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ABSTRACT 

Geometric non-linearity becomes an issue of great concern 
that cannot be overlooked in the analysis of cable-supported 
structures since their material properties may be in an elastic 
range but they exhibit nonlinear behavior when loaded.  This 
study intends to present an analytical approach for analyzing 
the large deflection behavior of a guyed column pulled by a 
pre-tensioned cable at different stages of installation.  The 
column is assumed to be naturally straight and inextensible, 
and each cable is modeled as an equivalent tensile bar ne-
glecting the sag effect due to self-weight.  Based on an elliptic 
integral formulation, closed-form solutions are derived for the 
large deflection of a guyed column pulled by a pre-tensioned 
cable with different deformed configurations.  The interaction 
between the nonlinear deflection of the guyed column and the 
sequentially applied cable forces are fully taken into account.  
The analytical result indicates that the larger aspect ratio (h/l) 
of the cable anchor distance (h) to the column height (l) may 
result in smaller critical tip slope. 

I. INTRODUCTION 

Because of the advancement in material technologies for 
producing steel wires of reliable quality and high strength, 
cable supported structures are widely used in various con-
structions including suspension bridges, cable-stayed bridges, 
dome buildings, cable-supported roofs of large stadiums, 
guyed towers for telecommunications, etc.  The enhancement 
in structural performance brought by the use of pre-tensioned 
cables has enabled us to design structures of lighter weights 
and richer aesthetic appearance.  However, most cable- 
supported structures are featured by the fact that they are 
flexible structures.  The reason for such a phenomenon is that 
the pre-tensioned cables tend to strengthen the structural sys-

tem, allowing it to achieve the design goals usually in a more 
creative way.  The reduction in the overall weight of the 
structural system is accompanied by the reduction in the 
stiffnesses of the structural components.  As a result, geomet-
ric nonlinearity becomes an issue that cannot be overlooked in 
the analysis of the cable-supported structures.  One typical 
example is the nonlinear deformational behavior of commu-
nication towers guyed by cables under both the construction 
stages and service conditions.  In general, the non-linear be-
havior of a guyed structure is caused by the change of stretch- 
ing forces existing in the guy cables or the large deformations 
of certain components of the structure under the action of wind 
loads or earthquakes.  

In the literature, the large deflection behavior of beams or 
elasticas continues to be a subject of intensive research.  
Numerous researchers have studied the problem of elasticas 
under different conditions and using different methods of 
solution.  For simple beams allowed to slide freely over the 
roller end, Conway [5] and Gospodnetic [8] derived closed- 
form solutions for simply supported beams subjected to a 
point load at the center.  Wang and Kitipornchai [19] proposed 
the shooting-optimization technique for studying the large 
deflection and postbuckling behaviors of structural members.  
Chucheepsakul et al. [2-4] investigated the large deflection 
behaviors of beams under moment gradient using the elliptic 
integral method.  The results obtained were verified by those 
independently generated by other numerical methods.  Con-
sidering a simple beam with an elastically rotational restraint 
at one end, Wang et al. [20] studied the large deflections of a 
beam subjected to a non-central point load.  Considering 
variable-arc-length elasticas subjected to two moments at the 
supports, Chucheepsakul et al. [4] investigated the large de-
flection behavior of double curvature bending.  For this kind 
of bending problem, they found that the elastica can form a 
single loop or snap-through bending for some unstable equi-
librium configurations.  By considering the effects of both 
compression and bending, Williams [21] presented an ana-
lytical approach for analyzing the nonlinear behavior of the 
members of a rigid jointed plane framework with finite de-
flections, in which the famous Williams’ toggle was thor-
oughly studied.  Recently, Kalaga and Adluri [10] obtained a 
closed-form solution for the large-deflection response of an 
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eccentrically loaded beam-column including the bowing effect 
and initial imperfection.  Lee and Oh [12] solved the elastica 
problem and buckling load of simple tapered columns sub-
jected to a compressive end load by numerical methods.  Their 
results indicated that the strongest column can be identified for 
each taper and cross-sectional shape by varying the section 
ratio.  The analytical solutions obtained by Ohtsuki and Ellyin 
[14] for the large deflection response of a square frame with 
rigid joints were shown to be fairly close to those obtained 
experimentally.  For a cantilever beam subjected to an end 
rotational load non-conservative loads, exact solutions were 
presented by Nageswara and Venkateswara [13] and by Vil-
laggio [18].  Adopting the elastica solution of a beam-column 
structure, Hartono [9] investigated the large displacement 
post-buckling behavior of a column braced at the center.  De- 
pending on the brace stiffness, different symmetrical and anti- 
symmetrical post-buckling paths were shown to exist.  By the 
concept of an equivalent peseudo-linear system, Ferits [6] pro- 
posed a procedure for analyzing the large deflections of beams 
with distributed loads and variable stiffnesses.  Kuznetsov and 
Levyakov [11] proposed a complete solution of the stability 
problem for elastica of Euler's column and established the 
ranges of the compressive force corresponding to stable equi-
librium configurations of the column. 

