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ABSTRACT 

In this paper, a n-dimension convergence algorithm was 
employed to track the potential trend of evolution in tradi-
tional genetic algorithm (GA) by K-means clustering tech-
nique.  And, chaotic algorithm was exploited to prevent the 
new approach from premature.  By means of the proposed 
approach, not only the basic search capability was maintained 
but also the flexibility and efficiency of parametric modeling 
were improved. 

The main purpose of the paper is to demonstrate how the 
GA optimizer can be improved by incorporating a hybridiza-
tion strategy.  Experimental studies revealed that the hybrid 
chaotic approach with genetic algorithm (CGA) procedure 
could produce much more accurate estimates of the true op-
timum points than other optimization procedures.  Further-
more, including K-means clustering into CGA, named KCGA, 
exhibited superior convergence performance than other algo-
rithms.  And, the proposed approach, KCGA, had 84 percent 
of probability to get optimized.  On the whole, the new ap-
proach was demonstrated to be extremely effective and effi-
cient at locating optimal solutions and verified by an empirical 
example from construction. 

I. INTRODUCTION 

The well known genetic algorithms (GA) were introduced 
by Holland in 1970s as optimization approaches.  To find a 
global or near-global optimal solution, the search by GA was a 
group base instead of the point-to-point search.  The main 
concept of this approach was derived from biological evolu-
tion in a competitive environment [12].  Nowadays, many 
industrial applications have been developed with the aid of 

this tool [15].  For instance, Davies [4] proposed a genetic 
algorithm to generate an optimal (shortest distance) path 
plan, and successfully guided an actual X80 mobile robot to all 
its waypoints without colliding with any obstacles in a test 
environment.  And Fung [8] have developed the extended 
hybrid genetic algorithm (EHGA) to solve nonlinear pro-
gramming (NLP) problems with equality and inequality con-
straints. 

At the meantime, GA can deal with the problem which has 
highly nonlinear objective function and upper and lower limits 
of variables [30].  In 2001, Lu and Fang [21] proposed a ge-
netic algorithm to solve a nonlinear single objective problem 
with fuzzy relation equation constraints.  In fact, GA is highly 
parallel randomly searching algorithms that imitate the life 
evolution as proposed in Darwinian survival of the fittest 
principle [11, 17].  Critical genetic operations such as the 
encoding of the solution of optimizing problem, the designing 
of the fitting function according to its application, and the 
crossover and mutation for offspring, play important roles in 
GA [12, 36]. 

The population diversity of GA will be greatly reduced after 
some generations, and may lead to a premature convergence 
to a local optimum.  Actually, GA with excellent capabilities 
solves difficult nonlinear optimization problems [9]; never-
theless, it tends to take long running time to converge pre-
maturely and the optimization may get stuck at a local opti-
mum.  For example, the population is not always sufficiently 
huge in size to typical GA problem solving within limited 
iterations or times.  In order to overcome these flaws, the key 
point is to maintain the population diversity and prevent the 
incest leading to misleading local optima [5, 33].  At the mean 
time, an efficient convergence over optimization search is 
needed. 

To maintain the population diversity of GA, the chaos 
procedure was introduced in this paper.  Chaos being radically 
different from statistical randomness, especially the inherent 
ability to search the space of interest efficiently, can improve 
the performance of optimization procedure.  Chaotic motion 
can be considered as an irregular motion, seemingly unpre-
dictable random behavior under deterministic conditions.  
Random and chaotic motions should be distinguished here by 
their features.  The former was reserved for problems in which 
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to know the input forces were not necessary, but some statis-
tical measures of the parameters were enough; however, chaos 
is reserved for deterministic problems in which there are no 
random or unpredictable inputs or parameters. 

In chaos, a small difference in the initial conditions may 
produce an enormous error in the final phenomena.  It is ex-
tremely sensitive to the initial conditions, and its property 
sometimes referred to as the instability in the so-called but-
terfly effect or Liapunove’s sense [16, 20].  Sensitive de-
pendence on initial conditions was often exhibited by multiple 
elements with nonlinear interactions in the systems.  Owing to 
chaos characteristic, the system could be designed as an effi-
cient approach for maintaining the population diversity in the 
problem of interest. 

