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ABSTRACT 

This paper presents a constructive method to design stabi-
lizing controllers for a class of second-order uncertain nonlin- 
ear systems whose input parts may vanish at the origin.  A 
sufficient condition for the existence of stabilizing state feed-
back controllers is provided.  Under the small control property, 
a formula is proposed for constructing continuous stabilizing 
feedback laws.  In the case that the small control property does 
not hold, another formula for constructing continuous state 
feedback controllers, with small control magnitude near the 
origin, to achieve robust practical stability is presented. 

I. INTRODUCTION 

For stability analysis and controller synthesis problems of 
nonlinear systems, Lyapunov based methods are the most 
important approaches.  It is well known that for nonlinear 
systems in feedback linearizable form, strict feedback form, 
and feedforward form et al., there are systematic ways to find 
stabilizing controllers and the corresponding Lyapunov func-
tions, see [2, 4-6].  For example, consider a second-order non- 
linear system in strict feedback form: 

 1 2 1( )x x xφ= +�  

 2 1 2 1 2( , ) ( , )x f x x g x x u= +�  

If 1 2( , ) 0g x x ≠  in a neighborhood of the origin, the back-
stepping approach can be used to derive stabilizing controller.  
Moreover, the corresponding Lyapunov function can be ob-
tained.  However, to applying the backstepping approach, it is 
necessary that the function g(x1, x2) (called input part) is 

nonzero in a neighborhood of the origin.  Moreover, the ob-
tained controllers often achieve only local stability.  If the 
input part g(x1, x2) vanishes at the origin (i.e., (0, 0) 0g = ), the 
backstepping approach cannot be used to solve its stabilization 
problem.  In this case, how to design globally stabilizing con-
trollers is interesting. 

In this paper, we consider the stabilization problem for a 
class of uncertain nonlinear systems, whose input parts vanish 
at the origin.  For simplification, we focus on the second-order 
case.  Based on the control Lyapunov function approach (please 
see [1, 3, 5-10]), a simple sufficient condition for the existence 
of stabilizing controllers is derived.  Then, based on the Son-
tag’s formula (please see [10]), we propose a new formula for 
constructing globally and robustly stabilizing state feedback 
controllers.  In [11], some results about the stabilization for 
polytopic nonlinear systems have been presented.  It has 
been shown that for any polytopic nonlinear system in ca-
nonical form, robust stabilization is always possible.  However, 
in [11], the case that the small control property does not hold 
has not been discussed.  In addition, in [11], for polytopic 
nonlinear systems in canonical form, it is assumed that the 
input parts are always nonzero.  In this paper, we consider the 
case that the input parts of the considered systems vanish at the 
origin.  Moreover, we discuss both the cases that the small 
control property holds or not.  If the small control property 
holds, the obtained feedback law is continuous in R2.  If the 
small control property does not hold, a new formula is pro-
vided for constructing continuous feedback laws, with small 
control magnitude near the origin, to achieve robust practical 
stability. 

II. PROBLEM FORMULATION 

Consider a second-order nonlinear system: 

 1 1 1 2( , )x f x x=�  

 2 2 1 2 1 2( , ) ( , )x f x x g x x u= +�  (1) 

where x = [x1  x2]
T ∈ R2 denotes the state, u ∈ R is the control 

input.  Suppose that smooth functions f1(.,.) and g(.,.) are 
known, and the smooth function f2(.,.) is not exactly known.   
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Consider the case that 2 1 2 2 1 2
1

( , ) ( , )
m

i i
i

f x x f x xα
=

= ⋅∑  with un- 

known parameters 0 1,iα≤ ≤  i = 1, 2, …, m, and 
1

1.
m

i
i

α
=

=∑  

Let g(x1, x2) = 0 if and only if 2 1( )x xη=  for some smooth 

function (.)η  with (0) 0.η =  

The main objective of this paper is to find a function p(.) 
such that the state feedback controller u = p(x) globally and 
asymptotically stabilizes the system (1) for all possible un-
certainty.  If continuous stabilizing controllers cannot be found, 
then a continuous controller u = h(x) is developed to achieve 
robust practical stability. 