To the knowledge of the author, relatively few analytical 
works have been conducted on the large deflection behavior of 
a guyed structure with inclined cables installed at different 
stages.  For this kind of problems, an important issue in analy-
sis is that the cable forces applied at each stage on the structure 
depend on the deformation of the guyed column and the loca-
tions of cable supports.  In this study, we shall assume that the 
classical Bernoulli-Euler beam theory applies for the guyed 
column and that the materials remain always elastic.  By 
modeling the cables each as an equivalent tensile bar, ne-
glecting the sag effect of the cable caused by self-weight [7], 
the governing differential equation for the fundamental prob-
lem of a column subjected to the pull action of an inclined cable 
is presented.  By the elliptic integral method, analytical solu-
tions are derived for the tip displacement of the guyed column 
and the cable force.  The present theory provides an accurate 
tool for treating a large class of problems involving large de-
flections of guyed structures, such as cable-stayed bridges, 
radio masts, cable-supported roofs, etc.  It is characterized by 
the fact that the interaction between the nonlinear deflection of 
the guyed column and the sequentially applied cable forces are 
fully taken into account.  The analytical solutions presented 
herein for a guyed column serve as benchmarks for calibrating 
solutions obtained by other numerical methods. 

II. FORMULATION OF THE PROBLEM 

The most fundamental problem for cable-supported struc-
tures is the cantilever column OB laterally guyed by a cable 
AB shown in Fig. 1. According to the degree of stretching in 
the cable force, the column will be bent by a combination of 

β

B

ha

la

AO

EcAcEI

 
Fig. 1.  A guyed column. 

 
 

axial compression and transverse force acting at its tip point.  
The initially included angle between the undeformed column 
and the cable is β, and the distance between the cable support 
A and the column base O is ha.  Consider the guyed column in 
the deformed configuration, as shown in Fig. 2.  The column is 
bent by an inclined force T exerted by the cable with an in-
clination angle α. The tip slope of the deformed column is θ0.  
Prior to the mathematical formulation for the guyed column 
pulled by an inclined cable, the following assumptions are 
made in the large deflection analysis: 

 
(1) The material is elastic and homogeneous during the de-

formation process;  
(2) The column is naturally straight and inextensible;  
(3) By neglecting the cable sag effect due to self-weight, the 

cable is modeled as an equivalent tensile bar with axial 
rigidity EcAc; 

(4) The warping of cross section [20-22] is assumed to be 
negligible in large deformation analysis for the guyed 
column, that is, the classical Bernoulli-Euler beam theory 
with plain sections is applied to the column during large 
deformation. 

III. GOVERNING EQUATION 

Consider an arc length s measured from the tip B of the 
column in the deformed configuration, as shown in Fig. 2(a).  
The slope of the column at section s is θ.  In accordance with 
the shear equilibrium condition for the part of the column with 
arc length s, as shown in Fig. 2(b), the governing differential 
equation for the column subjected to an inclined cable force T 
can be written as [1, 16, 19] 

 ( )
2

2
sin 0

d
EI T

ds

θ θ α+ + =  (1) 

where EI denotes the flexural rigidity of the column.  By let- 
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Fig. 2. A cantilever column pulled by an inclined cable: (a) deformed 

configuration; (b) force equilibrium. 