An efficient convergent approach was founded by inte-
grating moving centers into population evolution to speed up 
optimization search in GA.  To locate these moving centers, a 
K-means clustering technique was employed in this study.  
Clustering is one of the most important and the most chal-
lenging of classifying algorithms.  A successful clustering 
algorithm is able to reliably find true natural groupings in the 
data set.  K-means is one of the well-known algorithms for 
clustering, originally known as Forgy’s method [7].  K-means 
is famous for its simplicity and computational efficiency in 
clustering techniques.  K-means clustering is the process of 
dispatching a set of objects into groups or clusters of simi-
larities.  Objects collected in the same cluster have similar 
features, but others are not [10]. 

In this study, chaotic algorithm was for population diver-
sity while K-means clustering technique was for population 
grouping.  The former would contribute to locate the optimum 
points, and the latter would diminish iteration runs of GA 
significantly. 

The remainder of this paper was organized as follows.  In 
Section II, gave an overview of the theorem and algorithm 
which would be encountered in this study later.  In Section III, 
a K-means clustering algorithm for chaos GA was presented.  
And Section IV, KCGA was employed to search the optimi-
zation solution of a construction management issue.  Section V 
provided some concluding remarks. 

II. LITERATURE REVIEW 

1. Chaos and Logistic Mapping 

Chaotic mappings can be considered traveling particles 
within a limited range occurred in a deterministic nonlinear 
dynamic system.  There is no definite regularity for such a 
traveling path.  Such a movement is very similar to a random 
process, but extremely sensitive to the initial condition.  Cha-
otic dynamic mappings have been defined as noninvertible 
mappings of the (0, 1) interval onto itself.  Logistic mapping [6, 
24] is one of the most important chaotic dynamic mappings 
which defines the simplest mapping for studying the pe-
riod-doubling bifurcation (vide infra).  In the well-known 

logistic equation [24]: 

 1 ( , ) (1 )n n n nX f X X Xµ µ+ = = −  (1) 

In which µ stands for a control parameter, X for a variable 
and n = 0, 1, 2, 3....  It is easy to find that (1) is a deterministic 
dynamic system.  The variable X is also called as chaotic 
variable.  The basic characteristic of chaos can be presented by 
(1), for a very small difference in the initial value of X will 
cause large difference in its long-term behavior. 

The variation of control parameter µ of (1) will directly 
impact the behavior of X greatly.  Usually, [0, 4] has been 
defined as domain area of control parameter µ.  Different 
value in domain area of µ will determine whether X stabilizes 
at a constant size or behaves chaotically in an unpredictable 
pattern.  The track of chaotic variable looks like in disorder; 
however, it can travel ergodically over the whole space of 
interest especially under the condition of µ = 4.0.  Then, a tiny 
difference in initial value of the chaotic variable will result in 
considerable differences of the values of chaotic variable later.  
Generally, there are three primary characteristics of the varia-
tion of the chaotic variable, i.e. ergodicity, irregularity and 
pseudo-randomness [1, 18, 28]. 

Logistic equation as shown in (1) can be distinguished by 
four intervals in accordance with the value of µ.  First, when 
the value of µ is smaller than 1.0, the chaotic variable 

1nX + converges to a stable point 0.0.  Then, if the value of µ is 
between 1.0 and 3.0, no mater what initial value for X0 be-
tween 0.0 and 1.0 was taken, Xn+1 would converge to a certain 
value between 0.0 and 0.63665.  And, the bifurcation occurs 
from µ ≥ 3.0.  The system will enter the chaos domain, if µ 
reaches a critical point of 3.5699456….  Finally, when µ = 4.0 
the values of Xn+1 will take any real numbers between 0.0 and 
1.0 and no redundant value will present again while having 
turned up already.  In this study, ‘µ = 4.0’ was taken to have the 
features of diversity during evolution. 

