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ABSTRACT 

This paper presents contact formulae for the computation 
of the position, the distance, and the azimuth along a great 
ellipse.  The proposed alternative formulae are to be primarily 
used for accurate sailing calculations on the ellipsoid in a GIS 
environment as in ECDIS and other ECS.  Among the ECDIS 
Requirements is the need for a continuous system with a de-
gree of accuracy consistent with the requirements of safe 
navigation.  At present, this requirement is best fulfilled by 
the Global Positioning System (GPS).  The GPS system is 
referenced to World Geodetic System 1984 (WGS 84) Datum.  
Using the ellipsoid model for the spherical model attains more 
accurate calculation of sailing on the Earth.  Therefore, we 
construct a computational procedure for solving the length of 
the arc of a great ellipse, the waypoints and azimuths along a 
great ellipse. 

In this paper, we provide the straightforward formulae in-
volving the great elliptic sailing based on two scenarios.  The 
first scenario is that the departure point and the destination 
point are known.  The second scenario is that the departure 
point and the initial azimuth are given. 

I. INTRODUCTION 

Since the Earth is flattened slightly at the poles and bulges 
somewhat at the equator, the geometrical figure used in 
geodesy to approximate the shape of the Earth is an ellipsoid 
of revolution obtained by rotating an ellipse about its shorter 
axis [1, 2].  An ellipsoid of revolution describing the figure 
of the Earth is called a reference ellipsoid.  Since the Earth is 
not a perfect sphere, a great circle (GC) becomes a great el-
lipse (GE).  Using the ellipsoid model for the Earth can attain 
more accurate calculation of the shortest distance between two 
points on the Earth.  The shortest path between two points on 
the ellipsoid is along the arc of geodesic (Geod). 

In traditional navigation, the computations are simplified 

by the use of a spherical Earth model.  The discrepancies 
between the results on the spherical and the ellipsoidal mode 
of the Earth are in order of 0.27% according to Tobler [6], and 
in the order of 0.5% according to Earle [5].  Despite these 
discrepancies the use of the spherical model in traditional 
navigation for most practical purpose is considered satifactory.  
Nevertheless for the case of sailing computations in GIS 
navigational systems such as ECDIS the computation must be 
conducted on the ellipsoid in order to eliminate these errors 
but without seeking the sub meter accuracies pursued in the 
other geodetic application.  Seeking extremely high accuracy 
for marine navigation purpose dose not offer any real benefit 
and require more computing power and processing time.  For 
these reasons and before proceeding with the adoption of any 
geodetic computational method on the ellipsoid for sailing 
calculation it is required to adopt a realistic accuracy standard 
in order not only to eliminate the significant errors of the 
spherical model but also to avoid the exaggerate and unrealis- 
tic requirement of sub meter accuracy. 

The computation of geodesic needs many iterative proce- 
dures.  The calculation of great ellipse can reduce the amount 
of computation and it gives a good approximation to the 
shortest distance [10].  A lot of specific papers present in detail 
the advantages and benefits of the Great Ellipse Sailing and 
Great Circle Sailing [3, 7, 8, 10, 11].  The work presented here 
embraces more straightforward derivations of the calculation 
of a great ellipse based on two scenarios. 

The first scenario is that the departure and the destination 
point are known.  The second scenario is that the departure 
point and the initial azimuth are known.  Our approach pro- 
vides a concise solution of length integral and a simpler azi-
muth function along a great ellipse that may offer ease of 
computation in navigation and perhaps can find its virtue in 
the training environment. 