 

 
ting la denote the length of the column, the boundary condi-
tions for the free and fixed ends are 

 00 :     ,   / 0

:    0a

s d ds

s l

θ θ θ
θ

= = =
= =

 (2) 

As can be seen, the curvature dθ/ds at the tip B of the 
column is zero, since the bending moment vanishes at the free 
end.  By multiplying (1) by dθ/ds and then integrating with 
respect to θ, one can derive the following differential equation: 

 ( ) ( ) ( )2 2
0/ 2 cos cosd ds kθ θ α θ α= × + − +    (3) 

where k2 = T/EI.  Using the identity: 2cos 1 2sin ( /2),χ χ= −  
Eq. (3) can be rewritten in the following form: 

 
[ ] [ ]2 2

02 sin ( ) / 2 sin ( ) / 2

d
ds

k

θ
θ α θ α

= −
+ − +

 (4) 

where the minus sign on the right hand side means that the 

slope θ  shown in Fig. 2(a) is a decreasing function with re-
spect to the arc length s.  By the hypothesis of an inextensible 
bar and using the boundary conditions in (2), one may inte-
grate (4) to obtain the relation for the column length la and tip 
slope θ0 of the deformed column as [1, 16]: 

 
[ ] [ ]0

0

0 2 2
0

1

2 sin ( ) / 2 sin ( ) / 2

al

a

d
l ds

k θ

θ
θ α θ α

−= =
+ − +∫ ∫  (5) 

which forms the basis of the present analysis. 

IV. SOLUTION: AN ELLIPTICAL INTEGRAL 
APPROACH 

To compute the tip slope θ0 and the inclination angle α of 
the guyed column from (5), we need to introduce two new 
parameters p and φ defined as follows [1]: 

 

0sin         
2

sin sin
2

p

p

θ α

θ α φ

+
=

+ =
 (6a, b) 

Then one can transform the integral appearing in (5) into a 
characteristic equation with elliptic integral type and then 
calculate the elliptic integral for various values of p.  In ac-
cordance with (6), the boundary conditions in (2) can be 
transformed to 

 
0

0

sin( /2)
0 :     arcsin

:   / 2 

p

αθ φ φ

θ θ φ π

 
= = =  

 

= =

  (7a,b) 

By considering the differentiation of (6b) and using the 
definition of (6a), the relationship between dθ and dφ can be 
derived as 

 
2 2

2 cos

1 sin

p
d d

p

φθ φ
φ

=
−

 (8) 

Substituting (6), (7), and (8) into (5) yields 

 

0

0 0

/2

0 2 2

0 0 2 2

( , ) ( , /2) ( , )

( , / 2)
1 sin

( , )
1 sin

e e
a

e

e

F p F p F p
l

k k

d
F p

p

d
F p

p

π

φ

φ π φ

φπ
φ

φφ
φ

−
= =

=
−

=
−

∫

∫

 (9a-c) 
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where Fe(p, π/2) is a complete elliptic integral of the first kind, 
and Fe(p, φ 0) an incomplete elliptic integral of the first kind.  
For a given p, the values of the elliptic integrals can be found 
from the tabulated results in many mathematical handbooks 
[17]. 

V. GEOMETRY CONSIDERATIONS 

According to the expression in (9), for given values of  
p and φ 0, or θ0 and α, as shown in (6), the reduced length kla is 
determined by (9).  The stretching force T needed to keep the 
column in such an equilibrium configuration is T = EIk2 by the 
definition given in Section II.  However, as shown in Fig. 2(a), 
for the analysis of a column subjected to the stretching of an 
inclined cable, the inclination angle α depends not only on the 
tip coordinates (xa, ya) of the column in the deformed con-
figuration, but also on the geometry data (la, ha) of the cable in 
the unstressed configuration.  Thus, we need another equation 
to serve as the additional condition for establishing the rela-
tionship between the reduced length kla, which equals F(p, φ 0) 
according to (9), and the geometry data (la, ha). 