 
Remark 1: It should be noted that the function g(x1, x2) has not 
been assumed to be nonzero in a neighborhood of the origin.  
If f1(x1, x2) = x2 + φ(x2) for some smooth function ( ),φ ⋅  f2(x1, x2) 
is precisely known, and g(x1, x2) ≠ 0 for all x ∈ R2, the system 
(1) is in strict-feedback form that is well studied in the litera-
ture.  In this paper, we relax these assumptions, and therefore, 
the structure of system (1) can be seen as an extension of 
strict-feedback form. ■ 
 
Remark 2: It is a little restriction that assuming g(x1, x2) = 0 if 
and only if x2 = η(x1).  In fact, we can easily extend our results 
to the more general case that g(x1, x2) = 0 if and only if x sat-
isfying ϕ(x1, x2) = 0 for some smooth function ( , ).ϕ ⋅ ⋅   We 
make the assumption only for simplification. ■ 

III. MAIN RESULTS 

For system (1), since g(x1, x2) vanishes at the origin, the 
feedback linearization and the backstepping approaches can-
not be used to derive stabilizing controllers. 

Based on the robust control Lyapunov function approach, in 
the following theorem a sufficient condition for the existence 
of robust stabilizing feedback laws for the system (1) will be 
proposed.  Moreover, a universal formula for constructing 
stabilizing controllers will be presented. 

 
Theorem 1: Consider the system (1).  Suppose g(x1, x2) = 0 if 
and only if x2 = η(x1).  Then, there exists a feedback law 
which can globally asymptotically stabilize the system if 
x1 f1(x1, η(x1)) < 0 for all x1 ≠ 0.  Moreover, in this case, the 
feedback law 

{ }

{ }

2 4

1,2,...,

2 4

1,2,...,

( ) ( ) ( )
min ,  if ( ) 0

( )

( )     0,                                                    if ( ) 0

( ) ( ) ( )
max ,  if ( ) 0

( )

i i

i m

i i

i m

a x a x b x
b x

b x

u p x b x

a x a x b x
b x

b x

∈

∈

  + +  − > 
   = = =


 + + − < 
  





 

  (2) 

is one such controller, where 

 

1
1 1 1 2 2 1 1 1 2

1

2 1 2 1 2

( )
( ) ( , ) ( ( )) ( , )

          ( ( )) ( , ),     1 2

i

i

d x
a x x f x x x x f x x

dx

x x f x x i , ,...,m

ηη

η

= ⋅ − − ⋅ ⋅

+ − ⋅ =

 

 2 1 1 2( ) ( ( )) ( , ).b x x x g x xη= − ⋅  

Proof: Choose ( )22
1 2 1( ) 0.5 0.5 ( )V x x x xη= + −  as a candidate 

robust control Lyapunov function.  Note that V(x) is positive 
definite by definition.  It is clear that 

 

1
1 1 1 2 2 1 1 1 2

1

2 1 2 1 2
1

2 1 1 2

( )
( ) ( , ) ( ( )) ( , )

           ( ( )) ( , )

           ( ( )) ( , )

m

i i
i

d x
V x x f x x x x f x x

dx

x x f x x

x x g x x u

ηη

η α

η
=
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+ − ⋅ ⋅
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∑
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( 1 1 1 2 2 1
1

1
1 1 2 2 1 2

1

( , ) ( ( ))

( )
   ( , ) ( , ) ( )

m
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i

i

x f x x x x

d x
f x x f x x b x u

dx

α η

η

=

= ⋅ ⋅ − −

 
× ⋅ + + 
 

∑

  

1

( ) ( )
m

i i
i

a x b x uα
=

= ⋅ +∑  

( )
1

( ) ( )
m

i i
i

a x b x uα
=

= ⋅ +∑  (3) 

Since b(x) = 0 if and only if )( 12 xx η= , it is obvious that 

( ) 0 1 1 1 1( ) ( , ( )) 0i b xa x x f x xη= = ⋅ <  ∀x ≠ 0 and ∀i ∈ {1, 2, …, 

m}.  This implies that V(x) is a robust control Lyapunov func-
tion for system (1).  Therefore, stabilizing feedback laws for 
system (1) exist [10]. 

Now, we prove that the feedback law (2) asymptotically 
stabilizes (1).  If b(x) > 0, then  

 

{ }

2 4

1,2,...,

2 4

2 4

( ) ( ) ( )

( ) ( ) ( )
       ( ) ( ) min

( )

( ) ( ) ( )
        ( ) ( )

( )

        ( ) ( )

        0.

i
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+
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 ≤ + ⋅ −
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= − +

<

 



 J.-L. Wu and C.-F. Yung: On State-Feedback Controller Synthesis for Second-Order Nonlinear Systems with Uncertainties 661 

 

Therefore, 

 

( )

( )
1

2 4

1

( ) ( ) ( ) ( )

          ( ) ( ) 0.

m

i i
i

m

i i
i

V x a x b x p x

a x b x

α

α

=

=

= ⋅ +

≤ ⋅ − + <

∑

∑

�

 

Similarly, if b(x) < 0, we can show that ( ) 0V x <�  by using 
the feedback law (2). 