Each position on the surface of the Earth can be considered 
as a vector drawn from the center to a point on the surface.  
Using the properties of vector analysis easily gives course 
function along a great ellipse without applying the rules of 
spherical trigonometry.  Length integral permits an integral 
expression for the distance between two points.  Although the 
integral for distance of a great ellipse is not mathematic closed 
form and lacks a convenient anti-derivative, the computation 
of the integral can nevertheless be carried out efficiently 
and quickly by numerical integration such as the trapezoidal 
rules or the Simpson’s rule [12].  Many available commercial 
mathematical software packages can handle definite integrals. 
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II. GEOMETRY OF SPHEROIDAL EARTH 

Since the spherical earth is a convenient assumption, the 
question of which sphere should be chosen for navigation 
purposes naturally arises.  A sphere having equal volume or 
surface area could be selected, but neither of these is as 
convenient as the navigation sphere defined here that one 
span of one minute of arc on any great circle is equal to one 
International Nautical mile (n.m) of 1852 meters.  The 
navigation sphere therefore has a radius of 60 360 /a π= ×  or 
3437.7468 nm. 

The Earth is a spheroid produced by an ellipsoid of 
revolution having small eccentricity as currently defined by 
the World Geodetic Standard of 1984 (WGS84), whose minor 
axis is the polar axis and major axis lies in the equatorial plane.  
The Earth’s equatorial radius or semi-major radius (a) is the 
distance from its center to the equator and is approximately 
equal to 6,378,137 km.  A nature unit of distance is the span of 
one minute of longitude at the equatorial arc also called the 
geographic mile.  It is equal to 1855.3249 meters and 1.0018 
nautical miles.  For navigation purposes, the semi-major radius 
is taken to be equal to 60 360 /π×  and thus has the value of 
a = 3437.747 geographic miles.  The Earth’s polar radius or 
semi-minor radius b is the distance from its center to the North 
and South Poles, and is equal to 6,356.750 km.  The eccentricity 
is approximately equal to e = 0.08181919 on the WGS84 
ellipsoid. 

A point on the surface of the Earth can be identified by 
spherical coordinates with longitude λ and latitude φ.  Because 
the Earth is slightly flattened by its rotation, cartographers refer 
to a variety of auxiliary latitudes to precisely adapt spherical 
projections according to their different purposes.  In common 
usage, “latitude” refers to geodetic or geographic latitude ϕ 
and is the angle between the equatorial plane and a line that is 
normal to the reference spheroid.  Reduced or parametric 
latitude β is the angle at a sphere that is tangent to the ellipsoid 
along the equator.  The geocentric latitude φ is the angle 
between the plane of equator and a line from the center of the 
Earth to the point whose geocentric latitude is being defined.  
A graphical illustration of these latitudes can be found in 
Fig. 1.  Equation (1) presents the relation between geodetic 
latitude and reduced latitude and (2) states the relation between 
geocentric latitude and geodetic latitude: (All the symbols 
used in the following are listed in the appendix for quick 
reference.) 

 
1
22tan (1 ) taneβ ϕ= −  (1) 

 2tan (1 ) taneφ ϕ= −  (2) 

where e is eccentricity of the ellipse. 
Using reduced latitude or geographic latitude, a point P on 

the surface of the Earth can be represented as a function of λ 
and β. 

Z
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P
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Fig. 1.  Geographic latitude, geocentric latitude and reduced latitude. 
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where a and b are the semi-major radius and semi-minor ra-
dius of the ellipsoid respectively.  Likewise, P also can be 
represented as a function of λ and ϕ. 
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where N is the radius of curvature of the prime vertical: 
2 2 1/ 2/(1 sin ) .N a e ϕ= −  

III. THE DISTANCE ON THE ELLIPSOID 

The definition of the length of a smooth path is as the fol-
lowing: 

If 3
1 2: [ , ]F t t R→  is a smooth path with coordinate func-

tions [12] 

 1 2( ), ( ), ( ), [ , ],x y zx f t y f t z f t t t t= = = ∈  

then its distance is given by 
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Differentiating P in (3) with respect to λ obtains: 
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By definition, the distance between two points on the sur- 
face of ellipsoid of revolution can be determined by (6) 

2

1

2 2 2 2 2 2 2
1 2( , ) ( sin cos )( ) cos

d
s a b a d

d

λ

λ

βλ λ β β β λ
λ

= + +∫   

  (6) 