2. Conventional GA and Legalization 

Genetic algorithms are designed by randomized search and 
optimization techniques.  The principles of evolution and 
natural genetics are built in functions to GA accompanied with 
a large amount of implicit parallel features.  GA contains a 
fixed-size population of potential solutions over the search 
space.  The idea population can be created by an objective or 
fitness function or base on the domain knowledge of GA.  
These potential solutions are named individuals or chromo-
somes.  GA consists not only of binary strings-individuals but 
other encodings are also possible.  For instance, in the litera-
ture [25, 35], a real-coded GA was proposed and the individual 
vector was coded as the same as the solution vector.  And 
Chang [3] also applied a real-coded genetic algorithm to the 
system identification and control for a class of nonlinear 
systems.  The evolution usually starts from a population of 
randomly generated individuals and continued by selection, 
crossover and mutation in iterations. 
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In typical GA iterations, a new population is created and 
based on the following four steps: 

 
(1) Evaluation: each individual of the population will be 

evaluated and assigned a value derived from fitness func-
tion. 

(2) Selection: individuals with higher fitness value will be 
more likely to be selected for next generation.  Here, a 
competitive strategy was used to selection to improve its 
performance. 

(3) Crossover: the crossover process is to choose two indi-
viduals as parents randomly.  This study applied one-point 
crossover process in which the point was randomly se-
lected in the list of fields.  All the fields lying after this 
point were exchanged between the two parents to create 
two new offspring. 

(4) Mutation: in this study, the mutation process was a 
probability-based procedure in which the random muta-
tion operator selected a gene as starting point.  Then, all 
points would be connected together along the nearest path.  
And, a correction action was taken to assure individuals 
meeting the legal requirements, in case of necessary. 

 
The above four steps of iterations will hold in genetic al-

gorithms until a satisfactory solution is found or the termi-
nating criterion is met. 

Nanayakkara [26] had successfully found out the shortest, 
least congested route by a GA based route planning algorithm.  
In 2008, Liang [19] designed a new immune genetic algorithm 
based on elitist strategy to get the shortest path of China’s 31 
provincial capital cities.  Furthermore, GA can deal with the 
multi-depot vehicle route problem whose objective was to 
minimize both traveling cost and vehicle acquisition cost [31].  
In this study, the designed operation rule for GA was to visit 
every node once and move back to the same point.  Once the 
new generated offspring did not follow the designed rule, a 
correction work would be necessary.  Thus, a new offspring 
would compare with the swapped and original portion to verify 
if the members were identical.  Unique members leaded to a 
sound crossover while duplicated members needed to be le-
galized.  For instance, a one-point crossover operation was 
exhibited in Tables 1 and 2.  The random selected points of field 
3 and 2 are shown on the following two tables.  After legaliza-
tion, no duplicated code was allowed except terminal points. 

To improve the performance of optimization search, GA 
should keep individuals scattered in the whole searching space.  
Integrating GA with chaotic process, named chaos genetic 
algorithms (CGA), was proposed in this work and would be 
improved by incorporating clustering techniques.  CGA held 
both advantages of GA and the chaotic process, and therefore 
could assure the individuals distributed ergodically in the 
defined space and avoided from premature.  CGA also took the 
inherent advantages of GA over convergence after combining 
the diversity features of chaotic process and hence to increase 
the probability to find out the global optimal solution. 

Table 1.  Legalization to crossover with unique members. 

Parents Selected field Swapping Operation Offspring 
1 2 3 5 4 1 1 2 3 4 5 1 1 2 3 4 5 1 

   
1 3 2 4 5 1 

Crossover  
on field 3 

1 3 2 5 4 1 

Equal to 

1 3 2 5 4 1 
 

 
Table 2. Legalization to crossover with non-unique mem-

bers. 

Parents Selected field Swapping Operation Offspring 
1 2 3 5 4 1 1 2 2 4 5 1 1 3 2 4 5 1 

   
1 3 2 4 5 1 

Crossover on 
field 2 

1 3 3 5 4 1 

Legalization 

1 2 3 5 4 1 
 
 

3. Incorporating K-means Clustering Technique into GA 

Clustering is the process of grouping a set of physical or 
abstract items into clusters by similar features.  K-means is 
one of the well-known algorithms for clustering, and it has 
been employed extensively in various fields including ex-
ploring studies: such as data mining, statistical data analysis: 
such as customer relationship management, and other business 
applications. 

The K-means clustering technique adopted in GA evolution, 
named KGA, could easily conduct an efficient convergence of 
GA.  K-means clustering technique introduced in this study 
was intended to track the main stream of population move-
ment during GA evolution.  Each center of clusters could be 
treated approximately as one of the items in the main stream 
of evolution, and reserved for population as candidate indi-
viduals. 