Finally, note that b(x) = 0 if and only if x2 = η(x1).  If x ≠ 0 is 
such that b(x) = 0, then 

 ( ) 0 1 1 1 1( ) ( , ( )) 0b xV x x f x xη= = ⋅ <� . 

Therefore, the feedback law (2) globally asymptotically 
stabilizes system (1). ■ 

As in [10], we say that the robust control Lyapunov 
function V(x) of system (1) satisfies the small control prop-
erty if for each ε > 0 there is a δ > 0 such that, for all x ≠ 0 
satisfying ||x|| < δ, there is some u with ||u|| < ε such that 

( )
1

( ) ( ) 0
m

i i
i

a x b x uα
=

⋅ + <∑  for all possible uncertainty (or equiva- 

lently, ai (x) + b(x)u < 0 ∀i ∈ {1, 2, …, m}). 
 

Lemma 1: If V(x) satisfies the small control property, then the 
controller (2) is continuous in R2. 
 
Proof: Since V(x) satisfies the small control property, the 
function  

 

2 4( ) ( ) ( )
,  if ( ) 0( ) ( )

0,                                       if ( ) 0

i i

i

a x a x b x
b x

p x b x

b x

 + +
− ≠≡ 
 =

 

is continuous in R2 [10].  Then, by definition, it is clear that the 
feedback law (2) is continuous in R2. ■ 

However, if V(x) does not satisfy the small control property, 
the feedback law (2) will be discontinuous at the origin.  In 
this case, b(x j) may converge to zero faster than a(x j) as x j 
approaching the origin.  Although this causes no problems 
regarding uniqueness of solutions [10], it can cause an unde-
sired property that the feedback law (2) may have extremely 
large control magnitude near the origin.  In the following, for 
the case that the small control property does not hold, we 
provide a new formula for constructing continuous feedback 
laws, with small control magnitude near the origin, to achieve 
robust practical stability.  For some practical applications, ro-
bust practical stability is enough. 

Define 
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{ }

2 4
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for some µ > 0 and ρ > 0.  Then, we have the following result. 
 
Theorem 2: Consider the system (1).  Suppose that g(x1, x2) = 
0 if and only if x2 = η(x1), and that 1 1 1 1( , ( )) 0x f x xη <  for all 
x1 ≠ 0.  Moreover, suppose the robust control Lyapunov func-
tion ( )22

1 2 1( ) 0.5 0.5 ( )V x x x xη= + −  of system (1) does not 
satisfy the small control property.  Then, the feedback law 

 
( ),  if 

( )
ˆ ( ),  if 

p x x
u h x

p x x

ρ
ρ

 ≥= =  <
 

is continuous in R2 and is able to achieve robust practical 
stability (that is, lim ( )

t
x t ρ

→∞
< ). 

 
Proof: Substituting u = h(x) into (3) yields 

 ( ))()()()(
1

xhxbxaxV i

m

i
i +⋅= ∑

=
α� . 

If ||x|| ≥ ρ, h(x) = p(x).  Therefore, lim ( )
t

x t ρ
→∞

<  since 

( )
1

( ) ( ) ( ) ( ) 0
m

i i
i

V x a x b x p xα
=

= ⋅ + <∑�  for ||x|| ≥ ρ. 

Now we prove the continuity of h(x).  We first show that 

ˆ ( )p x  is continuous in the region { }2x R x ρ∈ < .  By the 

definition of ˆ ( ),p x  in this region the only possible discon-

tinuous points are the origin and those points that satisfying 
b(x) = 0.  It is clear that  

 ˆlim ( ) 0j

j
p x

→∞
=  (4) 

if x j is a sequence of states that converging to the origin.  