In convention, since navigators present the position on the 
Earth by the geographic latitude, the expression of reduced 
latitude in the RHS of (6) must be substituted by the expres-
sion of geographic latitude.  Using the chain rule for deriva-
tives yields 

 
d d d

d d d

ϕ β ϕ
λ ϕ λ

=  (7) 

Differentiating (1) gives 

 
1 12 2

2 22 2
2 2 2

sec 1 tan
(1 ) (1 )

sec 1 (1 ) tan

d
e e

d e

β ϕ ϕ
ϕ β ϕ

+= − = −
+ −
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Then, setting 21 eγ = −  and substituting (6) into Equation 
obtains 
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  (9) 

IV. THE EQUATION OF A GREAT ELLIPSE 

Three unit vectors associated with the vector P are the unit 
velocity vector V

�

 which characterizes its moving direction, 
the meridian tangent vector N

�

 which points the North Pole 
and the parallel tangent vector E

�

 which points to the East.  
The azimuth α is the angle between the meridian plane and 
the normal plane at point P containing the velocity vector .V

�

  
For convenience, in the subsequent of this paper, a subscript 
will be added to designate the notation which is associated 
with a specific point.  For example, aV

�

 denotes the unit ve-
locity vector of point A.  If no subscript is specified, the nota-
tion is associated with an arbitrary waypoint under considera-
tion.  The notations of latitudes and longitudes are treated in 
the same way. 

Partial differentiating P in (3) with respect to λ and ϕ ac-
cordingly and following Fig. 2, Fig. 3 obtain: 

 ( sin ,cos ,0)E λ λ= −
�

 (10) 

 ( sin cos , sin sin ,cos )N ϕ λ ϕ λ ϕ= − −
�

 (11) 

Since the two vectors E
�

 and N
�

 form a basis for the set of  
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Fig. 2.  Geographic latitude, longitude, and azimuth. 
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Fig. 3.  The north and the east vectors at a point on the ellipsoid. 

 

 
all vectors in a tangent plane on a spheroid, the velocity vector 
V
�

 is a linear combination of E
�

 and N
�

 (Fig. 4), which is 
shown in (12): 

 sin cosV E Nα α= ⋅ + ⋅
�� �

 (12) 

A great ellipse is defined as the intersection of a spheroid 
and a plane passing its origin [7, 8].  Two scenarios for de-
termining a great ellipse are considered here: 

 
1. Determining a great ellipse by two points on a spheroid. 
2. Determining a great ellipse by a point and its course angle. 
 
Scenario 1: Determining a great ellipse by two points on a 

spheroid. 
Suppose A

�

 and B
�

 are the vectors of the departure and the 
destination accordingly.  The P

�

 is any waypoint of the great 

ellipse determined by the vector A
�

 and the vector .B
�

  By 
definition of equation of plane, a plane containing the great 
ellipse can be governed by (13). 
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Fig. 4.  The linear combination of the north vector and the east vector. 

  

 1 0l x m y z⋅ + ⋅ + ⋅ =  (13) 

Note that ( , ,1)n l m=�

 is the normal to the plane.  Since ,A
�

 
,B
�

 and P
�

 are on the plane of the great ellipse, we have 
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which is equivalent to 0,A B P× ⋅ =
� � �

 i.e., the their scalar triple 
product is zero [4, 7, 8, 12]. 

By solving 
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we have 

1
2

2
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 (15) 

Note that if the departure vector A
�

 and the destination 
vector B

�

 are known, the waypoint P
�

 along the great ellipse 

must lie in the plane spanned by A
�

 and .B
�

  Hence their scalar 
triple product will be zero. 

Expanding (15) yields the following. 

