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ABSTRACT 

There are many analytical solutions to the mild-slope equa-
tion that employ Hunt’s direct solution of linear dispersion [7] 
to solve wave-scattering problems involving varying quiescent 
depths.  The advantage of Hunt’s direct solution of linear 
dispersion is that it can extend the range of applicability of the 
mild-slope equation from long-wave to deep-wave conditions.  
However, because the bottom curvature and slope-squared 
terms are neglected, the mild-slope equation cannot preserve 
mass conservation.  In this investigation, we derived an ana-
lytic solution of the modified mild-slope equation for a conical 
island by adopting Hunt’s direct solution of linear dispersion 
to be applicable to intermediate water depth waves.  We stud-
ied three differently slopes of conical islands in this paper.  
The relative difference between the present solution, including 
extended terms, and the conventional mild-slope equation 
proposed by Liu and Lin [11] was also estimated.  The relative 
difference is insignificant in the long waves cases of the 
conical island; the maximal difference is just 0.4%. 

In contrast with the long waves conditions, the relative dif-
ference in the case of intermediate water waves is as high as 
8.7% in T = 120 sec with a bottom slope of 1:3.  Our analytical 
procedure shows that the 3rd Hunt’s approximation can perform 
as well as the conventional mild-slope equation proposed by 
Liu and Lin [11], which involves a 5th approximation.  Finally, 
the relative difference between the present solution and the con- 
ventional mild-slope equation proposed by Liu and Lin [11] 
increases as the azimuth of the conical island decreases. 

I. INTRODUCTION 

Accurate prediction of water wave transformation over an 
irregular topography on which structures may be situated is 
important to engineers who plan, design, construct, and main-
tain coastal facilities.  Phenomena such as refraction, diffrac-
tion, reflection, shoaling, and wave breaking take place when 
water waves propagate from deep to shallow water.  Generally, 
numerical, experimental and analytical methods are adopted to 
predict wave transformation.  Because the physical model 
lacks any approximations, testing experimental data against 
numerical results is the preferred method of study.  However, 
experimental data is expensive and time-consuming to obtain.  
Furthermore, poor experimental technique leads to erroneous 
data.  Numerical models are based on approximation.  Nu-
merical models can be tested against analytical solutions, as 
the accuracy of an analytical solution is limited only by the 
assumptions employed in deriving the solution.  Although 
analytical solutions are often available only for certain special 
cases under idealized assumptions, they have the advantages 
of being quick, simple and accurate.  It is also easier to use 
analytical solutions to evaluate the influence of specific forc-
ing or boundary conditions on the problem. 

Analytical solutions are generally only obtainable for sim-
ple bottom topographies and particular types of waves.  Mac-
Camy and Fuchs [13] proposed a solution to the Helmholtz 
equation for a cylindrical island standing in an open sea with 
constant depth.  However, constant water depth is an ideal case.  
To describe a wave propagating over complex bottom topog-
raphy, the mild-slope equation (MSE), proposed by Berkhoff 
[1], is an appropriate way of approximating the refraction 
and diffraction of linearized surface waves for water of vary-
ing quiescent depth.  The MSE is widely applied, not only in 
long-wave conditions but also in short-wave conditions.  The 
mild-slope equation would reduces to the Helmholtz equation 
in short-wave conditions and becomes the linear shallow water 
equation in long-wave conditions.  A frequently considered 
problem in analytical studies of water wave transformation is 
long-wave motion around a circular island mounted on an 
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axisymmetric shoal.  Homma [5] proposed solutions to the 
linear shallow water equation for a circular cylindrical island 
mounted on a parabolic shoal.  Zhang and Zhu [18] presented a 
series solution to the linear shallow water equation for water 
wave scattering by a conical island.  Zhu and Zhang [19] pro-
posed an analytical solution, in the form of a Fourier-cosine 
series, for long-wave scattering by a circular cylindrical island 
mounted on a conical shoal.  Based on the linear shallow water 
equation, Yu and Zhang [17] published a form of the solutions 
for axisymmetric bottom geometries that can be described as a 
power of the radial distance.  In addition, Suh et al. [16] pre-
sented an analytical solution for a long wave propagating over 
a parabolic pit, in which the water depth varies as the second 
power of the radial distance from the pit center. 