Moreover, note that ( ) 0b x xµ ρ+ ⋅ − ≠  if b(x) > 0 and 

( ) 0b x xµ ρ− ⋅ − ≠  if b(x) < 0.  Let x j be a sequence of 

states that satisfying b(x j) > 0 and converging to a point 0x ≠  

with x ρ<  and ( ) 0.b x =   Then, ( ) 0ia x <  and, therefore, 

{ }

2 4

1,2,...,

( ) ( ) ( )
lim min

( )

j j j
i i

j jj i m

a x a x b x

b x xµ ρ→∞ ∈
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 { }

2

1,2,...,

( ) ( )
         min

         0.

i i

i m

a x a x

xµ ρ∈

 + = − 
⋅ − ⋅  

=

 

Similarly, if x j is a sequence of state that satisfying b(x j) < 0 
and converging to a point 0x ≠  with x ρ<  and ( ) 0,b x =  
we can show that 

 
{ }

2 4

1,2,...,

( ) ( ) ( )
lim max 0

( )

j j j
i i

j jj i m

a x a x b x

b x xµ ρ→∞ ∈

 + + − = 
− ⋅ − ⋅  

. 

This shows that the function ˆ ( )p x  is continuous in 

{ }2x R x ρ∈ < .  Then, by the definition of h(x), its conti-

nuity is clear since ˆ ( ) ( )p x p x=  on the boundary x ρ= . ■ 

IV. EXAMPLE 

Consider the following system (0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1, and 
α1 + α2 = 1): 

 1 1 1 2( , )x f x x=�  

 2 1 21 1 2 2 22 1 2 1 2( , ) ( , ) ( , )x f x x f x x g x x uα α= ⋅ + ⋅ +�  (5) 

where 

 3 2
1 1 2 1 2 1 2( , ) 0.1 ,f x x x x x x= + ⋅  

 2
21 1 2 2 1 2 1( , ) cos( ) ,f x x x x x x= ⋅ +  

 2
22 1 2 1 1 2 2( , ) sin( ) ,f x x x x x x= ⋅ −  

and 

 2 2
1 2 1 2 2( , ) ( 2 ) (1 ).g x x x x x= + ⋅ +  

It should be noted that g(0, 0) = 0.  We can see that g(x1, 
x2) = 0 if and only if 2

2 1 1( ) 0.5x x xη= ≡ − , and that x1 f1(x1, 
η(x1)) < 0 for all 1 0x ≠ .  Therefore, 
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( )
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1 2 1

22 2
1 2 1
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       0.5 0.5 0.5

V x x x x

x x x

η= + −

= + +
 

is a robust control Lyapunov function for the system (4).  Let 
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Since b(x) ≥ 0 ∀x, let 
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It can be verified that the robust control Lyapunov function 
V(x) does not satisfy the small control property.  Therefore, 
the controller u = p(x) may have extremely large control mag-
nitude near the origin.  By Theorem 2, define 
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Then, the feedback law 

 
( ),  if 

( )
ˆ ( ),  if 

p x x
u h x

p x x

ρ
ρ

 ≥= =  <
 

is continuous in R2 and is able to achieve robust practical 
stability with lim ( ) .

t
x t ρ

→∞
<  

For several different choices of uncertain parameters ((α1, 
α2) = (1, 0), (α1, α2) = (0.8, 0.2), (α1, α2) = (0.6, 0.4), and (α1, 
α2) = (0.4, 0.6)), Fig. 1(a) shows the trajectories and control 
inputs of the system (5) with u = h(x), µ = 0.002, and ρ = 0.2, 
and Fig. 1(b) shows the trajectories and control inputs of the 
system (5) with u = p(x).  It can be seen that in the cases of u = 
h(x) with µ = 0.002 and ρ = 0.2, the state trajectories almost 
coincide with those of the cases u = p(x) in the first 200 sec-
onds.  However, the control magnitudes near the origin for u = 
h(x) are much smaller comparing with those of u = p(x).  The 
control magnitudes of u = p(x) tend to grow up without bound 
as state converging to the origin. 
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Fig. 1. (a) The state trajectories and control inputs of system (5) with controllers u = h(x) (µ = 0.002 and ρ = 0.2), (b) the state trajectories and control 

inputs of system (5) with controllers u = p(x). 

 
 

V. CONCLUSIONS 

In this note, an approach for finding state feedback con-
trollers to globally asymptotically stabilize a class of second- 
order polytopic nonlinear systems, whose input parts vanish at 
the origin, has been presented.  A sufficient condition for the 
existence of stabilizing feedback laws has been derived.  
Based on the Sontag’s formula, a new formula has been pro-
vided for constructing continuous stabilizing controllers if the 
small control property holds.  For the case that the small con-
trol property does not hold, another formula has been pro-
posed for constructing continuous feedback laws, which have 
small control magnitude near the origin, to achieve robust 
practical stability. 
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