EXPERIMENTAL STUDY OF SILVER NANOFLUID ON FLAT HEAT PIPE THERMAL PERFORMANCE

Yu-Tang Chen
Department of Mechanical Engineering, De Lin Institute of Technology, Taipei County, Taiwan, R.O.C.,
ytang.chen@msa.hinet.net

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal

Part of the Engineering Commons

Recommended Citation
DOI: 10.51400/2709-6998.1925
Available at: https://jmstt.ntou.edu.tw/journal/vol18/iss5/14

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and Technology.
EXPERIMENTAL STUDY OF SILVER NANOFUID ON FLAT HEAT PIPE THERMAL PERFORMANCE

Acknowledgements
This work was supported by National Science Council of Taiwan, Republic of China under contract No. NSC 96-2622- E-237-005-CC3. In addition, the author would like thank Professor Kang Shung-Wen (Department of Mechanical and Electro-Mechanical Engineering of Tamkang University, Taiwan) for his invaluable help and guidance.

This research article is available in Journal of Marine Science and Technology: https://jmstt.ntou.edu.tw/journal/vol18/iss5/14
EXPERIMENTAL STUDY OF SILVER NANOFUID ON FLAT HEAT PIPE THERMAL PERFORMANCE

Yu-Tang Chen*

Key words: flat heat pipe, nano-fluid, nano-particle.

ABSTRACT

This study utilizes silver nano-fluid filled flat heat pipe. It is aimed at effect of various concentrations on flat heat pipe thermal performance by air-cooling testing equipment. The particles used in these experiments were silver particles 35 nm in size. The base working fluid was pure-water. Nano-fluids were prepared using a two-step method. In the experiment, the thickness and length of the heat pipe are 3 mm and 200 cm, respectively. An experimental system was set up to measure the temperature distribution of heat pipes and calculate the thermal resistance by equation $R = \frac{\Delta T}{Q}$. At a same charge volume, the thermal resistance of heat pipe filled nano-fluid was lower than DI water.

I. INTRODUCTION

With “tera-scale computing” is coming [29], that means the more heat generation will accompany in compact electronic components. The requisite thermal management for a personal computer is most often achieved via heat pipe (HP), heat sink and fans. In general, the flat heat pipes (FHP) are usually used as notebook cooler, due to its favorable thermal characteristics and flexible. In 2000, Wang and Vafai [26, 27] investigated the thermal performance of the FHP, their results showed (1) the wick in the evaporator section provides the largest resistance to the heat transfer process, (2) the heat transfer coefficient strongly affects the time it takes to reach steady state, (3) the experimental results were compared with analytical results and were found to be in very good agreement. Peterson and Wang [25] developed a novel FHP, which utilized the sintered copper screen mesh as mainly wick structure, the experimental results showed the maximum heat transport capacity can reach 112 W and 123 W, respectively. However, the thermal performance of traditional circular HP is better than FHP. In order to enhance the heat transfer efficiency, an innovation heat transfer fluid called nano-fluid has developed by Argonne National Laboratory [3].

Numbers of experimental investigations have demonstrated the nano-fluid with higher effective thermal conductivity and critical heat flux [2, 4-7, 11, 12, 18, 22, 24, 30-33]. These are the advantages in application such as heat transfer devices. From 2004 to 2009, nano-fluids were filled in heat pipes [1, 8, 9, 13, 23, 35], thermosyphon [10, 14, 34], oscillating heat pipes [15-17, 20, 21]. However, the silver nano-fluid filled on FHP thermal performance has never investigated. Therefore, the purpose of present study is to investigate the effect of nano-fluid on FHP thermal performance.

II. EXPERIMENTAL SETUP AND PROCEDURE

The silver (Ag) nano-particles used in present experiments were 35 nm in size. The base working fluid was deionized (DI) water. Ag nano-fluids were prepared using a two-step method (Nanohubs technology Co., Ltd.). Ag nano-particles were prepared first. Ag nano-particles were produced using a catalytic chemical vapor deposition method. The Ag nano-particles were then added to DI water. No surfactant was used in the Ag nano-fluid suspensions. The mixture was created using an ultrasonic homogenizer. Nano-fluid concentrations of 5 mg/l, 50 mg/l and 100 mg/l (ppm) were used in present study. An experimental system was set up to measure the wall temperature of FHP (Fig. 1). The thickness and length of the FHP used in these experiments were 3 mm and 200 mm, respectively.

The wall temperature on the FHP was measured by four isolated type-T thermocouples. Two thermocouples were at-
tached to the evaporator; the others were attached to the con-
denser section. All thermocouples were calibrated against a
quartz thermometer. The uncertainty in temperature meas-
urements was ±0.1°C. The wall temperature is recorded by
a data acquisition system (Testo 177-T4). Two heater bars
(maximum 120 W) were used as a heat source in the heating
section and attached to the FHP evaporator using thermal grease
(SHIN ETSU X-23-7762, 0.9 W/m·K) over a length of 30 mm.
Thus, the heating load \(Q \) and temperature difference \(dT = T_{\text{evaporator}} - T_{\text{condenser}} \) were measured, and the thermal resistance \(R \) of FHP was calculated by the equation, \(R = dT/Q \). In the
present study, the FHP was horizontally fixed during meas-
urement.

