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ABSTRACT 

The nonlinear ship rolling motion with water-on-deck in 
regular beam waves is studied by utilizing a global geometric 
method.  A ship stability criterion based upon the Melnikov 
function is obtained to provide an upper bound on the domain 
of the potential chaotic rolling motion.  Phase plane diagrams 
and Poincare maps are used to validate the ship stability cri-
terion obtained in this article. 

I. INTRODUCTION 

In this article we investigate the important naval architec-
tural problem of vessel rolling with water trapped on deck.  
The presence of water on deck can significantly change the 
behavior of a ship.  One way to investigate the effects of wa-
ter-on-deck is by conducting wave tank model experiments.  
Adee and Pantazopoulos [1] have carried out ship model tests 
to predict the water-on-deck effects.  Their experiments sug-
gested the importance of the so-called pseudo-static heel angle 
(loll angle) when water is trapped on deck.  However, physical 
experiments involve unknowns due to scaling and are extremely 
costly.  Thus, they are limited in the number of parameters that 
can be systematically studied. 

Another method to study the water-on-deck effects is nu-
merical simulation [2], i.e. to perform numerical integration 
on the vessel’s differential equation of motion.  Simulation has 
the great advantage of being able to conveniently deal with 
any type of nonlinearities.  However, the numerical simulation 
technique is very time consuming [13] so that fully solving a 
given ship stability problem, although theoretically possible, 
may be impractical.  In addition, simulations rely heavily on 
accurate prediction of initial conditions of the ship motion. 

Geometric methods have been recognized in the engineer-
ing community for the analysis of nonlinear dynamics exhib-
iting chaotic behavior.  Instead of directly solving the nonlinear 

differential equation of motion, the geometric method em-
phasizes the qualitative behavior of the system, or more pre-
cisely, the changes in qualitatively different behaviors.  One of 
the significant analytic results of the geometric method is the 
Melnikov function [7, 16] which can predict the occurrence of 
chaos in a certain class of systems.  Falzarano et al. [5] first 
utilized global geometric analysis techniques to study tran-
sient rolling motions of a small ship with water-on-deck 
which is subjected to a periodic wave excitation.  A lin-

ear-plus-quadratic type damping term ( )44 44'  qB Bφ φ φ+� � � was 

used in the equation of motion in their study.  Their analysis is 
based on determining a Melnikov criterion which can predict 
the qualitative nature of the invariant manifolds which repre-
sent the boundary between safe and unsafe initial conditions, 
and how these depend on system parameters for the small ship 
model.  Of particular interest is the transition which this bound-
ary makes from regular to fractal, implying a loss in predict-
ability of the ship’s eventual state.  Wang and Tan [14] re- 
cently extended the global geometric analysis techniques [5] 
in analyzing the nonlinear rolling motion of a biased ship 
(possibly due to water-on-deck) in random waves.  They fol-
lowed Falzarano et al. [5] to use a linear-plus-quadratic type 

damping term ( )44 44'  qB Bφ φ φ+� � �  in the equation of motion 

for their study.  A mean-square Melnikov criterion is obtained 
in their study to provide an upper bound on the domain of the 
potential chaotic rolling motion. 

In the present study, we will use a linear-plus-cubic type 

damping term ( )3
44 3'  B Bφ φ+� � in the equation of motion for 

studying the ship rolling motion with water-on-deck (Liu and 
Tang [11]).  We prefer to use the linear-plus-cubic type damp-
ing term because the rolling equation with this term retains the 
essential dynamics of the physical system as has been indicated 
by model experiments (Spyrou, et al. [12]; Francescutto and 
Contento [6]).  A ship stability criterion based upon the Mel-
nikov function will be obtained in this article to provide an 
upper bound on the domain of the potential chaotic rolling 
motion (erratic rocking).  Moreover, the present work will 
make a first effort to systematically change the system pa-
rameters in the rolling equation and use phase plane diagrams 
and Poincare maps to validate the Melnikov criterion obtained 
in this article. 

