
Volume 18 Issue 4 Article 10

VECTOR QUANTIZATION BASED ON STEADY-STATE MEMETIC VECTOR QUANTIZATION BASED ON STEADY-STATE MEMETIC
ALGORITHM ALGORITHM

Chien-Min Ou
Department of Electronics Engineering, Ching-Yun University, Chungli, Taiwan, R.O.C, cmou@cyu.edu.tw

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Ou, Chien-Min (2010) "VECTOR QUANTIZATION BASED ON STEADY-STATE MEMETIC ALGORITHM," Journal of Marine
Science and Technology: Vol. 18: Iss. 4, Article 10.
DOI: 10.51400/2709-6998.1912
Available at: https://jmstt.ntou.edu.tw/journal/vol18/iss4/10

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and
Technology.

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol18
https://jmstt.ntou.edu.tw/journal/vol18/iss4
https://jmstt.ntou.edu.tw/journal/vol18/iss4/10
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol18%2Fiss4%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol18%2Fiss4%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol18/iss4/10?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol18%2Fiss4%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages

Journal of Marine Science and Technology, Vol. 18, No. 4, pp. 553-557 (2010) 553

VECTOR QUANTIZATION BASED ON
STEADY-STATE MEMETIC ALGORITHM

Chien-Min Ou*

Key words: memetic algorithm, vector quantizer, steady-state ge-
netic algorithm.

ABSTRACT

A novel memetic algorithm (MA) for the design of vector
quantizers (VQs) is presented in this paper. The algorithm
uses steady-state genetic algorithm (GA) for the global search
and K-means algorithm for the local improvement. As com-
pared with the usual MA using the generational GA for global
search, the proposed MA dramatically reduces the computa-
tional time for VQ training. In addition, it attains a near global
optimal solution, and its performance is insensitive to the
selection of initial codewords. Numerical results show that it
can save more than 70% of computation time while main-
taining a comparable performance as previous MA.

I. INTRODUCTION

Genetic algorithm (GA) [3, 7, 12] is a general-purpose
search algorithm for solving optimization problems by simu-
lating natural evolution over populations of candidate solu-
tions. Inspired by biological evolution, the GA consists of a
set of genetic strings, which are evaluated by a fitness function.
The fittest strings are then regenerated at the expense of the
others. Furthermore, crossover and mutation are employed to
obtained better strings. The mutation operator changes indi-
vidual elements of a string, and the crossover operation in-
terchanges parts between strings. In the generational GA, the
combination of these operations is called a generation. The
evolution of genetic strings may be continued for several
generations to obtain a near global optimal solution.

Although the generational GA is effective, it may not be
suited for fine tuning search results which are close to optimal.
To eliminate this drawback, the memetic algorithm (MA) [1]
combining the generational GA with a local search has been
proposed. In the MA, the generational GA is used for coarse
search, while the subsequent local improvement is then used to
refine the generational GA. Its superior performance over

pure GA has been found for various applications, such as
VLSI design [2], traveling salesman problem [9], and binary
quadratic programming [8].

Vector quantization (VQ) [4] has been found to be effective
for data compression, pattern recognition and data mining.
The VQ techniques remove redundancy in the source, and
retain useful information for subsequent processing. A com-
mon approach for VQ design is based on K-means algorithm
[6], where the codewords and the partition of training set are
iteratively optimized one at a time. The K-means algorithm
therefore can be viewed as a local optimization approach for
VQ design. The basic MA technique using generational GA
for global search and K-means for local improvement can be
adopted for enhancing the performance of the VQ [11]. How-
ever, the computational complexity for the basic MA may be
very high. Due to a new set of child strings going to replace
the entire set of parent strings in each generation for the sub-
sequent genetic operations in the generational GA.

The objective of this paper is to present a novel MA for VQ
design. It employees a steady-state GA [5, 10], instead of the
general GA, and results in a low computational complexity.
The steady-state GA generates only one child string at a time.
A child string with better fitness value will replace its parent
string.

The proposed MA is termed the steady-state MA in this
paper. To fine tune the global search result of the steady-state
GA, the K-means algorithm will be applied for the local
improvement of the child string after the crossover and muta-
tion operations. A survival competition of the resulting child
string against the existing parent strings then follows. Since
only one new genetic string is produced at a time, it is only
necessary to employ the K-means algorithm to the new string
for local refinement in the steady-state MA. By contrast, in
the basic MA, the K-means algorithm should operate over the
entire population of genetic strings. The proposed algorithm
therefore may have lower computational time for VQ design
as compared with the basic MA. Based on the same popula-
tion size, numerical results reveal that the steady-state MA can
save more than 70% of computational time of the basic MA
while maintaining a comparable performance of distortion rate
for VQ design. The proposed algorithm therefore is an effec-
tive alternative for VQ applications where both high per-
formance and low computational time are desired.

