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ABSTRACT 

A novel memetic algorithm (MA) for the design of vector 
quantizers (VQs) is presented in this paper.  The algorithm 
uses steady-state genetic algorithm (GA) for the global search 
and K-means algorithm for the local improvement.  As com-
pared with the usual MA using the generational GA for global 
search, the proposed MA dramatically reduces the computa-
tional time for VQ training.  In addition, it attains a near global 
optimal solution, and its performance is insensitive to the 
selection of initial codewords.  Numerical results show that it 
can save more than 70% of computation time while main-
taining a comparable performance as previous MA. 

I. INTRODUCTION 

Genetic algorithm (GA) [3, 7, 12] is a general-purpose 
search algorithm for solving optimization problems by simu-
lating natural evolution over populations of candidate solu-
tions.  Inspired by biological evolution, the GA consists of a 
set of genetic strings, which are evaluated by a fitness function.  
The fittest strings are then regenerated at the expense of the 
others.  Furthermore, crossover and mutation are employed to 
obtained better strings.  The mutation operator changes indi-
vidual elements of a string, and the crossover operation in-
terchanges parts between strings.  In the generational GA, the 
combination of these operations is called a generation.  The 
evolution of genetic strings may be continued for several 
generations to obtain a near global optimal solution. 

Although the generational GA is effective, it may not be 
suited for fine tuning search results which are close to optimal.  
To eliminate this drawback, the memetic algorithm (MA) [1] 
combining the generational GA with a local search has been 
proposed.  In the MA, the generational GA is used for coarse 
search, while the subsequent local improvement is then used to 
refine the generational GA.  Its superior performance over 

pure GA has been found for various applications, such as 
VLSI design [2], traveling salesman problem [9], and binary 
quadratic programming [8]. 

Vector quantization (VQ) [4] has been found to be effective 
for data compression, pattern recognition and data mining.  
The VQ techniques remove redundancy in the source, and 
retain useful information for subsequent processing.  A com-
mon approach for VQ design is based on K-means algorithm 
[6], where the codewords and the partition of training set are 
iteratively optimized one at a time.  The K-means algorithm 
therefore can be viewed as a local optimization approach for 
VQ design.  The basic MA technique using generational GA 
for global search and K-means for local improvement can be 
adopted for enhancing the performance of the VQ [11].  How-
ever, the computational complexity for the basic MA may be 
very high.  Due to a new set of child strings going to  replace 
the entire set of parent strings in each generation for the sub-
sequent genetic operations in the generational GA. 

The objective of this paper is to present a novel MA for VQ 
design.  It employees a steady-state GA [5, 10], instead of the 
general GA, and results in a low computational complexity.  
The steady-state GA generates only one child string at a time.  
A child string with better fitness value will replace its parent 
string. 

The proposed MA is termed the steady-state MA in this 
paper.  To fine tune the global search result of the steady-state 
GA, the K-means algorithm will be applied for the local 
improvement of the child string after the crossover and muta-
tion operations.  A survival competition of the resulting child 
string against the existing parent strings then follows.  Since 
only one new genetic string is produced at a time, it is only 
necessary to employ the K-means algorithm to the new string 
for local refinement in the steady-state MA.  By contrast, in 
the basic MA, the K-means algorithm should operate over the 
entire population of genetic strings.  The proposed algorithm 
therefore may have lower computational time for VQ design 
as compared with the basic MA.  Based on the same popula-
tion size, numerical results reveal that the steady-state MA can 
save more than 70% of computational time of the basic MA 
while maintaining a comparable performance of distortion rate 
for VQ design.  The proposed algorithm therefore is an effec-
tive alternative for VQ applications where both high per-
formance and low computational time are desired. 
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II. THE PROPOSED ALGORITHM 

We first start with the K-means algorithm for the VQ design.  
Consider a full-search VQ with N codewords {y1,…, yN}.  
Given a set of training vectors T = {x1,…, xt}, the average 
distortion of the VQ is given by 
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Where w is the vector dimension, t is the number of training 
vectors, α( ) is the source encoder, and d(u, v) is the squared 
distance between vectors u and v. 

The K-means algorithm is an iterative approach finding the 
solution of {y1,…, yN} locally minimizing the average distor-
tion D given in (1).  The algorithm is based on two necessary 
conditions for the optimal VQ. 

Necessary Condition 1: Let cell Ti be the set of training 
vectors which are assigned to codeword yi by the source en-
coder α( ).  Given codewords {y1,…, yN}, the optimal partition 
T1, T2,…, TN minimizing average distortion D in (1) should 
satisfy 

 ( ){ } : , ,iT T iα= ∈ =x x x  (2) 
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Necessary Condition 2: Given the partition, the optimal 
codewords minimizing average distortion D in (1) should 
satisfy 
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The K-means algorithm starts with a set of initial code-
words.  Given the set of codewords, an optimal partition is 
obtained using (3).  After that, given the optimal partition ob-
tained from the previous step, a set of optimal codewords is 
computed using (4).  This process will be repeated until the 
convergence of the average distortion D of the VQ is observed. 