However, the analytical solutions of the shallow water equa- 
tion mentioned above are restricted to long-wave conditions.  
An analytical solution to MSE is very difficult to obtain, even 
though it is only a simple linear partial differential equation.  
The implicit wave dispersion relation on varying topogra-
phy is the main barrier to obtaining the corresponding wave 
number.  To overcome this difficulty, recently Liu et al. [12] 
employed Hunt’s [7] Padé approximation to the linear disper-
sion relation to represent MSE in terms of a combination of 
Fourier series and Taylor series and proposed an analytic- 
cal solution for the combined wave refraction and diffraction 
around a circular cylindrical island mounted on a parabolic 
shoal.  Using this method, a series of related studies was pub-
lished.  Lin and Liu [11] proposed an analytical solution based 
on MSE for wave scattering and trapping of wave energy by a 
submerged truncated parabolic shoal.  Similarly, Liu and Lin 
[11] presented an analytical solution for the combined refrac-
tion-diffraction of plane monochromatic waves by a circular 
cylinder mounted on a conical shoal in an otherwise open sea 
of constant depth.  Jung and Suh [8] derived an analytical solu-
tion to MSE for a wave propagating over an axisymmetric pit, 
and extended the solution to the nearly vertical side slope trench.  
Furthermore, Jung et al. [10] attempted to derive an analytical 
solution for a wave propagating over a trench composed of a 
linear slope and an abrupt change of depth.  The analytical 
results were compared with those of the hyperbolic MSE. 

Booij [2] compared the numerical results from MSE with 
finite element model results for the reflection coefficients of 
monochromatic wave propagating over a planar slope and 
concluded that MSE is sufficiently accurate for bottom slope 
values below 1:3.  However, many investigations [4, 6, 14, 15] 
have pointed out that the conventional MSE fails to produce 
adequate approximations for rapidly changing topographies 
or uneven seabed.  The bottom curvature and slope-squared 
terms play an important role in uneven topography, especially 
in regions of intermediate water depth.  To account for these 
terms Jung and Suh [9] presented an analytical solution to the 
modified mild-slope equation (MMSE) [3] for a long wave 
propagating over an axisymmetric pit.  However, this analytical 
solution is restricted to long-wave conditions. 
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Fig. 1. Sketch of a circular cylindrical island mounted on an axisym-

metric shoal. 

 
 
Hunt’s direct solution can extend MSE to the whole range 

from long wave to short wave.  To the best of the author’s 
knowledge, MMSE has never been solved analytically for 
intermediate water depth conditions.  The principle difficulty 
in solving MMSE analytically comes from the fact that the 
bottom slope-squared term and bottom curvature term are very 
complex and hard to simplify.  In this investigation, by adopt-
ing the linear wave dispersion relation from Hunt’s direct 
solution and transforming the implicit kh (relative depth) into 
an explicit power series, we not only derive an analytical 
solution to MMSE for waves propagating around a circular 
cylinder mounted on an axisymmetric conical shoal in an oth-
erwise open sea of constant depth, but also extend the solution 
to intermediate water depth conditions. 

II. ANALYTICAL SOLUTION 

Consider the scattering of simple harmonic waves by a cir-
cular cylindrical island mounted on a conical shoal (Fig. 1), 
where a, b, ha, and hb are the radius of the top cylinder, the ra- 
dius of the toe of the bottom shoal, the water depth along the 
coastline, and the constant water depth outside the island, re-
spectively.  Let (x, y, z) be Cartesian coordinates, set up so that 
z = 0 corresponds to the quiescent free surface position of an 
incompressible fluid in irrotational motion.  The origin is lo-
cated at the center of the island on the quiescent free surface.  
The water elevation η = η(x, y) satisfies the following MMSE 
[3]: 

2 2 2
1 2[ ] [ ( ) ( ) ( ) ]h g h g h hCC k CC f kh g h f kh gk hη η∇ ⋅ ∇ + + ∇ + ∇  

= 0  (1) 
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Fig. 2. Sketch of f1(kh) and f2(kh). 