Paper submitted 11/07/08; revised 05/08/09; 08/04/09; accepted 08/17/09.
Author for correspondence: Chien-Min Ou (e-mail: cmou@cyu.edu.tw).
*Department of Electronics Engineering, Ching-Yun University, Chungli,
Taiwan, R.O.C.

554 Journal of Marine Science and Technology, Vol. 18, No. 4 (2010)

II. THE PROPOSED ALGORITHM

We first start with the K-means algorithm for the VQ design.
Consider a full-search VQ with N codewords {y1,…, yN}.
Given a set of training vectors T = {x1,…, xt}, the average
distortion of the VQ is given by

 ()()
1

1
, .

j

t

j
j

D d
wt α

=

= ∑ x
x y (1)

Where w is the vector dimension, t is the number of training
vectors, α() is the source encoder, and d(u, v) is the squared
distance between vectors u and v.

The K-means algorithm is an iterative approach finding the
solution of {y1,…, yN} locally minimizing the average distor-
tion D given in (1). The algorithm is based on two necessary
conditions for the optimal VQ.

Necessary Condition 1: Let cell Ti be the set of training
vectors which are assigned to codeword yi by the source en-
coder α(). Given codewords {y1,…, yN}, the optimal partition
T1, T2,…, TN minimizing average distortion D in (1) should
satisfy

 (){ } : , ,iT T iα= ∈ =x x x (2)

where

 () ()
1

arg min , .j
j N

dα
≤ ≤

=x x y (3)

Necessary Condition 2: Given the partition, the optimal
codewords minimizing average distortion D in (1) should
satisfy

 ()
1

.
i

i
TiCard T ∈

= ∑
x

y x (4)

The K-means algorithm starts with a set of initial code-
words. Given the set of codewords, an optimal partition is
obtained using (3). After that, given the optimal partition ob-
tained from the previous step, a set of optimal codewords is
computed using (4). This process will be repeated until the
convergence of the average distortion D of the VQ is observed.

Although the K-means algorithm is effective, the algorithm
can only find the local optimal solution for the VQ design. Its
performance is dependent on the initial codewords. It may fall
into a poor local optimum when the initial codewords are
improperly selected.

An alternative to the K-means algorithm is to employ the
basic MA, which uses the generational GA and K-means al-
gorithm for the minimization of D. The generational GA is
used for the global search. It may find a near optimal solution
for the VQ design. The K-means algorithm then uses the

results of the global search as its initial codewords for the
subsequent local refinement.

In the basic MA, there are P genetic strings for the genetic
operations. Each string r represents a set of N codewords
{y1,…, yN}r. Note that these strings are strings of vectors, not
strings of binary numbers.

Let S(k) and D(k) denote the set of P strings and the value of
current minimum distortion D after the execution of the k - th
generation of the basic MA, respectively. Let s* be the current
optimum string during the course of genetic operations. In the
initial step, we let D(0) = ∞, and initialize ∗s as null. In addi-
tion, we can randomly select vectors from training data as the
codewords of strings in S(0).

Suppose that the (k – 1) - th iteration is completed, and the
execution of the k - th (k ≥ 1) is to be done. We then perform
the following genetic operations and local refinement se-
quentially on the strings in S(k – 1).

Regeneration: Since each string in S(k – 1) for the genetic
operations is in fact a codebook of VQ, its corresponding D
can be computed by using (1). The inverse of D is used as the
fitness function for each string. The regeneration process is
then conducted by using the roulette-wheel technique. That is,
for offspring generation, we spin a simulated biased rou-
lette-wheel whose slots have different sizes proportional to the
fitness values of the individual strings.

Once a string has been selected for reproduction, an exact
replica of it is made as a regeneration string. This regeneration
string will then be used for crossover and mutation. In the
algorithm, P regeneration strings are created after the regen-
eration operation.

Crossover: On each regeneration string r, {y1, y2,…, yN}r,
one point crossover is applied with probability . cP Out of
the total population, a partner string r�, {z1, z2,…, zN}r�, is
randomly chosen. Then a random integer n, between 1 and N,
is generated. Both strings are cut into two portions at position
n and the portions {yn+1,…, yN} and {zn+1,…, zN} are mutually
exchanged.