Although the K-means algorithm is effective, the algorithm 
can only find the local optimal solution for the VQ design.  Its 
performance is dependent on the initial codewords.  It may fall 
into a poor local optimum when the initial codewords are 
improperly selected. 

An alternative to the K-means algorithm is to employ the 
basic MA, which uses the generational GA and K-means al-
gorithm for the minimization of D.  The generational GA is 
used for the global search.  It may find a near optimal solution 
for the VQ design.  The K-means algorithm then uses the 

results of the global search as its initial codewords for the 
subsequent local refinement. 

In the basic MA, there are P genetic strings for the genetic 
operations.  Each string r represents a set of N codewords 
{y1,…, yN}r.  Note that these strings are strings of vectors, not 
strings of binary numbers. 

Let S(k) and D(k) denote the set of P strings and the value of 
current minimum distortion D after the execution of the k - th 
generation of the basic MA, respectively.  Let s* be the current 
optimum string during the course of genetic operations.  In the 
initial step, we let D(0) = ∞, and initialize ∗s as null.  In addi-
tion, we can randomly select vectors from training data as the 
codewords of strings in S(0). 

Suppose that the (k – 1) - th iteration is completed, and the 
execution of the k - th (k ≥ 1) is to be done.  We then perform 
the following genetic operations and local refinement se-
quentially on the strings in S(k – 1). 

Regeneration: Since each string in S(k – 1) for the genetic 
operations is in fact a codebook of VQ, its corresponding D 
can be computed by using (1).  The inverse of D is used as the 
fitness function for each string.  The regeneration process is 
then conducted by using the roulette-wheel technique.  That is, 
for offspring generation, we spin a simulated biased rou-
lette-wheel whose slots have different sizes proportional to the 
fitness values of the individual strings. 

Once a string has been selected for reproduction, an exact 
replica of it is made as a regeneration string.  This regeneration 
string will then be used for crossover and mutation.  In the 
algorithm, P regeneration strings are created after the regen-
eration operation. 

Crossover: On each regeneration string r, {y1, y2,…, yN}r, 
one point crossover is applied with probability . cP  Out of 
the total population, a partner string r�, {z1, z2,…, zN}r�, is 
randomly chosen.  Then a random integer n, between 1 and N, 
is generated.  Both strings are cut into two portions at position 
n and the portions {yn+1,…, yN} and {zn+1,…, zN} are mutually 
exchanged. 

Mutation: Mutation is performed on each codeword of 
each string with a small probability Pb.  Suppose now the 
string r = {y1, y2,…, yN}r is to be mutated.  One of the N 
codewords, y, is chosen at random.  Among the w numbers in 
y, we also select one number at random.  Then a random 
number, taking the binary values b or –b, is generated, and is 
added to the chosen component. 

Local Refinement: We apply the K-means algorithm to 
each string for the local refinement of the genetic operations.  
The P strings after the K-means design are then the strings of 
the set S(k).  The average distortion D value of each string in 
S(k) is computed.  Let r* be the string in S(k) having minimum 
D value, and D* be the D value of r*.  We then compare D* 
with D(k – 1).  If D* is smaller than D(k – 1), then D(k) ← D*, 
and s* ← r*.  Otherwise, D(k) ← D(k – 1), and the current 
optimum string s* is retained the same.  This completes the 
execution of the k - th generation for the basic MA algorithm. 

In the basic MA algorithm, the iteration continues until the  
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s* ← r*.
D(k) ← D* 

Stop

Yes

Yes

No

No

Perform the following genetic operations sequentially
on the strings of S(k - 1)
1. Regeneration (with fitness function 1/D)
2. Crossover (with Pc)
3. Mutation (with Pb and b)       

Given P, Pb, b, L.
Set D(0) = k, = 1, s* = null,
S(0) = set of P randomly selected strings.  

Apply C-means to each of the P
strings resulting from the genetic
operations.  

Is D* < D(k - 1)?

D(k) ← D(k - 1)

Are D(k) = D(k - 1) = ...
= D(k - L + 1)?

k ← k + 1

 
Fig. 1.  The flowchart of the basic MA algorithm. 

 
 

convergence of the sequence D(k).  In practice, we stop the 
design algorithm after the observation of L consecutive itera-
tions yielding identical D(k) value (that is, D(k) = D(k – 1) =…= 
D(k – L + 1)).  The current optimum string s* after the com-
pletion of basic MA algorithm is then chosen as the desired 
result.  The flowchart of the basic MA algorithm is shown in 
Fig. 1. 