 
 

in which ∇h( ) = (∂( )/∂x, ∂( )/∂y) is the horizontal gradient 
operator; C is the phase velocity, Cg is the group velocity, g is 
the acceleration due to gravity, h(x, y) is the water depth, k(x, y) 

is the local wave number, and ( )hh∇  and 2
hh∇  are the bottom 

slopes and bottom curvatures in the x and y directions, re-
spectively. 
f1(kh) and f2(kh) are both functions of kh, which take the form: 

2

1 3

2

[ 4 cosh sinh 3 sinh 8( ) sinh ]
( )

8cosh (2 sinh 2 )

tanh

2cosh

kh kh kh kh kh kh
f kh

kh kh kh

kh kh

kh

− + + +=
+

−

, 

2
4 3

2 3

sech
( ) [8( ) 16( ) sinh 2

6[2 sinh 2 ]

kh
f kh kh kh kh

kh kh
= +

+
 

29sinh 2 cosh 2kh kh−  

412 (1 2sinh 2 )(2 sinh 2 )]kh kh kh kh+ + + . 

The coefficients of the curvature and slope-squared terms 
are plotted as functions of kh in Fig. 2.  Both coefficients 
approach zero at in the shallow and deep water limits, and 
are most important in the range of intermediate water depth.  
If the last two terms in the brackets of (1) are removed, the 
governing equation is reduced to the conventional MSE. 

We also have 

 1/ 2tanh 2
( ) , (1 ).

2 sinh 2g

g kh C kh
C C

k kh
= = +  

k(x, y) is determined by the implicit dispersion relation 

 2 tanh( )gk khω =  (2) 

For convenience, we define the following dimensionless 
parameters: 

( , )
, , , ( , ) , ,g

g

CC a x y
C C x y

g a Aga ga

ηω ω η′ ′ ′ ′ ′ ′= = = = =  

, .
h

h k ka
a

′ ′= =  

As a consequence, the governing equation and dispersion 
relation become 

2 2
1[ ( )] [ ( ) ( )g gC C k C C f k h hη′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′∇ ⋅∇ + ⋅ + ⋅∇  

2
2 ( ) ( ) ] 0f k h k h η′ ′ ′ ′ ′ ′+ ⋅ ∇ =   (3) 

and 

 tanh( ),K Kν ′ ′ ′≡  (4) 

respectively, where ( ) ( ) ( )( / , / ),h x y′ ′ ′∇ = ∂ ∂ ∂ ∂  2hν ω′ ′ ′=  

and 2 .hν ω′ ′ ′=   Hereafter, all of the primes will be dropped 
for convenience.  Since the topography is axisymmetric, polar 
coordinates defined by cosx r θ=  and siny r θ=  will be used.  

In these coordinates, Eq. (3) may be written as 

2 2

2 2 2

( ) 1 1g
g g g

CC
CC CC CC

r r r rr r

η η η η
θ

∂∂ ∂ ∂ ∂+ + +
∂ ∂ ∂∂ ∂

 

2 2 2
1 2[ ( ) ] 0gC

f h f k h
C

ω η+ + ⋅∇ + ⋅ ∇ =  (5) 

It was proven in Liu et al. [12] that the coefficients of (5), 
i.e., CCg, Cg/C and ( ) /gCC r∂ ∂  can be expressed as explicit 
functions: 

 ( ) ( )
( )

2 2
2 2 2

11 1

12 2g

P
CC K

PK

ν νν ν ν
ν νω ω
 + = − + ≈

+
 (6) 

 
( )

( )
2 2 1

2 2
gC PK

C P

νν ν
ν ν

+− += ≈  (7) 

 
( ) ( )( )

( )
2 2 2 2

2 2 2

3 31

2

g K KCC h

r rK K

ν ν ν

ν ν

− − +∂ ∂=
∂ ∂− +

 (8) 

Therefore, Eq. (5) reads 
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( ) ( )( )
( )

2 2 2 22
2 2

2 2 2 2 2 2

3 31 1

22

K K h
K

r rK r K K

ν ν νν η ην ν
ω ν ν

− − +∂ ∂ ∂− + +
∂ ∂∂ − +

 

( ) ( )
2

2 2 2 2
2 2 2 2 2 2

1 1 1 1

2 2
K K

r rK r K

ν η ν ην ν ν ν
ω ω θ

∂ ∂+ − + + − +
∂ ∂

 

2 2
2 2 2

1 2[ ( ) ] 0
2

K
f h f k h

ν νω η
ν

− + + ⋅∇ + ⋅ ∇ =  (9) 