Mutation: Mutation is performed on each codeword of
each string with a small probability Pb. Suppose now the
string r = {y1, y2,…, yN}r is to be mutated. One of the N
codewords, y, is chosen at random. Among the w numbers in
y, we also select one number at random. Then a random
number, taking the binary values b or –b, is generated, and is
added to the chosen component.

Local Refinement: We apply the K-means algorithm to
each string for the local refinement of the genetic operations.
The P strings after the K-means design are then the strings of
the set S(k). The average distortion D value of each string in
S(k) is computed. Let r* be the string in S(k) having minimum
D value, and D* be the D value of r*. We then compare D*
with D(k – 1). If D* is smaller than D(k – 1), then D(k) ← D*,
and s* ← r*. Otherwise, D(k) ← D(k – 1), and the current
optimum string s* is retained the same. This completes the
execution of the k - th generation for the basic MA algorithm.

In the basic MA algorithm, the iteration continues until the

 C.-M. Ou.: Vector Quantization Based on Steady-State Memetic Algorithm 555

s* ← r*.
D(k) ← D*

Stop

Yes

Yes

No

No

Perform the following genetic operations sequentially
on the strings of S(k - 1)
1. Regeneration (with fitness function 1/D)
2. Crossover (with Pc)
3. Mutation (with Pb and b)

Given P, Pb, b, L.
Set D(0) = k, = 1, s* = null,
S(0) = set of P randomly selected strings.

Apply C-means to each of the P
strings resulting from the genetic
operations.

Is D* < D(k - 1)?

D(k) ← D(k - 1)

Are D(k) = D(k - 1) = ...
= D(k - L + 1)?

k ← k + 1

Fig. 1. The flowchart of the basic MA algorithm.

convergence of the sequence D(k). In practice, we stop the
design algorithm after the observation of L consecutive itera-
tions yielding identical D(k) value (that is, D(k) = D(k – 1) =…=
D(k – L + 1)). The current optimum string s* after the com-
pletion of basic MA algorithm is then chosen as the desired
result. The flowchart of the basic MA algorithm is shown in
Fig. 1.

The major drawback of the basic MA is that the K-means
algorithm should be applied to every string in the new popu-
lation for local refinement after the mutation and crossover
operations, as illustrated in Fig. 1. From (3), it follows that the
K-means algorithm uses the full-search scheme for the parti-
tioning process. The computational complexity of the K-
means algorithm therefore is high. When the population size
P is large, the basic MA may require long CPU time for
finding the optimal solution.

This paper presents a novel steady-state MA algorithm for
VQ design. The algorithm has significantly lower computa-

tional time as compared with the basic MA while maintaining
a comparable performance of distortion rate. In the proposed
MA, the steady-state GA is adopted for the global search. The
steady-state GA does not use the concept of generation for
evolution over populations of candidate solutions. Therefore,
it is not necessary to replace all the parent strings by child
strings. In fact, at most one parent string is replaced at a time.
The replacement process starts by first randomly selecting two
parent strings r1 and r2 for crossover operation. Assume r1 =
{y1, y2,…, yN}r1, and r2 = {z1, z2,…, zN}r2. After the crossover

operation, r1 and r2 then become

 { } { }
1 1

1 2 1 2 1 , , , , , , , , ,N n n Nr r+→y y y y y y z z… … …

 { } { }
2 2

1 2 1 2 1 , , , , , , , , ,N n n Nr r+→z z z z z z y y… … …

respectively.
Let c denote the child string of the proposed algorithm. In

our design, string c is first obtained by randomly selecting
either r1 or r2 after the crossover operation. The resulting
string c is then mutated and evaluated by the fitness function.
If the new child string is inferior to all the parent strings, no
parent string will be removed. Otherwise, the parent string
with lowest fitness value is replaced by the new child string.

We use the K-means algorithm for the local refinement of
child string c after the crossover and mutation operations in the
steady-state MA. The average distortion of the new string c
produced by the K-means is then evaluated. Let r be the

string in current S having lowest fitness value (i.e., highest
average distortion). Moreover, let D be the average distor-

tion of the string .r If the average distortion of c is less than

,D then S will be updated by replacing r with c. Subse-

quently, all the strings in the updated S are sorted in accor-
dance with their average distortion. The string with highest
average distortion then becomes the new .r This process is

repeated until all the parent strings in S survive from the chal-
lenges of L consecutive child strings. The parent string in S
having the minimum distortion is then selected as the desired
VQ codebook. The complete outline of the algorithm is listed
below:

Step 0:

Given: P, Pb, b, L.
Initial S = Set of P randomly selected strings.
r = string in S having lowest fitness value.

D = average distortion of the string .r

Step 1:
Randomly select two strings r1 and r2 from S.