The major drawback of the basic MA is that the K-means 
algorithm should be applied to every string in the new popu-
lation for local refinement after the mutation and crossover 
operations, as illustrated in Fig. 1.  From (3), it follows that the 
K-means algorithm uses the full-search scheme for the parti-
tioning process.  The computational complexity of the K- 
means algorithm therefore is high.  When the population size 
P is large, the basic MA may require long CPU time for 
finding the optimal solution. 

This paper presents a novel steady-state MA algorithm for 
VQ design.  The algorithm has significantly lower computa-

tional time as compared with the basic MA while maintaining 
a comparable performance of distortion rate.  In the proposed 
MA, the steady-state GA is adopted for the global search.  The 
steady-state GA does not use the concept of generation for 
evolution over populations of candidate solutions.  Therefore, 
it is not necessary to replace all the parent strings by child 
strings.  In fact, at most one parent string is replaced at a time.  
The replacement process starts by first randomly selecting two 
parent strings r1 and r2 for crossover operation.  Assume r1 = 
{y1, y2,…, yN}r1, and r2 = {z1, z2,…, zN}r2.  After the crossover 

operation, r1 and r2 then become 

 { } { }
1 1

1 2 1 2 1 , , ,  , , , , , ,N n n Nr r+→y y y y y y z z… … …  

 { } { }
2 2

1 2 1 2 1 , , ,  , , , , , ,N n n Nr r+→z z z z z z y y… … …  

respectively. 
Let c denote the child string of the proposed algorithm.  In 

our design, string c is first obtained by randomly selecting 
either r1 or r2 after the crossover operation.  The resulting 
string c is then mutated and evaluated by the fitness function.  
If the new child string is inferior to all the parent strings, no 
parent string will be removed.  Otherwise, the parent string 
with lowest fitness value is replaced by the new child string. 

We use the K-means algorithm for the local refinement of 
child string c after the crossover and mutation operations in the 
steady-state MA.  The average distortion of the new string c 
produced by the K-means is then evaluated.  Let r  be the 

string in current S having lowest fitness value (i.e., highest 
average distortion).  Moreover, let D  be the average distor-

tion of the string .r   If the average distortion of c is less than 

,D  then S will be updated by replacing r  with c.  Subse-

quently, all the strings in the updated S are sorted in accor-
dance with their average distortion.  The string with highest 
average distortion then becomes the new .r   This process is 

repeated until all the parent strings in S survive from the chal-
lenges of L consecutive child strings.  The parent string in S 
having the minimum distortion is then selected as the desired 
VQ codebook.  The complete outline of the algorithm is listed 
below: 

 
Step 0: 

Given: P, Pb, b, L. 
Initial S = Set of P randomly selected strings. 
r = string in S having lowest fitness value. 

D = average distortion of the string  .r  

Step 1: 
Randomly select two strings r1 and r2 from S. 

Step 2: 
Obtain the child string c by the crossover operation of r1 
and r2. 
Mutate c with Pb and b. 
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Fig. 3.  The distribution of the average distortion for the proposed algorithm, the Basic MA algorithm and the K-means algorithm. 

 
 

 

Apply C-Means algorithm to the child string c.
Compute average distortion D of c.

Given P, Pb, b, L.
Initial S = set of P randomly selected strings.
r = string in S having lowest fitness value.
D = D of r.
Randomly select r1 and r2 from S. 

1. Obtain the child string c by the crossover operation
of r1 and r2.

2. Mutate c (with Pb and b).  

Are child strings not
survival for L consecutive
times?  

1. r2 = r1

2. r1 = Randomly selected
string from S.  

1. In S, replace r by c.
2. Sort all strings in S

according to their 
distortions.

3. Find new r in S.
4. D = D of r.     

Yes 

No 

No 

Yes 

Stop 

Is D of c < D?

 
Fig. 2.  The flowchart of the steady-state MA algorithm. 

 
 

Step 3: 
Apply K-means algorithm to the child string c. 
Compute the average distortion D of c after the K-means 
algorithm. 

Step 4: 
If the average distortion D of c is less than D, then 

In S, replace r by c, 

Sort all strings in S according to their distortions, 

Find new r in S, 

Go to Step 1, 
else if all the parent strings in S are survival for L consecu-
tive times, then 
Select the string having minimum distortion in S as the de-
sired result, 
Stop the algorithm. 
 
The flowchart of the steady-state algorithm is shown in 

Fig. 2.  It can be observed from Step 3 of the outline that the 
K-means algorithm operates only on the string c.  It is not 
necessary for the K-means algorithm to operate over the entire 
set of genetic strings S in the proposed steady-state MA.  In 
contrast, the K-means algorithm should operate over the entire 
set S(k) for each iteration k in the basic MA algorithm, as 
shown in Fig. 1.  The proposed algorithm therefore may have 
lower computational load for the local refinement.  The im-
provement in computational time may be significant when the 
number of genetic strings P for the design is large. 