Paper submitted 02/20/09; revised 03/12/09; accepted 03/13/09. Author for
correspondence: Ying-Guang Wang (e-mail: wyg110@sjtu.edu.cn). 
*Department of Naval Architecture and Ocean Engineering, Shanghai Jiao
Tong University, 800 Dong Chuan Road, Shanghai, P.R.C. 
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II. PHYSICAL MODELING 

Because of port-starboard symmetry of a ship, the first-order 
couplings from surge, heave and pitch to roll are all zero.  
However, the couplings from sway and yaw to roll are not.  In 
this study, the yaw coupling with roll and sway is assumed to 
be small, and therefore only the coupling between sway and 
roll is considered.  We start with the linear two degree of 
freedom equations of motion involving roll and sway [9]: 
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where η represents the sway displacement, φ represents the 
roll angle.  M is the mass of the ship.  I4 is the moment of 
inertia (in air) of the ship about the roll axis.  The A′s and B′s 
are added mass and damping coefficients which can be cal-
culated from any linear hydrodynamic program, e.g. TRIBON. 
zc is the vertical center of gravity of the ship from the base line.  
C44 is the roll-restoring moment coefficient.  F2(t) and F4(t) are 
the external wave exciting force and moment, respectively.  
Further, the symbol (•) denotes differentiation with respect to 
time t. 

In general, the roll motion and sway cannot be decoupled 
because of damping.  For special cases, i.e., undamped or 
proportionally damped systems, it can be shown that the ship 
rolls about a roll center like a pendulum, and the roll motion 
can be decoupled from sway.  If a pseudo roll center is as-
sumed to exist when general damping is present, we then get 
the following single degree of freedom roll equation [13]: 

 [ ]44 44 44 44' '  '  '  ( )I A B C F tφ φ φ+ + + =�� �  (2) 

where 

 44 4 42' ,cI I A R= +       44 44' ,c cA A Mz R= −  
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 4 2( ) ( ) ( ) ,cF t F t F t R= +      44' ( ) mC GZφ φ= ∆  

In the above equation, ∆ is the displacement of the ship, 
GZm(φ) is a modified polynomial approximation to the non- 
linear roll-restoring arm.  Caglayan [3] suggests that the 
dominant dynamics of the water-on-deck problem can be ap- 
proximated by a fixed weight to achieve the same pseudo- 
static heel angle (loll angle) of the ship.  Therefore, the GZm(φ) 
curve can be obtained by modifying the original roll-restoring 

arm curve GZ(φ) after considering the effects of weight and 
moment of water-on-deck.  Following the work of Falzarano 
[4], we use a third order polynomial to approximate the lolled 
righting arm curve (the part ahead of the loll angle): 

 3
1 3( ) mGZ C Cφ φ φ= − +  (3) 

in which the constants C1 and C3 can be calculated by using a 
ship hydrostatic stability program (e.g. TRIBON) and a suit-
able interpolation procedure. 

We know that the rolling motion around the resonance 
condition is strongly affected by the viscous damping, and the 
viscous roll damping is a nonlinear function of the rolling 
velocity.  Therefore, a cubic typed viscous damping term should 
be added in (2): 

 [ ] 3
44 44 44 3' '  '   ( ) ( )mI A B B GZ F tφ φ φ φ+ + + + ∆ =�� � �  (4) 

Despite its simplicity, the above equation retains the essential 
dynamics of the physical system as has been indicated by 
model experiments (Spyrou et al. [12]; Francescutto and 
Contento [6]).  In (4), B3 can be calculated by utilizing some 
empirical formulae.  For harmonic excitation in regular seas, 

( )F t  in (4) is calculated as: 

 ( ) ( ) cos( )rollF t AF tω ω=  (5) 

where A is the wave amplitude, and Froll(ω) is the moment 
amplitude per unit wave amplitude at frequency ω. 

To study the dynamic stability of a ship, the traditional way 
is to perform numerical integration on the nonlinear differen-
tial equation of motion (4) via a suitable numerical procedure, 
e.g. the fourth order Runge Kutta method.  However, an 
inexperienced numerical analyst could integrate (4) for a 
long time and never discover the most important or critical 
behavior. 