The K-means algorithm for clustering is based on the mean 
value of items in the group.  It is suggested to assign each item 
to the cluster with the nearest centroid (mean) [23].  Generally, 
in this study the primary operating procedures for K-means 
clustering technique are presented as follows: 

 
(1) Defining how many clusters are to be created. 
(2) Randomly assigning initial items to different clusters. 
(3) Assigning new items to the cluster whose location to 

centroid is the nearest (by Euclidean distance) and re- 
calculate the centroid for the existing or updated clusters. 

(4) Repeating Step (3) until no more reassigning. 

III. PROPOSED K-MEANS CLUSTERING AND 
CHAOS IN GENETIC ALGORITHM 

1. Combination Logic 

Assume that the working individual of independent vari-
ables is denoted by x consisting of n elements.  They are 
named and denoted by x1, x2, ..., xn.  Thus, a problem of 
searching minimum can be described as: 
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 Min f (x1; x2; ... xn) 

 s.t.  xi ∈ (ai, bi)  i = 1, 2, 3, ..., n (2) 

Function f is related to the value of dependent variables x, 
which is subject to be optimized.  The lower and upper limit of 
xi in function f are [a1, a2, ..., an] and  [b1, b2, …, bn], respec-
tively.  The chaotic process can be defined through the fol-
lowing equation as the same as (1) [18, 24]: 

 1 ( ) ( )4 (1 )k k k
i i icx cx cx+ = −   i = 1, 2, ..., n, (3) 

In which cxi is the ith chaotic variable, and (k) and (k + 1) 
denote the number of iterations.  Then a linear mapping func-
tion was used to convert chaotic variable to a certain interval.  
In this study the linear mapping function can be described as: 

 ( ) ( )k k
i i i i ix a cx b a= + −   i = 1, 2, ..., n, (4) 

In which cxi is the ith chaotic variable, k
ix is the ith working 

variable, and (k) denotes the number of iterations.  ai and bi are 
the lower and upper limits. 

K-means clustering technique played a critical role in 
speeding up convergence of GA evolution while chaos algo-
rithm could assure GA population diversity and avoid from 
premature.  To take advantages of speeding convergence and 
global optima features in GA, a hybrid algorithm combined 
K-means clustering, chaos algorithms and genetic algorithms 
was proposed as a new algorithm named KCGA. 

Initial population of KCGA should be generated from chaos 
algorithm, and then chaotic function would review the indi-
viduals after mutation with a decreasing probability to im-
prove diversity in the beginning iterations and diminish impact 
to convergence at the end of evolution. 

After chaos operator, K-means clustering in this study 
would help to group population in several clusters as pre- 
defined.  Thus, each centroid of cluster would be treated as a 
candidate individual of population.  A competing procedure 
was employed to eliminate individuals with lower fitness 
value, and reserved the others for creating appropriate popu-
lation for KCGA. 

Centroid of each cluster was derived from Euclid distance 
in population, and hence to locate in the center of cluster.  
During evolution each cluster centroid would keep migrating 
within population and therefore could create a track of cen-
troid movement.  This track could be treated as a potential 
trend of population centers movements directed by a certain 
rule of GA.  Incorporating moving centers or tracks into popu-
lation was an efficient way toward convergence in GA.  The 
proposed approach was proved to be effective in the experi-
ment later. 

2. Migration Algorithm 

During evolution, GA generated a certain rule to direct popu- 
lation migration.  In particular, K-means and chaotic algorithms  

Encode problem 

Calculate
fitness &

rank 

Crossover

Mutation

Output the best 
individuals 

Meet
criterion? 

Reserve top
fit individuals
to population size

Selection
Add centroid to

population 

Chaos operator

K-means
clustering

Yes 

No

K
-m

eans C
haos G

enetic O
perator 

Initialize
population by

chaos algorithm

 
Fig. 1.  Flow chart of K-means chaos genetic algorithm. 

 
 

were exploited in GA to thoroughly explore the entire search 
space so that to point out the most possible migration way and 
potential individuals for conventional GA. 