In derivation of the tip coordinates (xa, ya) for the column in 
the deformed configuration, as shown in Fig. 2(a), the coor-
dinate differentials (dxa, dya) can be related to the arc length 
differential ds in terms of the column slope θ as follows 

 
cos

sin
a

a

dx
ds

dy

θ
θ

   
=   
  

 (10) 

By transforming the column slope θ  to the included angle  
θ + α, the relationship between the differential arc length ds 
and coordinate differentials (dxa, dya) becomes  

cos( ) cos (cos ) sin (sin )

sin( ) sin (cos ) cos (sin )

cos sin

sin cos
a

a

ds ds
ds

ds ds

dx

dy

θ α α θ α θ
θ α α θ α θ

α α
α α

+ × × − × ×   
=   + × × + × ×   

−   
=   
   

(11) 

By relating ds to dθ using (4) and then to dφ using (8), the 
preceding equation can be manipulated to yield 

( )
( )

[ ]
[ ] [ ]

( )

2

2 2

2 2

2 2

cos 1 2sin ( ) / 2

sin 2sin ( ) / 2 cos ( ) / 2

2 1 sin 1

2 sin 1 sin

2 1 sin /

2 sin /

ds ds

p
ds

p p

p d k ds

p d k

θ α θ α
θ α θ α θ α

φ

φ φ

φ φ
φ φ

  +  − +   =   + + × +      

 − − − =  
 × − 

  − −=  
−  

 (12) 

Substituting (12) into (11) and integrating both sides of (11) 
with respect to the limits of the column, one can obtain the 
following for the tip coordinates (xa, ya) of the column in the 
deformed configuration: 

 0

0

2 ( , ) /cos sin

2 cos /sin cos
a a

a

x E p k l

y p k

φα α
φα α

−−     
=    

     
 (13) 

where 

 

0

0 0

/2 2 2

0

2 2
0 0

( , ) ( , /2) ( , )

( , /2) 1 sin

( , ) 1 sin

e e

e

e

E p E p E p

E p p d

E p p d

π

φ

φ π φ

π φ φ

φ φ φ

= −

= −

= −

∫

∫

 (14) 

Here, Ee(p, π/2) is a complete elliptic integral of the second 
kind and Ee(p, φ 0) an incomplete elliptic integral of the second 
kind [17].  By the use of the relation kla = F(p, φ 0) in (9), one 
can solve (13) to obtain the tip coordinates (xa, ya) of the 
column in the deformed configuration as follows: 

 0 0

0 0

2 ( , ) / ( , ) 1cos sin

2 cos / ( , )sin cos
a

a
a

x E p F p
l

y p F p

φ φα α
φ φα α

−    
= ×    −    

(15) 

On the other hand, the relationship between the coordinates 
(xa, ya) and the inclination angle α can be obtained from the 
analytical geometry shown in Fig. 2(a) as 

 
sin

cos
a a

a

h y

x

α
α

−
=  (16) 

By substituting the expression of the tip coordinates (xa, ya) 
in (15) into (16), the relation between the angles (θ0, α) [or  
(p, φ 0)], the initial geometry data (la, ha) of the cable, and the 
reduced length kla, i.e., F(p, φ 0), can be expressed as follows: 

 0

0

2 cos
cos 0

( , )
a

a

h p

l F p

φα
φ

×
− =  (17) 

Since the lengths la and ha for describing the initial ge-
ometry of the inclined cable are known, for a given p, the 
inclination angle α can be solved from (17).  As was stated, 
the reduced length kla can be computed from (9), and the 
stretching force T needed to keep the column in such an equi-
librium state is simply T = EIk2. 

VI. RANGE OF PROBLEMS CONSIDERED 

For the case when the included angle (θ0 + α) reaches π, as 
shown in Fig. 3, the values of the parameter pair (p, φ 0) are: 
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Fig. 3. Critical state of a guyed column pulled by an inclined cable: (xa > 

0, ha – ya > 0, π/2 > α > 0). 

 
 

p = 1, φ0 = α/2 according to (6).  Correspondingly, the elliptic 
integral F(p, φ0) in (9) becomes  

 
/ 2

/ 2

/ 2 2
/ 2

1, ln tan
2 4 21 sin

d
F

π
π

α
α

α φ π φ
φ

    = = +    
    −∫  (18) 

which is infinitive, indicating that a limit point occurs when 
the condition θ0 + α = π is reached.  For a given θ0, the value of 
α  that may result in such a limit point is just circumvented in 
this study.  