2 2

2 2
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cos cos cos sin cos sin cos cos

a a b b b a

a a b b a a b b

a a b b a a

a a b b a a b b

e e
l

e e
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
− − + − = −

 

  (16) 

Since 0,n P⋅ =
�

�

 we have 

 2cos cos cos sin (1 )sin 0l m eϕ λ ϕ λ ϕ⋅ + ⋅ + − =  (17) 

Rearranging and writing (17) as a tangent function, we ar-
rive at 

 2tan ( cos sin ) /(1 )l m eϕ λ λ= − ⋅ + ⋅ −  (18) 

From (18), the geographic latitude of any point on the great 
ellipse determined by two points can be identified once the 
longitude is specified.  To determine the longitude for given 
latitude, Eq. (18) can be transformed into (19) by using a 
trigonometric formula. 

 
2

1

2 2

(1 )
sin tan

e

l m
λ ϕ−  −= + ∆ 

 + 
 (19) 

where 1tan ( )
l

m
−∆ = . 

Since (9) requires the derivative / ,d dϕ λ  differentiating 
(18) yields 

 
2 2

( sin cos )

(1 )(1 tan )

d l m

d e

ϕ λ λ
λ ϕ

⋅ − ⋅=
− +

 (20) 

Substituting (20) into (9) yields 

1 2( , )s λ λ  

2

1

2
2

2 2 2

1 1 tan
(1 ( sin cos ) )

1 tan (1 tan )
a l m d

λ

λ

ϕ λ λ λ
γ ϕ γ ϕ

+= + −
+ +∫  

  (21) 

Scenario 2: Determining a great ellipse by a point and its 
course angle. 

Let the vector of the given point be .A
�

  Since its course 
angle aα  is known, the velocity vector aV

�

 can be obtained by 

linear combination of the meridian tangent vector aN
�

 and the 

parallel tangent vector aE
�

 as the following. 

 sin cosa a a a aV E Nα α= ⋅ + ⋅
�� �

 (22) 
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Since both A
�

 and aV
�

 lie in the plane of the great ellipse, 
we have 

 
0

0a

n A

n V

 ⋅ =


⋅ =

�

�

�

�

 (23) 

We can solve (23) for l and m.  Once l  and m are determined, 
the derivation of the equation for the great ellipse is the same 
as scenario 1. 

V. THE VERTICES AND NODES OF A GREAT 
ELLIPSE 

When danger is likely to be encountered in high latitudes, 
the great ellipse path must be modified to avoid it.  For this 
reason, a navigator may want to know whether the highest 
(lowest) latitude or the vertex reached by his path is safe and at 
what longitude it will occur.  For example, in case of bad 
weather, the navigator will choose to sail a part of his track at a 
parallel circle.  A vertex (N or S vertex), whose latitude and 
longitude are denoted as ϕ v and λ v, occurs when / 0.d dϕ λ =   
Setting (20) to be zero gives the following. 

 
2 2

sin cos
0

(1 )sec

d l m

d e

ϕ λ λ
λ ϕ

−= =
−

 (24) 

we have 

 1tan ( ) , (0,1)v

m
n n

l
λ π−= + ∈  (25) 

Substituting (25) into (18) yields the latitude of the vertex: 

 
2 2

1
2

tan ( )
1v

l m

e
ϕ − += ±

−
 (26) 

Setting the geography latitude 0ϕ =  in (18) gives the as-
cending and descending nodes where the great ellipse inter-
sects with the equator at longitude λe as the following: 

 1tan ( ) , (0,1)e

l
n n

m
λ π−= + ∈  (27) 

which is equivalent to / 2.e vλ λ π= ±  
Substituting (26) and (27) into (19) yields a different 

presentation for the equation of a great ellipse as the follow-
ing: 

 
tan

sin( )
tane

v

ϕλ λ
ϕ

− =  (28) 

which is the same as the equation obtained by Napier’s  

mnemonic Rule for Right-Angle Triangle [1] for conven- 
tional technique of navigation. 