First, each individual initialized for GA population denoted 
a set of feasible solution by chaos algorithm.  Second, given 
all individuals as input, the K-means clustering algorithm 
could group and locate the centroid of each cluster.  Third, the 
new formed centroids of each cluster would convert to can-
didate individuals appending to the existing population.  These 
new formed centroids also indicated the moving centers of 
current iteration.  Fourth, fitness values of individuals were 
evaluated by a competing algorithm to keep enough individuals 
for next iteration.  And, the flow chart of K-means chaos ge-
netic algorithm is described as shown in Fig. 1. 

3. Limitations of the Proposed Approach 

Chaos is nonlinear in nature [22], and can help global search- 
ing by its diversity characteristic; however, it will cause much 
more computation time before getting convergent.  To perform 
effectively, chaos algorithm employed in this study was a 
probability based function, that was, chaos function would be 
triggered with high probability in the beginning and decreas-
ingly by iteration times.  At the meantime, chaos function con- 
tributed global searching to GA evolution from initial, and 
reduced its affecting range by times to comply with GA con-
vergent procedure at end. 

K-means is a grouping technique which explores existing 
searching space, points out the centers of population groups 
and offers a short cut to convergence during GA evolution.  
Unfortunately, k-means efficient convergent feature could not 
improve heterogeneous population creation to enlarge the pos-
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sible searching space for global optimization in this study. 
Hybrid chaos and k-means with GA could combine their 

characteristics and merits together; therefore, a GA based global 
searching with effectively convergent could be reached.  Ap-
parently, it is a nonlinear approach to search in global space 
with less fit for linear problems. 

IV. EXPERIMENTAL RESULT OF 
CONSTRUCTION MANAGEMENT 

1. Background 

Construction work includes many inherently hazardous 
conditions and tasks such as work at noise, dust, height, ex-
cavations, etc.  For example, construction has about 6% of U.S.  
workers, but 20% of the fatalities - the largest number of fa-
talities reported for any of the industry sectors.  These were 
announced by National institute for occupation safety and 
health (NIOSH) on Dec. 2008 [27]. 

In this study, a simulated case of a safety and health audi- 
tor patrolling model was built.  An example of ten build-
ing-construction sites was employed in this case.  The auditor 
should start from one of the building-construction sites and 
travel to every site before returning back to the same place to 
appraise their performances of safety and health in construc-
tion management.  That is an optimum route problem which 
can be described as nonlinear mixed integer programming 
model [14].  The purpose of this example was to point out the 
shortest path along every construction site to meet the auditor 
patrolling model requirements in real construction cases. 

After assigning each construction site a specific code, the 
distances between each site could be recorded in a lower 
triangular matrix as shown in Table 3.  The fitness function 
was designed to calculate the total distance along the path.  
Any set of randomized code might stand for a different path.  
To comply with the real world, it was critical to legalize off-
spring during iterations of proposed algorithms, especially 
after the crossover and mutation procedure.  The legalization 
example was exhibited in Section II.2. 

In fact, it is a traveling salesman problem (TSP), and is a 
typical combinational optimization problem [32].  TSP is 
known as the classical combinatorial optimization problem.  
The basic concept of TSP is to find the shortest closed tour that 
connects a number of cities in a region.  GA is used to find the 
optimal combination of these heuristic rules [13, 29].  Hop-
field, Tank and other scholars applied Hopfield-model to solve 
TSP, the typical Nonlinear Programming (NP) problem of 
combination optimization [34].  Sometimes the developed 
nonlinear integer programming model of TSP was partially 
linearized and solved by enumerating a series of solutions of 
the TSP sub-problems [2].  In this study, KCGA, a GA based 
approach incorporating nonlinear chaos mechanism and 
K-means function, was proposed to solve the same problem 
with a satisfied performance. 

Table 3.  Distances between building-construction sites. 

1 0          
2 6 0         
3 9 8 0        
4 7 7 11 0       
5 8 7 8 5 0      
6 9 8 9 6 7 0     
7 2 5 6 2 3 6 0    
8 7 9 2 7  12 3 6 0   
9 5 12 8 11 7 11 2 11 0  

10 11 6 3 8 6 6 8 7 2 0 

Sites 1 2 3 4 5 6 7 8 9 10 

 
 

Table 4.  The performances of four models. 

KCGA KGA CGA GA Model  
 

Item 
Avg. Std. Avg. Std. Avg. Std. Avg. Std. 