The coefficients of (9) are still transcendental functions 
because of the implicit dispersion relation of (4).  This makes 
an explicit solution to (9) impossible if no approximation of 
(4) is involved.  This makes an explicit solution to (9), Hunt’s 
Padé approximation direct solution of the implicit wave dis-
persion relation is employed as follows: 

 2 2

1

( )
1 j

j
j

K
P

d

ν νν ν
νν

∞

=

= + = +
+∑

 (10) 

The first six value of dj in (10) can be found in Hunt’s report 

published in 1979, and are: 1

2
,

3
d =  2

16
,

25
d =  3

152
,

945
d =  

4

128
,

2025
d =  5

128

6075
d =  and 6

4736
.

893025
d =   For convenience, 

we denote 
0

( ) ,
S

j
S j

j

P dν ν
=

=∑  with d0 = 1, and the correspond-

ing direct solution will be called Hunt’s s th-order approximate 
solution of the wave dispersion. 

Although Hunt’s approach can approximate the solution 
of liner dispersion relation as the order increase, the order of 
Hunt’s direct solution should be truncated.  Jung and Suh [8] 
pointed out that the relative error of Hunt’s 4th order solution is 
less than 1%.  In Fig. 3 we show the relative errors in calcu-
lation of phase speed for all values of .ν   However, the Hunt’s 
4th order solution which is used later would make the ana-
lytical solution more complicated.  Thus, the Hunt’s 3rd order 
solution with 1.5% relative errors is employed in this paper.  
The coefficients of (9) can be simplified by substituting (10) 
into (6)-(8). 

 
( )

( )2

11

12g

P
CC

P

ν ν
ν νω
 + ≈

+
 (11) 

 
( )

( )
1

2
gC P

C P

ν
ν
+

≈  (12) 

 
( ) ( ) ( )

( ) ( )
3 1 2 1

2 1 1

gCC P P h

r rP P

ν ν ν

ν ν ν

   ∂ + − + ∂   ≈
∂ ∂   + +   

 (13) 
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Fig. 3. Comparison of normalized phase speeds for different order of 

Hunt’s solutions. 

 
 
The bottom curvature and slope-squared terms also should 

be converted into explicit forms containing ( ).P ν   The bottom 
slope-squared term of MMSE can be rewritten in the form: 

 2 2 2 2
2 2 2( ) ( ) ( )

K K
f k h f h f h

h
ω

ν
⋅ ∇ = ⋅ ∇ = ⋅ ∇  (14) 

Thus, the bottom slope-squared term becomes the follow-
ing function: 

2 2
2 3

1
( )

12 ( )( ( ) 1)( ( ) 1)

K
f h

P P P
ω

ν ν ν ν ν ν
⋅ ∇ =

+ +
 

2 2 2 4( (6 ( ) 2 ( ) 18 ( )P P Pω ν ν ν ν ν+ −   

2 2 4 28 ( ) 12 ( ) 8 ( )P P Pν ν ν ν ν ν+ + +  

3 2 3 29 ( ) 3 ( ) 2  6 ( ) ))( )P P P hν ν ν ν ν− + + + ∇  

  (15) 

Substituting the approximate solution (8) into (6), we have 
the following approximate form of MMSE: 

( ) ( ) ( ) ( )
2

4 22 2 2 2
2

6 1 6 1r P P r P P
r

ην ν ν ω ν ν ν∂
   + + +   ∂

 

( ) ( ) ( ) ( ) 423 2 1 6 1 ]
h

P P r P P
r r

ην ν ν ν ν ν∂ ∂
   − + + +   ∂ ∂

 

( ) ( ) ( )
2

4 42 2 4
2

6 1 [6 1P P r P
ην ν ν ν ω ν

θ
∂

   + + + +   ∂
 

2 4 2 2 2 4[ ( ) 1] ( (6 ( ) 2 ( ) 18 ( )P r P P Pν ν ω ω ν ν ν ν ν+ + + −  
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2 2 4 2 38 ( ) 12 ( ) 8 ( ) 9 ( ) 3 ( )P P P P Pν ν ν ν ν ν ν ν+ + + − +  

2 3 22 6 ( ) ))( ) ] 0P hν ν ν η+ + ∇ =  (16) 