Step 2:
Obtain the child string c by the crossover operation of r1
and r2.
Mutate c with Pb and b.

556 Journal of Marine Science and Technology, Vol. 18, No. 4 (2010)

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250 300 350 400 450 500 550 600
D

Times
Steady State MA

Basic MA

K-means

Fig. 3. The distribution of the average distortion for the proposed algorithm, the Basic MA algorithm and the K-means algorithm.

Apply C-Means algorithm to the child string c.
Compute average distortion D of c.

Given P, Pb, b, L.
Initial S = set of P randomly selected strings.
r = string in S having lowest fitness value.
D = D of r.
Randomly select r1 and r2 from S.

1. Obtain the child string c by the crossover operation
of r1 and r2.

2. Mutate c (with Pb and b).

Are child strings not
survival for L consecutive
times?

1. r2 = r1

2. r1 = Randomly selected
string from S.

1. In S, replace r by c.
2. Sort all strings in S

according to their
distortions.

3. Find new r in S.
4. D = D of r.

Yes

No

No

Yes

Stop

Is D of c < D?

Fig. 2. The flowchart of the steady-state MA algorithm.

Step 3:
Apply K-means algorithm to the child string c.
Compute the average distortion D of c after the K-means
algorithm.

Step 4:
If the average distortion D of c is less than D, then

In S, replace r by c,

Sort all strings in S according to their distortions,

Find new r in S,

Go to Step 1,
else if all the parent strings in S are survival for L consecu-
tive times, then
Select the string having minimum distortion in S as the de-
sired result,
Stop the algorithm.

The flowchart of the steady-state algorithm is shown in

Fig. 2. It can be observed from Step 3 of the outline that the
K-means algorithm operates only on the string c. It is not
necessary for the K-means algorithm to operate over the entire
set of genetic strings S in the proposed steady-state MA. In
contrast, the K-means algorithm should operate over the entire
set S(k) for each iteration k in the basic MA algorithm, as
shown in Fig. 1. The proposed algorithm therefore may have
lower computational load for the local refinement. The im-
provement in computational time may be significant when the
number of genetic strings P for the design is large.

III. EXPERIMENTAL RESULTS

This section presents some numerical results of the pro-
posed algorithm. All the experiments considered in this sec-
tion are executed on the Pentium Core 2 Duo processor with
2 Gbytes main memory. Three 512 × 512 images “Lena”,
“Bridge” and “Boat” are used as the training data for the VQ
design.

Figure 3 shows the distribution of the average distortion of
steady-state MA for 200 independent runs. Each run starts
with different set of genetic strings randomly selected from
training images. The number of genetic strings in the experi-
ment is P = 32. Each genetic string contains N = 32 codewords.
The dimension of codewords is w = 2 × 2. The mutation prob-
ability is set to be Pb = 0.01. The distribution of basic MA for
200 independent runs with the same P, N, w and Pb is also
shown in Fig. 3. Moreover, the distribution of K-Means for
200 independent runs with the same N and w is included in
Fig. 3 for comparison purpose. The initial codewords of basic
MA and K-means algorithm are also randomly selected.

 C.-M. Ou.: Vector Quantization Based on Steady-State Memetic Algorithm 557

Table 1. The average CPU time and distortion of the
proposed algorithm and the basic MA algorithm
for various population sizes.

Steady State MA Basic MA
P CPU Time

(Min.)
Ave. Dist.

CPU Time
(Min.)

Ave. Dist.

8 3.4 238.74 9.17 241.13
16 7.19 235.26 25.11 236.82
32 15.1 232.84 50.52 235.49
64 31.53 231.17 131.66 234.62
128 62.81 230.31 256.28 232.18

From Fig. 3, it can be observed that the K-means algorithm

has a broad distribution of local optima. Results between the
best and worst cases differed by more than 100%. On the
other hand, from Fig. 3, we see that the distribution of distor-
tion of the steady-state MA has a better concentration. The
worst case of steady-state MA has distortion D = 242. Only
6.0% of the distortion of VQs designed by K-means algorithm
are lower than that of the worst case of the K-means algorithm.
The best case of the steady-state MA has D =229. The dif-
ference between the worst and best cases is only 13.

We can also observe from Fig. 3 that both the steady-state
GA and basic MA have similar distribution of distortion.
Nevertheless, the average CPU time per each run of the pro-
posed algorithm is 15 mins. In contrast, the average CPU time
of the basic MA is 50 mins. The CPU time of the proposed
algorithm is only 30% of that of the basic MA.

