V, |e| = r and e ∩  Vi ≠ φ, for i = 1, 2} and 
denoted it by Kr (V1, V2) or ,

r
n mK  when |V1| = n, |V2| = m. 

A set of Hamilton cycles of , ,r
n mK  say C1, C2, …, Cm is 

called a Hamilton decomposition if 1 ,( ) ( )m r
i i n mC kε ε= =∪  and 

ε(Ci) ∩  ε(Cj) = φ for i ≠ j. 
In this paper, we give a Hamilton decomposition of com-

plete bipartite hypergraph 3
,m mK  for m being prime. 

II. RESULTS 

Let m be a positive integer and let D denote the set of all 
pairs (k, r) of odd positive integers such that k < r. 

Given a (k, r) ∈ D and an integer j, define an edge ej(k, r) as 
follows: 

 
(1) if ,r m≠  
 ej(k, r) = {jr, jr + k, (j + 1)r}   (mod 2m); 
(2) if r = m and k is odd, 
 ej(k, m) = {jk, jk + m, (j + 1)k + m}   (mod 2m);  In both 

cases, define 

{ }( , ) ( , ) : 0, 1, 2, , 2 1 (mod 2 )jC k r e k r j m m= = −� (1) 

Lemma 1  Let m > 3 be a prime.  Then, for any (k, r) ∈ D, 
( , ) ( , )j je k r e k r′=  if and only if (mod 2 ).j j m′≡  
Proof.  By definition it is easily seen that ej+2m(k, r) = ej(k, 

r). 
Suppose ej(k, r) = ej'(k, r) with 0 ≤ j, j' ≤ 2m–1.  Set t = j' – j 

and we consider two cases. 
 
Case 1: r ≠ m.  We have that {jr, jr + k, (j + 1)r} ≡ {j'r, j'r + 

k, (j' + 1)r} (mod 2m), which implies that {0, k, r} ≡ {tr, tr + k1, 
(t + 1)r} (mod 2m).  If tr ≠ 0 (mod 2m) (equivalently, tr + k ≠ k 
(mod 2m) and (t + 1)r ≠ r (mod 2m)), then, 

(i) tr ≡ k (mod 2m), tr + k ≡ r (mod 2m) and (t + 1)r ≡ 0 (mod 
2m); or 

(ii) tr ≡ r (mod 2m), tr + k ≡ 0 (mod 2m) and (t + 1)r ≡ k 
(mod 2m).  Both cases imply that 3k ≡ 0 (mod 2m), a con-
tradiction.  It shows that tr ≡ 0 (mod 2m).  Recall that r is odd 
and r ≠ m, in other words, r and 2m are coprime, which im-
plies that j ≡ j' (mod 2m). 
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Case 2: r = m.  In this case we see that m is a prime.  We 
have that {jk, jk + m, (j + 1)k + m} ≡ {j'k, j'k + m, (j' + 1)k + m} 
(mod 2m), which implies that {0, m, k + m} ≡ {tk, tk + m, (t + 
1)k + m} (mod 2m).  If tk ≠ 0 (mod 2m) (equivalently, tk + m ≠ 
m (mod 2m) and (t + 1)k + m ≠ k + m, (mod 2m) then, (i) tk ≡ m 
(mod 2m) and (t + 1)k + m ≡ 0 (mod 2m)); or (ii) tk ≡ k + m 
(mod 2m) and tk + m ≡ 0 (mod 2m).  Both cases imply that k ≡ 
0 (mod 2m), a contradiction.  It shows that tk ≡ 0 (mod 2m).  
Since m is an odd prime and k < m is an odd integer,  we have 
that k and 2m are coprime, which implies that j ≡ j' (mod 2m). 

 
Lemma 2  Let m > 3 be a prime and let V1 = {0, 2, …, 2m–2}, 
V2 = {1, 3, …, 2m–1}, and 3 3

, 1 2( , ).m mK K V V=   Then the edge 
squence C(k, r) defined in (1) and (2) is a Hamilton cycle of 

3
, .m mK  

Proof.  By the definition of ej, we see that, for every edge 
ej(k, r) of C(k, r), exactly one of the following statements 
holds: 

(1) 1| | 2je V =∩  and 2| | 1,je V =∩  or 
(2) 1| | 1je V =∩  and 2| | 2.je V =∩  
From Lemma 1 it follows that |C(k, r)| = 2m, for each (k, r) ∈ 

D.  Note that if r ≠ m, then ( j + 2)r ≠ jr (mod 2m) for any 
integer j, and if r = m, then m is prime and ( j + 2)k + m ≠ jk + m 
(mod 2m).  From this it is easy to see that 

 1

( 1)          if  ,
( , ) ( , )

( 1)    if  .j j

j r r m
e k r e k r

j k m r m+

+ ≠
=  + + =

∩  

This proves that for each (k, r) ∈ D, C(k, r) is a Hamilton 
cycle. 