III. EXPERIMENTAL RESULTS 

This section presents some numerical results of the pro-
posed algorithm.  All the experiments considered in this sec-
tion are executed on the Pentium Core 2 Duo processor with 
2 Gbytes main memory.  Three 512 × 512 images “Lena”, 
“Bridge” and “Boat” are used as the training data for the VQ 
design. 

Figure 3 shows the distribution of the average distortion of 
steady-state MA for 200 independent runs.  Each run starts 
with different set of genetic strings randomly selected from 
training images.  The number of genetic strings in the experi-
ment is P = 32.  Each genetic string contains N = 32 codewords.  
The dimension of codewords is w = 2 × 2.  The mutation prob- 
ability is set to be Pb = 0.01.  The distribution of basic MA for 
200 independent runs with the same P, N, w and Pb is also 
shown in Fig. 3.  Moreover, the distribution of K-Means for 
200 independent runs with the same N and w is included in 
Fig. 3 for comparison purpose.  The initial codewords of basic 
MA and K-means algorithm are also randomly selected. 
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Table 1. The average CPU time and distortion of the 
proposed algorithm and the basic MA algorithm 
for various population sizes. 

Steady State MA Basic MA 
P CPU Time 

(Min.) 
Ave. Dist. 

CPU Time 
(Min.) 

Ave. Dist. 

8 3.4 238.74 9.17 241.13 
16 7.19 235.26 25.11 236.82 
32 15.1 232.84 50.52 235.49 
64 31.53 231.17 131.66 234.62 
128 62.81 230.31 256.28 232.18 

 
 
From Fig. 3, it can be observed that the K-means algorithm 

has a broad distribution of local optima.  Results between the 
best and worst cases differed by more than 100%.  On the 
other hand, from Fig. 3, we see that the distribution of distor-
tion of the steady-state MA has a better concentration.  The 
worst case of steady-state MA has distortion D = 242.  Only 
6.0% of the distortion of VQs designed by K-means algorithm 
are lower than that of the worst case of the K-means algorithm.  
The best case of the steady-state MA has D =229.  The dif-
ference between the worst and best cases is only 13. 

We can also observe from Fig. 3 that both the steady-state 
GA and basic MA have similar distribution of distortion.  
Nevertheless, the average CPU time per each run of the pro-
posed algorithm is 15 mins.  In contrast, the average CPU time 
of the basic MA is 50 mins.  The CPU time of the proposed 
algorithm is only 30% of that of the basic MA. 

Table 1 shows the average CPU time and distortion of the 
proposed algorithm and the basic MA algorithm for various 
population sizes.  In this experiment, we fix the number of 
codewords in each string N as 32, the dimension of codewords 
w as 2 × 2, and the mutation probability as Pb = 0.01.  The 
average CPU time and distortion for each P in the table are 
obtained by averaging the results of 100 independent runs.  
From the table, we observe that as P increases, the CPU time 
of the basic MA increases significantly.  However, the pro-
posed algorithm remains low CPU time even when P becomes 
large.  In addition, both the steady-state MA and basic MA 
having comparable performance give the same P. 

Finally, given N = 32 and w = 2 × 2, the average distortions 
of the proposed algorithm for various pairs of (P, Pb) are 
shown in Table 2.  Similar to Table 1, the average distortion for 
each pair of (P, Pb) in the table is obtained by averaging the 
results of 100 independent runs.  From the table, it can be 
concluded that the variation in performance for different set of 
parameters is small.  All these facts demonstrate the effective-
ness of the proposed algorithm. 

IV. CONCLUDING REMARKS 

Experimental results show that our steady-state MA has 
low distortion and low CPU time for VQ design.  Based on the  

Table 2. The average distortion of the proposed algorithm 
for various pairs of (P, Pb). 

 Pb = 0.01 Pb = 0.05 Pb = 0.1 Pb = 0.15 Pb = 0.2 

P = 8 238.74 241.18 245.91 244.32 246.35 
P = 16 235.26 239.31 243.71 243.86 244.88 
P = 32 232.84 238.3 242.26 242.44 244.17 
P = 64 231.17 237.47 240.52 240.50 241.74 

 
 

same population size, the steady-state MA is able to save more 
than 70% of the CPU time of the basic MA.  In addition, both 
the steady-state MA and basic MA have similar distribution of 
performance over 200 independent runs.  The distribution of 
the proposed algorithm has a better concentration as compared 
with the basic K-means algorithm.  This result reveals that the 
proposed algorithm is insensitive to the selection of initial 
codewords.  The proposed algorithm therefore is beneficial for 
VQ training where both the computational complexity and 
distortion are important concerns. 
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