Table 1 shows the average CPU time and distortion of the
proposed algorithm and the basic MA algorithm for various
population sizes. In this experiment, we fix the number of
codewords in each string N as 32, the dimension of codewords
w as 2 × 2, and the mutation probability as Pb = 0.01. The
average CPU time and distortion for each P in the table are
obtained by averaging the results of 100 independent runs.
From the table, we observe that as P increases, the CPU time
of the basic MA increases significantly. However, the pro-
posed algorithm remains low CPU time even when P becomes
large. In addition, both the steady-state MA and basic MA
having comparable performance give the same P.

Finally, given N = 32 and w = 2 × 2, the average distortions
of the proposed algorithm for various pairs of (P, Pb) are
shown in Table 2. Similar to Table 1, the average distortion for
each pair of (P, Pb) in the table is obtained by averaging the
results of 100 independent runs. From the table, it can be
concluded that the variation in performance for different set of
parameters is small. All these facts demonstrate the effective-
ness of the proposed algorithm.

IV. CONCLUDING REMARKS

Experimental results show that our steady-state MA has
low distortion and low CPU time for VQ design. Based on the

Table 2. The average distortion of the proposed algorithm
for various pairs of (P, Pb).

 Pb = 0.01 Pb = 0.05 Pb = 0.1 Pb = 0.15 Pb = 0.2

P = 8 238.74 241.18 245.91 244.32 246.35
P = 16 235.26 239.31 243.71 243.86 244.88
P = 32 232.84 238.3 242.26 242.44 244.17
P = 64 231.17 237.47 240.52 240.50 241.74

same population size, the steady-state MA is able to save more
than 70% of the CPU time of the basic MA. In addition, both
the steady-state MA and basic MA have similar distribution of
performance over 200 independent runs. The distribution of
the proposed algorithm has a better concentration as compared
with the basic K-means algorithm. This result reveals that the
proposed algorithm is insensitive to the selection of initial
codewords. The proposed algorithm therefore is beneficial for
VQ training where both the computational complexity and
distortion are important concerns.

REFERENCES

1. Areibi, S., Moussa, M., and Abdullah, H., “A comparison of genetic/
memetic algorithms and heuristic searching,” Proceedings of the 2001
International Conference on Artificial Intelligence, Las Vegas, Nevada,
pp. 660-666 (2001).

2. Coe, S., Areibi, S., and Moussa, M., “A hardware memetic accelerator for
VLSI circuit partitioning,” Computers and Electrical Engineering, Vol.
33, pp. 233-248 (2007).

3. Eiben, A. E. and Smith, J. E., Introduction to Evolutionary Computing,
Springer, Berlin (2003).

4. Gersho, A. and Gray, R. M., Vector Quantization and Signal Compression,
Kluwer, Boston (1992).

5. Goldberg, D. E. and Deb, K., “A comparative analysis of selection
schemes used in genetic algorithms,” In: Rawlins, G. (Ed.), Fundations of
Genetic Algorithms, Morgan Kaufmann, San Mateo, pp. 69-93 (1991).

6. Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman,
R., and Wu, A. Y., “An efficient C-means clustering algorithm: analysis
and implementation,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, Vol. 24, No. 7, pp. 881-892 (2002).

7. Lin, T. K., Li, H. Y., Hwang, W. J., Ou, C. M., and Weng, S. K., “Genetic
vector quantizer design on reconfigurable hardware,” Lecture Notes in
Computer Science, Vol. 5361, pp. 473-482 (2008).

8. Merz, P. and Freisleben, B., “Genetic algorithms for binary quadratic
programming,” Proceedings of the 1999 Genetic and Evolutionary Com-
putation Conference, Morgan Kaufmann, San Francisco, pp. 417-424
(1999).

9. Radcliffe, N. J. and Surry, P. D., “Formal memetic algorithms,” Lecture
Notes in Computer Science, Vol. 865, pp. 1-16 (1994).

10. Rasheed, K. and Davisson, B. D., “Effect of global parallelism on the
behavior of a steady state genetic algorithm for design optimization,”
Proceedings of the Congress on Evolutionary Computation, Vol. 1, pp.
541 (1999).

11. Scheunders, S., “A genetic C-means clustering algorithm applied to color
image quantization,” Pattern Recognition, Vol. 30, No. 6, pp. 859-866
(1997).

12. Srinivas, M. and Patnaik, L. M., “Genetic algorithm: A survey,” IEEE
Computer, Vol. 27, pp. 17-26 (1994).

	VECTOR QUANTIZATION BASED ON STEADY-STATE MEMETIC ALGORITHM
	Recommended Citation

	tmp.1628202243.pdf.quUlL