 
Lemma 3 Let (k, r) and (k', r') be two distinct elements of D.  
Then ( , ) ( , ) .C k r C k r φ′ ′ =∩  

Proof.  Let us put the reduced residues modulo 2m equi- 
distantly and clockwise on a circle.  Take three of them, say, a, 
b and c.  Then {a, b, c} ∈ C(k, r) for some (k, r) ∈ D if and 
only if the spaces among the three elements are in turn k, r–k 
and 2m–r.  Therefore, if ej(k, r) = ej' (k', r'), then the cycle 
permutations (k, r–k, 2m–r) and (k', r'–k', 2m–r') are identical.  
Note that there are only r–k and r'–k' are even.  We therefore 
obtain that k = k' and r–k = r'–k', which yields that (k, r) = (k', 
r'). 

 

Theorem 4  Let m > 3, m be prime.  Then 3
,m mK  = 

( , )k r D∈
∪  C(k, r) 

is a Hamilton decomposition. 
Proof.  Let V1 = {0, 2, …, 2m–2}, V2 = {1, 3, …, 2m–1}, 

and 3 3
, 1 2( , ).m mK K V V=  By Lemma 2, for any (k, r) ∈ D, C(k, r) 

is a Hamilton cycle of K3(V1, V2).  Therefore, in order to 
complete the proof it suffices to show that for each 3-element 
set {a, b, c} ⊆ {0, 1 , …, 2m–1} with {a, b, c} ∩  V1 ≠ φ and 
{a, b, c} ∩  V2 ≠ φ there is a (k, d) ∈ D and an integer j such 
that {a, b, c} ≡ ej(k, r) (mod 2m). 

Without loss of generality we assume that a < b < c.  Co- 

nsider b – a, c – b, and 2m – c + a.  Since not all of them are 
even, while their sum is even, there are two among them are 
odd and one even.  We label b – a, c – b, and 2m – c + a as k1, k2 
and k3 such that k1 ≤ k3 are odd and k2 is even.  We now com-
plete the proof by six cases. 
 

Case 1: (k1, k2, k3) = (b – a, c – b, 2m – c + a).  In this case, 
put k = k1 = b – a and r = k1 + k2 = c + a.  If r ≠ m, then (r, 2m) = 
1, there is a j such that a ≡ jr (mod 2m), hence b ≡ jr + k and c 
≡ (j + 1)r (mod 2m), that is, {a, b, c} ≡ ej(k, r) (mod 2m).  If r = 
m, then (k, 2m) = 1, there is a j such that a ≡ jk + m (mod 2m), 
hence b ≡ (j + 1)k + m and c ≡ jk (mod 2m), that is, {a, b, c} ≡ 
ej(k, m) (mod 2m). 

 
Case 2: (k1, k2, k3) = (b – a, 2m – c + a, c – b).  In this case, 

put k = k3 = c – b and r = k2 + k3 = 2m – c + a + c – b ≡ a – b.  If 
r ≠ m, then (r, 2m) =1, there is a j such that b ≡ jr (mod 2m), 
hence c ≡ jr + k and a ≡ (j + 1)r (mod 2m), that is, {a, b, c} ≡ 
ej(k, r) (mod 2m).  If r = m, then (k, 2m) = 1, there is a j such 
that b ≡ jk + m (mod 2m), hence c ≡ (j + 1)k + m and a ≡ jk 
(mod 2m), that is, {a, b, c} ≡ ej(k, m) (mod 2m). 

 
Case 3: (k1, k2, k3) = (c – b, b – a, 2m – c + a).  In this case,  

put k = k3 = 2m – c + a and r = k2 + k3 = 2m – c + a + b – a = b – 
c.  The remainder is similar to Case 2. 

 
Case 4: (k1, k2, k3) = (c – b, 2m – c + a, b – a).  In this case,  

put k = k1 = c – b and r = k1 + k2 = c – b + 2m – c + a ≡ a – b 
(mod 2m).  The remainder is similar to Case 1. 

 
Case 5: (k1, k2, k3) = (2m – c + a, b – a, c – b).  In this case, 

put k = k1 = 2m – c + a and r = k1 + k2 = 2m – c + a + b – a = a – 
b (mod 2m).  The remainder is similar to Case 1. 

 
Case 6: (k1, k2, k3) = (2m – c + a, c – b, b – a).  In this case, 

put k = k3 = b – a and r = k2 + k3 = c – b + b – a = c – a.  The 
remainder is similar to Case 2. 

The proof is completed. 
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