During the stretching stage by the inclined cable as shown 
in Fig. 2, the tip slope θ0 is always greater than 0.  For the 
present case, only the case with 0 < θ0 < π is considered.  For a 
given value of θ0, together with the α value solved from the 
nonlinear equations described above, the corresponding stretch- 
ing cable force T can be determined.  It should be noted that 
the sign of α solved must be consistent with the physical po-
sition of the tip B with coordinates (xa, ya), that is, 

 
(a) 0 < θ0 ≤ π/2 

(1) xa > 0, ha − ya > 0, π/2 > α > 0, (see Fig. 3); 

(2) xa > 0, ha − ya < 0, −π/2 < α < 0, (see Fig. 4); 

(b) π/2 < θ0 ≤ π 

(3) xa > 0, ha − ya < 0, −π/2 < α < 0, (see Fig. 5); 

(4) xa < 0, ha − ya < 0, −π < α < −π/2, (see Fig. 6); 
 
Figure 7 shows a tri-phase plot of the relations for the as-

pect ratio ha/la, tip slope θ0/π, and reduced length ratio kla/π.  
There exists a curved ridge for which the condition θ0 + α = π  
is satisfied.  It can be observed that the larger the aspect ratio 
ha/la is, the smaller the corresponding critical tip slope. 

Next, let us consider a special case shown in Fig. 8, where 

ha

T
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la xaθ0
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B
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Fig. 4. Different deformed configurations of a guyed column: xa > 0, ha – 

ya < 0, –π/2 < α < 0. 
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xa
α

θ0 B

O A

 
Fig. 5. Different deformed configurations of a guyed column: xa > 0, ha – 

ya < 0, –π/2 < α < 0. 

  
the support end of the inclined cable just passes through the 
column base, that is ha = 0.  According to (17), one can show 
that cosφ0 = 0 or φ0 = ±π/2.  For the non-trivial case with φ0 = 
−π/2 and for small deformation, the term (p sin φ)2 may be 
neglected in comparison with unity in (9).  It follows that the 
reduced length kla becomes equal to π.  From the definition of 
the buckling parameter of k2 = T/EI, it means that the critical 
pre-tensile force in the cable is: T0 = EIk2 = EI(π/la)

2.  Such a 
result coincides with that derived by Timoshenko and Gere 
[24], which is the critical load of a compressed column with 
hinged ends [18].  The reason for such a phenomenon is con-
cluded that as the stretched cable passes through both the tip 
and base of the cantilever column, the bending moment at the 
column base will vanish because the cable force applying to 
the bar is always at the same line of action [24]. 
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Fig. 6. Different deformed configurations of a guyed column: (xa < 0,  

ha –  ya < 0,  –π < α < –π/2. 
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Fig. 7.  Tri-phase plot of kla/π – θ0/π – ha/la. 

VII. CONCLUSION 

In the present study, the large deformation behaviors of a 
cantilever column guyed by one inclined cable are investi-
gated.  By modeling an inclination cable as an equivalent 
tensile bar, closed form solutions are derived for the guyed 
column with large deformation using an elliptic integral for-
mulation.  When a guyed column is subjected to the pull action 
of a cable with an inclination angle θ0 + α, the critical condi-
tion of the column occurs at θ0 + α = π.  Based on an elliptic  

T0

la

O

B

 
Fig. 8.  Critical load of a pulled cable passing through the column base. 

 
 
integral formulation proposed in references [1, 15], a closed- 
form solution is derived for the large deflection of a guyed 
column pulled by a inclined pre-tensioned cable considering 
different cable supports.  The present results can be used as a 
fundamental model to recognize the large deflection behaviors 
for cable supported structures subject to the sequentially ap-
plied cable forces with different stages.  The analytical result 
indicates that the larger the aspect ratio (h/l) of the cable an-
chor distance (h) to the column height (l) is, the smaller the 
corresponding critical tip slope will be.  
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