In this paper, the surface-piercing topography consists of a 
vertical circular cylinder on top of a conical submerged shoal.  
As shown in Fig. 1, the water depth in the finite region with 
varying quiescent depth is given by 

 ( )
,       1

,         

a
b

b
b

h
r r r

ah r
h

r r
a

 ≤ ≤= 
 <


 (17) 

where rb = b/a.  By employing the method of separation of 
variables, the solution of (16) can be expressed as 

( ) ( ) ( )1
0

, cos , 1 ,0 2m b
m

r R r m r rη θ θ θ π
∞

=

= ≤ ≤ ≤ <∑  (18) 

in which the integer m corresponds to the m th angular modes 
and Rm(r) is the corresponding coefficient, which varies in the 
r direction.  Substituting (18) into (16), we obtain the follow- 
ing equation: 

( ) ( ) ( ) ( ) ( )
2

4 22 2 2 2
2

6 1 [6 1mR r
r P P r P P

r
ν ν ν ω ν ν ν

∂
   + + +   ∂

 

( ) ( ) ( ) ( ) ( )423 2 1 6 1 ] mR rh
P P r P P

r r
ν ν ν ν ν ν

∂∂
   − + + +   ∂ ∂

 

( ) ( ) ( )4 42 2 2 4[ 6 1 6 1 [ ( ) 1]m P P r P Pν ν ν ν ω ν ν ν   + − + + + +     

2 4 2 2 2 4 2 2( (6 ( ) 2 ( ) 18 ( ) 8 ( )r P P P Pω ω ν ν ν ν ν ν ν+ + − +  

4 2 3 2 312 ( ) 8 ( ) 9 ( ) 3 ( ) 2 6 ( ) ))P P P P Pν ν ν ν ν ν ν ν ν+ + − + + +  

( )2( ) ] 0mh R r∇ =   (19) 

for m = 0, 1, 2, …, ∞.  By substituting ah
h r

a
=  into (19) and 

noting that ν = εr, with ε = ω2ha/a, we get the following 
equation: 

( ) ( ) ( ) ( ) ( )
2

4 24 2 2 3
2

6 1 [6 1mR r
r P r P r r P r P r

r
ε ε ε ω ε ε ε

∂
   + + +   ∂

 

( ) ( ) ( ) ( ) ( )43 23 2 1 6 1 ] ma
R rh

P r rP r r P r P r
a r

ε ε ε ε ε ε
∂

   − + + +    ∂
 

( ) ( ) ( )4 42 2 2 3 4[ 6 1 6 1m r P r P r r P rε ε ε ε ω ε   + − + + +     

2 4 2 2 2 2 4[ ( ) 1] [ [6 ( ) 2 ( ) 18 ( )rP r r P r r P r P r rε ε ω ω ε ε ε ε ε+ + + −  

2 2 2 4 2 2 38 ( ) 12 ( ) 8 ( ) 9 ( ) 3 ( )r P r P r r rP r P r P rε ε ε ε ε ε ε ε+ + + − +  

( )2 2 3 22 6 ( ) ]]( ) ] 0a
m

h
r r P r R r

a
ε ε ε+ + =  (20) 

The zero-flux boundary condition along the coastline at 
r = 1 is equivalent to  

 
( )

0,
1

mdR r

rdr
=

=
 (21) 

for m = 0, 1, 2, …, ∞.  Following the procedure proposed by 
Liu et al. [12], we expand ( )mR r  as a Taylor series around the 
point r = 1, which is an ordinary point of (19).  The following 
mappings  

 ( )1 1
,  m mt R t R

r t
 = =  
 

 (22) 

are employed, and (19) then becomes  

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2
2

0m m
m

d R t dR t
A t B t C t m D t R t

dtdt
 + + − =  (23) 

for m = 0, 1, 2, …, ∞, where 

( ) ( )42 4 36 ( ) ( )A t t Q t Q t tε= +  

( ) ( ) ( )22 3 2 3 3 26 ( ) ( ) ( ) 2  B t t Q t Q t t Q t t tε ε= + − +  

( ) 4 3 4 4 13 4 7 3

4 12 4 9 2 4 5

4 6 3 4 10 2 4 16 4 4 4

2 13 2 6 3 3 9 2 14

(24 ( ) 24 ( ) 24 ( )