Optimization 
rate 

0.84 0.70 0.74 0.70 

Iteration 43.1 9.4 32.7 31.3 61.5 43.0 56.3 53.4 
Time (sec.) 5.6 1.9 3.2 3.0 9.7 9.4 5.4 5.8 

Min. 38.1 0.3 38.3 0.4 38.2 0.4 38.3 0.5 
Max. 38.1 0.3 38.3 0.5 42.0 11.0 39.3 4.6 

Fitness 2289.6 22.2 2298.0 27.8 2300.7 37.4 2300.6 33.3 
Notes: mutation rate = 0.01, crossover rate = 0.8, 
 population size = 60, generation limit = 150, 
 Avg.: Average, Std.: Standard Deviation 

  

2. Solutions 

All experiments were completed on Core 2 CPU T5500 @ 
1.66GHz PCs with 2 GB memory.  The results reported in 
Table 4 are all averaged over 50 independent runs.  The pa-
rameters, such as mutation rate, crossover rate, generation 
limit, are given under the results. 

From GA to KGA, a K-means clustering technique adopted 
by genetic algorithm can speed up its convergence rate.  It is 
easy to find that the tremendous iterations decreases from 
GA (or CGA) to KGA in Table 4 listed as above.  The result 
has strongly recommended that a speeding convergence of 
searching in ten-dimension space can be realized by K-means 
clustering technique effectively.  While the number of itera-
tions has sharply decreased, the KGA takes the shortest time, 
and maintains approximately the same optimization rate as 
conventional GA. 

Chaos algorithm improved the probability of GA to get 
optimized; however, it needed more time and iterations to 
search for the optimal solution.  Actually, chaotic diversity 
contributions to GA, from GA to CGA, provided a four per-
cent optimization increase in current work.  Furthermore, 
during KCGA verification, 42 from 50 independent runs got 
the shortest path leading to an optimization rate of 84 percent. 
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Combining K-means clustering technique with GA could 

assure to converge.  It was shown that KCGA and KGA had 
never failed to converge during their experimental procedures 
for they had identical fitness values in minimum and maxi-
mum, defined by GA as a criterion of termination.  KGA in this 
experiment held the lowest rate of 70 percent of getting opti-
mized.  But, after incorporating chaos algorithm into KGA, 84 
percent of KCGA solutions could be optimized. 

GA, integrated with K-means clustering technique and chaos 
algorithm, could promote its accuracy and reduce the con- 
verging time.  Migrations from GA to KCGA, listed in Table 4, 
have shown that KCGA improves the accuracy of GA, and 
diminishes the amount of iteration runs significantly. 

The mean performances of four optimization approaches 
were calculated and shown in Fig. 2.  It can be seen from Fig. 2 
that the KGA convergent capability is superior to others for its 
average fitness values always being the least at any iteration.  
And CGA is not as sensitive to the iteration runs as KGA and 
others, due to the fact that the mean performance of CGA with 
different operation probability fluctuates within a limited size.  
Although CGA has the worst convergent performance, it holds 
higher probability to get optimized than GA and KGA as 
shown in Table 4. 

To illustrate the performances of optimization approaches 
with generation clearly, four specified points were used as 
indicated in Fig. 2.  Thus, when comparing the performance of 
CGA with that of KGA at 15th iteration, CGA takes fitness 
value 53.53 and KGA takes 42.88 only.  The same iteration 
with different average fitness value leaded to various conver-
gent performances. 

V. CONCLUSIONS 

The proposed algorithms had effectively mitigated some 
drawbacks of traditional GA, such as long running time and 

getting trapped in local optima.  Based on GA, the designed 
approach, KCGA, had a 14 percent probability increase to get 
optimization.  Thus, 84 percent of KCGA solutions could be 
optimized.  This approach, joined K-means clustering tech-
nique and chaos attributes based on genetic algorithm, had 
successfully conquered the underlying premature by diversi-
fying population and reduced iteration times by tracking 
moving centers. 

The proposed approach was not only to enhance the diver-
sity of GA for more accuracy but also to extract clustering 
rules for achieving a potential moving track of evolution to 
improve the convergence performance.  Owing to the simi-
larities between some heuristic optimization algorithms, the 
proposed approach could be easily modified to fit various 
heuristic methodologies (e.g., particle swarm optimization, 
P.S.O.; ant colony optimization, A.C.O.) to improve their 
performances. 
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