VI. THE COURSE AT ANY POINT IN A GREAT 
ELLIPSE 

The velocity vector of any waypoint on a great ellipse sat-
isfies (12).  That is, 

sin cosV E Nα α= ⋅ + ⋅
� � �

 

sin sin cos sin cos

cos sin sin sin cos

cos cos

Tλ α λ ϕ α
λ α λ ϕ α

ϕ α

− − 
 = − 
  

 (29) 

Since the vector V
�

 lies in the plane of a great ellipse, then 
the dot product of the vector V

�

 and the normal vector of the 
great ellipse equals to zero. 

 0n V⋅ =
�

�

 (30) 

Expanding (30) gives 

sin ( sin cos ) cosl mα λ λ α− + −  

( cos sin sin sin cos ) 0l mλ ϕ λ ϕ ϕ+ + =  (31) 

Rearranging (31) and incorporating (18), we have 

 
2 21 (1 ) tan

tan cos
( sin cos )

e

l m

ϕα ϕ
λ λ

+ −=
−

 (32) 

When eccentricity e = 0, Eq. (32) can be reduced into (33): 

 
sec

tan
sin cosl m

ϕα
λ λ

=
−

 (33) 

Therefore, the azimuth of any waypoint on a great ellipse is 

 
2 2

1 1 (1 ) tan
tan (cos )

( sin cos )

e

l m

ϕα ϕ
λ λ

− + −=
−

 (34) 

and the azimuth of any waypoint on a great circle is 

 1 sec
tan ( )

sin cosl m

ϕα
λ λ

−=
−

 (35) 

The formulation of the azimuth of any waypoint on a great 
ellipse in [4] is expressed as the 
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 -1
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| || |

p

p

P V P B

P V P B
α

× ⋅ ×
=

× ×

� � �

� � �  (36) 

where Vp = (0,0,1) is the unit polar vector from the origin to the 
North Pole.  One of the problems with (36) is that course angle 
at Pb can not be resolved with Eq. (36).  To deal with this 
problem, Eq. (36) can be reformulated as: 

 -1
( ) ( )

cos [ ]
| || |

p

p

P V A B

P V A B
α

× ⋅ ×
=

× ×

�� �

�� �  (37) 

This equation avoids a discontinuity that can occur as P 
meets B and is there more versatile. 

However, another problem with (36) and (37) arises that 

P B×
� �

 and A B×
� �

 is the normal to the plane containing a great 
ellipse.  That is, the azimuth measured calculated in (36) or (37) 
is the angle between the meridian plane passing point P and 
the plane of the great ellipse.  This is incorrect!  As we noted 
in Section IV, the azimuth is the angle between the meridian 
plan and the normal plane containing the velocity vector V

�

 
of the point P.  To tackle this problem, we further reformulate 
(38) as 

 
( ) ( )

arcos[ ]
| || |

p

p

P V E N V

P V E N V
α

× ⋅ × ×
=

× × ×

� � � �

� � � �  (38) 

In (38), the triple product E N V× ×
� � �

 is the normal to the 
normal plane containing the velocity vector .V

�

 
For comparison, the computation results for a great ellipse, 

a great circle, a geodesics, and Earle’s formulation departed 
from A point (Lat 35N long 121E) to B point (Lat 46.2N Long 
144W) are shown in Tables 1 and 2.  Using very accurate 
methods for the calculation of long geodesics, as the method 
of Vicenty (1975) [9] spending a lot of processing time, gives 
the distance and azimuth on WGS-84 ellipsoid as shown in the 
following Tables.  The result of calculation of geodesics is our 
benchmark to compare the methods of GC and GE with the 
method of Geodesics. 

The differences of azimuths between GC and Geodesic are 
significantly smaller than the differences of azimuths between 
GC and Geodesics.  In this example, the difference in calcu-
lated distances on the spherical model (great circle sailing) can 
exceed 23 km (about 13 nautical miles).  The discrepancies 
between the distances of the great ellipse and the geodesics are 
negligible. 