          6 ( ) 24 ( ) 6 ( )

          36 ( ) 36 ( ) 6 6 ( )

          8 ( ) 6 ( ) 8 ( ) 3 ( )

       

C t t Q t t Q t t Q t

t Q t t Q t Q t

t Q t t Q t t t Q t

t Q t t Q t t Q t t Q t

ε ω ε ω ω

ω ε ω ε ω ε

ω ε ω ω ω

ε ε ε ε

= + +

+ + +

+ + + +

+ + + +

2 4 4 2 16 11 2 8 3

3 12 2 3 4

   18 ( ) 2 6 ( ) 9 ( )

          2 ( ) 12 ( ) )

t Q t t t Q t t Q t

t Q t t Q t

ε ε ε ε

ε ε

− + + −

+ +

 

( ) ( )22 2 36 ( ) ( ) ,D t t Q t Q t tε= +  
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with ( ) 3 3 2 2 31 2 16 152
.

3 45 945
Q t t P t t t

t
ε ε ε = = + + + 

 
  Because 

of the mapping of (22), the varying depth in the inner region 
is mapped onto 1/rb ≤ t ≤ 1.  Fortunately, the expansion point 
r = 1, even it has been mapped into 1=t , is still an ordinary 
point of (23).  The general solution of (23) imposed by the 
boundary condition (21) can be expressed in a Taylor series as 
follows: 

 ,

0

( ) ( 1)
!

m s s
m m

s

a
R t t

s
α

∞

=

= −∑  (24) 

where 

,0 1ma =  

,1 0ma =  
2

,0 [ (1) (1)] / (1)ma C m D A= − −  

2 2
( ) ( )

, , , 1
1 0

2 21
(1) (1)

(1)

s s
p p

m s m s p m s p
p p

s s
a A a B a

p pA

− −

− − −
= =

 − −   − = +    
    
∑ ∑  

2
( ) 2 ( )

, 2
0

2
[ (1) (1)] , 3,4,...

s
p p

m s p
p

s
C m D a s

p

−

− −
=

−  + − = 
  

∑  
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in which A(p)(1), B(p)(1), C(p)(1) and D(p)(1) denote the p th- 
order derivatives of A(t), B(t), C(t) and D(t) at the expansion 
point t = 1, respectively.  Since A(t), B(t), C(t) and D(t) are all 
polynomials, and so their derivatives can be obtained ana-
lytically without any numerical error.  We now investigate the 
convergence of (23).  The convergence of the Frobenius series 
is dependent upon the behavior of the first variable coefficient 
in (23), i.e., 2 4 36 ( )( ( ) )t Q t Q t tε + .  Besides the singularity at 
t = 0, there may exist singularities in 2 4 36 ( )( ( ) )t Q t Q t tε + .  
The singular points are calculated from the roots of A(t) = 0.  It 
is easy to obtain all of the roots of A(t) = 0: 

1 0 5510977183 ,t . ε= −  

2,3,4,5 0 3965099140 ,t . ε= −  

6,7 ( 0 05778447414 0 5371468390 ) ,t . . i ε= − ±  

8,9,10,11,12,13,14,15 (0 03158829036 0 4492550483 ) ,t . . i ε= ±  

16,17,18,19 0,t =  

where 1.i = −   Obviously, if ( )R t  is expanded around the 
ordinary point t = 1, the series and its derivatives converge for 
all complex t within the disk | 1 |t ρ− ≤ , where ρ is the dis-
tance from t = 1 to the nearest singularity.  In Fig. 4, we plot  
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Fig. 4. Singular rays of (23), where circle 1 and 2 represent islands with 

rb = 3 and rb = 4, respectively.  

 
 

the four rays consisting of the singular points in the complex 
plane, while the incident wave periods vary from short to long 
wave.  We follow the previous work conducted by Liu and Lin 
[11].  The cases rb = 3 (circle 1) and rb = 4 (circle 2) are chosen 
to make sure that the present analytical solution converges 
uniformly in the inner varying depth regions.  The smallest 
convergent radius is from the expansion point (t = 1 in our 
study) to the nearest singular point, and it is obvious in Fig. 4 
that circle 1 and circle 2 do not encompass the singular rays.  
This means that if 4br ≤ , then the Taylor series in (24) con-
verges uniformly for arbitrary incident waves. 