The power supply was turned on and the power incre-
mented. At this point in the tests, it took approximately 15
to 30 minutes to reach steady-state. Once the steady-state
condition had been reached, the temperature distribution along
the heat pipe was measured and recorded, along with the other
experimental parameters. The power input was then increased
incrementally, and the process repeated until dryout occurred
as determined by rapid spikes in the evaporator thermal couple
farthest from the condenser. Once dryout was reached, the
temperature difference between the evaporator and condenser
rapidly increased. The power input at this point was assumed
to be the maximum heat transport capacity of the FHP.

III. EXPERIMENTAL RESULTS

Since the working fluid in the FHP that has a significant
fluence on its operation, thus present experiment will con-
sider the various conditions of fluid to measure the tem-
perature distribution of heat pipe and calculate the thermal
resistance. Error bars based on the uncertainty in temperature
measurements.

With the same filling ratio, the Fig. 2 showed the wall tem-
perature distribution according to 200 mm FHP axial length
with a thickness of 3 mm under the air-cooling. As Fig. 3
shown, the temperature difference of FHP containing pure water
were 1.07°C, 1.72°C and 2.57°C, respectively (20 W–40 W).
After adding small amount of Ag nanoparticles in the pure
water illustrated a smaller temperature difference of FHP;
0.6°C, 0.79°C and 1.24°C (5 ppm, 20 W–40 W). The 50 ppm
nanofluid filled in the FHP, the temperature difference were
0.65°C, 0.52°C and 0.79°C (20 W–40 W), respectively. And
the temperature difference of the 100 ppm nanofluid FHP were
0.45°C, 0.51°C and 0.73°C (20 W–40 W), respectively. It also
shows the more the nanoparticles were dispersed in working
fluid, the smaller rise in temperature difference of FHP than
pure was filled in heat pipe under various input power.

Figure 4 illustrates the influence of thermal resistance on
FHP containing silver nanofluid and pure water as working
fluid. The result shows that thermal resistance of FHP filled pure water was higher than nano-fluid under 20 W to 40 W. The effect of adding silver nanoparticles on the thermal performance of the FHP is more evident if the data are expressed as a plot of $R_{\text{water}} - R_{\text{nanofluid}} / R_{\text{water}}$ versus nanofluid concentration, as shown in Table 1. This table shows the range of reducing rate on thermal resistance were 0.39 to 0.71 under different concentration.

IV. SUMMARY

The present study investigated the effect of flat heat pipe thermal performance using silver nano-fluid as the working fluid. The temperature difference and the thermal resistance of the FHP with silver nano-particle solution were lower than that with pure water.

Thermal conductivity and wettabillity of nanofluid are the advantages in heat pipe technology. The liquid-wick resistance of the heat pipe, included the effective thermal conductivity for the liquid-saturated wick structure, is one of major concern issue in overall thermal resistance evaluation [19]. However, the enhancement thermal performance of nano-fluid heat pipe do not strongly depend on the thermal conductivity of nanofluid [28].

Table 1. Reducing rate of thermal resistance.

<table>
<thead>
<tr>
<th>$R_{\text{water}} - R_{\text{nanofluid}} / R_{\text{water}}$</th>
<th>20 W</th>
<th>30 W</th>
<th>40 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ppm</td>
<td>0.43</td>
<td>0.53</td>
<td>0.51</td>
</tr>
<tr>
<td>50 ppm</td>
<td>0.39</td>
<td>0.69</td>
<td>0.69</td>
</tr>
<tr>
<td>100 ppm</td>
<td>0.57</td>
<td>0.70</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Hence, the plausible reason for enhancing the thermal performance of FHP by using nano-fluid can be explained as: Because the nano-fluid is with higher wettability that can enhance the capability and flatten the temperature difference of FHP. Thus, the FHP could be enhanced the thermal performance by filling nano-fluid. This investigation showed that the silver nano-fluid not only enhanced the thermal performance of traditional circular heat pipes but also increased the flat heat pipe. In order to find the optimum its thermal performance, the further studies will focus on:

1. The effect between the thickness of FHP and nano-fluid concentration.
2. The wettabillity effect of the nano-fluids on various geometry of the heat pipes wick.

ACKNOWLEDGMENTS

This work was supported by National Science Council of Taiwan, Republic of China under contract No. NSC 96-2622-E-237-005-CC3. In addition, the author would like thank Professor Kang Shung-Wen (Department of Mechanical and Electro-Mechanical Engineering of Tamkang University, Taiwan) for his invaluable help and guidance.

REFERENCES

8. Kang, S. W., Wei, W. C., Tsai, S. H., and Huang, C. C., “Experimental
29. www.intel.com