We found that the method of GE eliminates the significant 
errors of the spherical model and avoids the exaggerated and 
unrealistic requirement of sub meter accuracy.  The great ellipse 
is to be used for accurate sailing calculations on the ellipsoid 
in a GIS environment.  Their validity in terms of the accuracy 
achieved is assessed and compared to geodesics method. 

Table 1. Azimuth Comparison of a great ellipse, great 
circle, and Geodesic. 

Long Lat GC GE Geodesic 
Earle’s  
result 

Errror 

121 35.000 47.772 47.900 47.889 47.900 -0.000142 

130 40.857 53.318 53.424 53.412 53.424 -0.000151 

140 45.646 60.185 60.266 60.255 60.267 -0.000139 

150 48.981 67.548 67.606 67.596 67.606 -0.000112 

160 51.149 75.225 75.262 75.252 75.262 -0.000076 

170 52.338 83.085 83.103 83.093 83.103 -0.000036 

180 52.652 91.026 91.023 91.013 91.023 0.000005 

190 52.118 98.955 98.932 98.922 98.932 0.000047 

200 50.689 106.779 106.736 106.725 106.736 0.000086 

210 48.242 114.389 114.324 114.317 114.324 0.000120 

216 46.200 118.795 118.717 118.724 NA NA 

 
 

Table 2. Distance Comparison of a great ellipse, a great 
circle, and a geodesic. 

Long Lat GC GE Geod GC-Geod(m) GE-Geod(m) 

121 35.000 0.000 0.000 0.000 0.000 0.000 

130 40.857 551.673 552.427 552.427 -1396.712 0.007 

140 45.646 1074.065 1076.017 1076.017 -3614.460 0.014 

150 48.981 1526.932 1530.245 1530.245 -6136.159 0.020 

160 51.149 1933.063 1937.792 1937.792 -8759.188 0.024 

170 52.338 2311.040 2317.198 2317.198 -11403.177 0.028 

180 52.652 2676.530 2684.115 2684.115 -14046.802 0.031 

190 52.118 3043.846 3052.858 3052.858 -16690.851 0.034 

200 50.689 3427.499 3437.938 3437.938 -19333.043 0.038 

210 48.242 3843.760 3855.607 3855.607 -21941.152 0.043 

216 46.200 4117.133 4129.796 4129.796 -23451.092 0.044 
 

VII. CONCLUSION 

In this paper, we have presented an accurate method for 
computing the distance, position and azimuth along a great 
ellipse.  We also give a different scenario to develop the great 
ellipse equation determined by a point and its course angle.  
The method of scenario 2 especially is suitable for calculation 
of area of missile attack.  With basic vector analysis, the 
derivation presented in this paper is more straightforward and 
concise than the formulation developed in [3].  We have de-
veloped a correct course function as a substitute of the course 
function developed in [3], which mistreated the plane of a 
great ellipse as a normal plane.  The great ellipse is to be used 
for accurate sailing calculations on the ellipsoid in a GIS en-
vironment.  Their validity and effectiveness in terms of the 
accuracy achieved and the calculation time required are as-
sessed and compared to standard geodetic method.  The results 
of our formulation can be easily implemented as software 
modules such as Add-in of Excel to facilitate navigators to 
plan their routes of sail more accurately.  The approach was 
intended to appeal to the navigator who are interested in the 
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mathematics of navigation and who, nowadays, solves his 
problems of navigation with a personal computer. 

APPENDIX 

Symbol Glossary 
a semi-major radius 
b semi-minor radius 
e eccentricity (WGS84) 
λ  longitude 
ϕ  geographic latitude 
β  Reduced or parametric latitude 
φ  geocentric latitude 
N
�

 meridian tangent vector 

E
�

 parallel tangent vector 
V
�

 unit velocity vector 
( , ,1)n l m=�

 Normal to plane of great ellipse 

vλ  longitude of vertex 

vϕ  latitude of vertex 

eλ  longitude of node 
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