From (18) and (24), the water surface in the various depth 
regions can be expressed as 
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= −∑ ∑  (26) 

In the constant water depth region, the well-known ana-
lytical solution was derived by MacCamy and Fuchs [13], and 
is given by 

( ) ( ) ( ) ( )
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,0 2

m
m m b m m b
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 = +
 

< ≤ <

∑
 (27) 

where Jm(kbr) is the Bessel function of the first kind of order m, 
(1) ( )m bH k r  is the Hankel function of the first kind of order m, 

kb is the wave number of constant depth hb/a, and the Jacobi 
symbols are defined as 
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Fig. 5. The dimensionless wave height around the conical island (long 

wave, 1:7.5). 
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Finally, the coefficient αm must be determined by applying 
the following dynamic and kinematics matching conditions at 

.br r=  

 1 2
1 2   ,  
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, (29) 

respectively.  By using this matching process and the Wronskian 

identity ( ) ( ) ( ) ( )(1) (1) 2 ,m b b m b b m b b m b b b bJ k r H k r J k r H k r i k rπ′ ′− =  

the coefficients αm and γm can be found to be  
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= −∑�   Note that a prime denotes a 

derivative.  Thus, we can compute the water surface elevation 
throughout the whole domain by substituting the coefficients 
back into (26) and (27). 

III. RESULTS AND DISCUSSION 

The analytical solution for η involves an infinite series, 
which must be properly truncated in practical calculation.   
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Fig. 6. The Df around the conical island (long wave, 1:7.5). 

 
 

Thus, we must find an appropriate integer m that is large 
enough that the infinite series of (26) is approximated to a 
desired accuracy.  In this paper, we calculated the series by 
summing terms until the results satisfied the following condi-

tion: , , 6

0

( 1) ( 1) 10 .
! !

S
m S m sS s

s

a a
t t

S s
−

=

− − <∑   To understand the 

effect of the bottom slope-squared term in shallow water and 
intermediate water depth conditions, we calculated the solu-
tions for various values of kbhb.  Furthermore, different slopes 
are also calculated to address the effect of the slope.  This was 
done by changing the radius of the conical island, b.  The 
values used for the radius are 30000 m, 23335 m and 18001 m 
and the corresponding slopes (vertical: horizontal) are 1:7.5, 
1:5 and 1:3, respectively.  In addition, to study the difference 
between the present analytical solution and the analytical 
solution proposed by Liu and Lin [11], we define a difference 
index based on the relative error.  The difference index is 

expressed as 
| |

100%MMSE MSE
f

MMSE

D
η η

η
−

= ⋅ , where ηMSE is the η 

obtained by the mild-slope equation and MMSEη  the modified 

mile-slope equation. 

1. Slope 1:7.5 

First, the analytical solutions are discussed for long wave 
and intermediate water depth waves conditions, respectively.  
We set the wave periods to 720, 480, 410,360, 240 and 120 
seconds, and the corresponding values of kbhb are 0.1772, 
0.2676, 0.3146, 0.36, 0.5549 and1.2990, respectively.  The 
comparisons between our analytical solutions and the ana-
lytical solutions of Liu and Lin [11] under the conditions of 
long wave are shown in Figs. 5-8.  It can be seen in Fig. 5 that 
the present analytical solution, based on Hunt’s 3rd-order so-
lution for the dispersion and Liu and Lin’s method [11] is evi-
dently excellent.  Figure 6 shows that the relative difference  
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Fig. 7. The dimensionless wave height around the conical island (inter-

mediate water wave, 1:7.5). 
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Fig. 8. The Df around the conical island (intermediate water wave, 1:7.5). 

 
 

between the present analytical solution to MMSE and the 
solution to MSE proposed by Liu and Lin [11].  The maximal 
Df at a slope of 1:7.5 is less than 0.35%, which occurs at 0° 

with the wave period T = 480 sec. 
For the intermediate water waves, the wave periods are set 

to 360, 240 and 120 sec.  Figure 7 represents the dimensionless 
wave height around the conical island and shows good 
agreement with the maximal Df of 5% (Fig. 8). 

2. Slope 1:5 

To gain some insight into the effect of the slope, cases with 
steeper slopes are examined.  Figures 9-12 show the waves 
propagate around a conical island with slope 1:5, while the 
wave conditions are the same as the previous case of slope 1:3.  
Figure 9 shows the results for the long wave conditions, and 
Fig. 10 shows the maximal Df in long wave conditions, which  
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Fig. 9. The dimensionless wave height around the conical island (long 

wave, 1: 5). 
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Fig. 10.   The Df around the conical island (long wave, 1:5). 

 
 

is about 0.3%.  Comparisons of the dimensionless wave heights 
of intermediate water depth waves around the conical island 
between the present solutions and Liu and Lin’s [11] solutions 
are shown in Fig. 11.  This figure shows slight discrepancies 
between present MMSE solutions and those of MSE derived 
by Liu and Lin [11].  The relative differences in these cases are 
plotted in Fig. 12, and the maximal Df , which is less than 4% , 
occurs at 20° with a wave period of T = 120 sec. 

3. Slope 1:3 

Finally, the waves for the steepest bottom slope, a slope of 
1:3, is calculated with the previous incident wave periods.  The 
results are displayed in Figs.13-16.  Figure 13 shows the ex-
cellent results for long wave conditions.  Figure 14 shows the 
maximal Df is about 0.25% for long wave conditions.  This is 
because that the bottom extended terms are insignificant in  
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Fig. 11. The dimensionless wave height around the conical island (in-

termediate water wave, 1:5). 
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Fig. 12. The Df around the conical island (intermediate water wave, 1:5). 

 
 

long wave conditions, despite the slope of bathymetry be-
comes steeper.  Figure 15 illustrates the dimensionless wave 
height around the conical island for the intermediate water 
waves.  This figure demonstrates that the discrepancies be-
tween present solutions and those of Liu and Lin [11] are 
significant.  The Df around the conical island is shown in Fig. 
16 and the maximal relative difference can be found for the 
waves with period T = 120 sec, and the magnitude is 8.7%.  
The Df of others cases of this figure are all less than 1.5%.  The 
reason for these phenomena is that the effect of the bottom 
slope-squared term becomes insignificant for the large conical 
island. 

IV. CONCLUSION 

Instead of the conventional MSE, which ignores the mass- 

0
0 20 40 60 80

Coast position (degree)
100 120 140 160 180

0.5

1

1.5

2

2.5

3

3.5

H
/H

0

MMSE, Present, T = 720 sec
MSE, Liu & Lin (2007), T = 720 sec
MMSE, Present, T = 480 sec
MSE, Liu & Lin (2007), T = 480 sec
MMSE, Present, T = 410 sec
MSE, Liu & Lin (2007), T = 410 sec

V:H = 1:3, Long wave conditions

 
Fig. 13. The dimensionless wave height around the conical island (long 

wave, 1:3). 
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Fig. 14.  The Df around the conical island (long wave, 1:3). 

 
 

conserving matching condition [15], we derived an approxi-
mate analytical solution of MMSE for an axial-symmetric 
conical island by adopting Hunt’s direct solution of the linear 
dispersion relation and examined a series of calculations for 
different bottom slopes.  Because the bottom curvature term is 
inherently reduced in calculations with a conical island, the 
slope-squared term in MMSE plays an important role in the 
intermediate water depth cases.  As expected on the basis of 
previous works [9], the slope of the conical island becomes the 
dominant parameter resulting in the discrepancy between 
MMSE and MSE.  The results of the present solution are in 
agreement with previous studies for a conical island, although 
the previous study, employing MSE as a governing equation, 
involved an analytical approach without extended terms.  The 
curves for this kind of island are almost indistinguishable 
between the analytical solutions of MMSE and MSE.  In the  
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Fig. 15. The dimensionless wave height around the conical island (in-

termediate water wave, 1:3). 
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Fig. 16. The Df around the conical island (intermediate water wave, 1:3) 

 
 

intermediate water depth waves, the maximal Df between the 
present solution and that of Liu and Lin [11] never exceeds 
1.35%.  In the calculations with steeper islands for the inter-
mediate water waves, the maximal Df is as high as 8.7% in the 
case with a slope of 1:3 and T = 120 sec.  The Df for the 
long-wave and critical conditions are almost less than 0.4%.  
Finally, we also provide evidence that the Df increases as the 
coast position of the island (in degrees) decreases, i.e. toward 

the downstream direction. 
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