The Melnikov method can offer a new way to the naval 
architects for analyzing the dynamic stability of a ship, and the 
method is based on the modern nonlinear dynamics theory.  An 
important result obtained in the process of analyzing a ship’s 
dynamic stability via the Melnikov method is the Melnikov 
criterion.  In some cases, this criterion can directly link the 
ship design parameters to the wave characteristic parameters 
by a simple analytical formula.  This will greatly enhance the 
efficiency for rationally analyzing the dynamic stability of a 
ship.  Even if in some cases we can not obtain the analytical 
expression of the Melnikov function, we can still numerically 
integrate the Melnikov integral in a straightforward manner.  
In the next section we will derive a Melnikov criterion for 
studying the nonlinear ship rolling with water-on-deck. 

III. MELNIKOV ANALYSIS 

The Melnikov method is used to calculate the distance 
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between the stable and unstable manifolds and to detect trans-
verse homoclinic intersections.  The Melnikov method de-
termines the distance between these two manifolds by begin-
ning with a dynamical system where the homoclinic solutions 
are known, and perturbing this system slightly to determine 
what happens to these manifolds as a result of the perturbation.  
This procedure results in a formula or criterion for the distance 
between the stable and unstable manifolds in terms of the 
system parameters and the phase. 

In order to conveniently apply the Melnikov method for 
analyzing the ship rolling with water-on-deck, we first change 
(4) into a non-dimensional form: 

 3 3
3 ( ) ( ) ( )  ( )+ ( ) cos( )x x x x kxτ εδ τ εδ τ τ τ εγ τ+ + − = Ω�� � �  (6) 
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The above derivation procedure basically follows that of 
Wang and Tan [15] on analyzing a barge’s dynamic stability by 
using the Melnikov method.  In (6), time is scaled by the linear 
natural frequency, ωn.  The differentiation in (6) is with respect 
to time τ.  The terms indicated by ε are taken to be small and 
will be treated as perturbations in the following analysis.  This 
treatment has already been justified by the numerical values of 
the coefficients for some real ships used in the studies of sev-
eral authors (Wang and Tan [15]; Hsieh et al. [8]; Jiang et al. 
[10]). 

Let x = Q, x� = P, Eq. (6) can be rewritten into the form of a 
perturbed Hamiltonian system: 
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The Hamiltonian corresponding to the unperturbed sys-
tem 3 ( ) ( ) + ( ) 0x x kxτ τ τ− =��  is: 

 ( ) 2 2 41 1
,  

2 2 4

k
H Q P x x x= − +�  (8) 

The well known expressions of the homoclinic orbits of the 
unperturbed Hamiltonian system 3 ( ) ( ) + ( ) 0x x kxτ τ τ− =�� are: 

( ) ( ) ( ) ( ) ( )( )0 0

2 2
sec , sec tanhQ h P h

k k
τ τ τ τ τ= = −  (9) 

An unperturbed ship system with no water-on-deck has a 
stable upright equilibrium, ( ) ( ), 0, 0 .x x =�   Changing from 
the no water-on-deck situation to the static effect of substantial 
water-on-deck, the slope of the ship’s righting arm curve at the 
origin, the so-called metacentric height GM, is reduced through 
zero to a minus value.  When this occurs, the stable upright 
equilibrium, ( ) ( ), 0, 0x x =�  bifurcates into an unstable upright 
equilibrium and two stable equilibria at the positive and 
negative loll angles, ±xl.  This bifurcation is the classical 
pitchfork bifurcation.  The bifurcated system’s phase portrait 
near the loll angles, ±xl will have two homoclinic orbits (as 
described by (9)), each connecting the unstable saddle at the 
origin to itself.  The two homoclinic orbits consist of the stable 
and unstable manifolds.  For an unperturbed (undamped and 
unforced) ship system the stable and unstable manifolds co-
incide. 

The Melnikov function for the perturbed system (7) can be 
calculated as follows (Wang and Tan [15]): 

0
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where: 
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are, respectively, the mean and oscillatory part of the Mel-
nikov function.  Substituting (9) into the above equations 
yields:  

 32

4 16

3 35
M

k k
δ δ= +  (13) 
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Then, the complete expression of the Melnikov function is: 

 0 0 32

2 4 16
( ) ( ) ( )

2 3 35
M Sin Sech

k k k

πτ γ π τ δ δΩ = Ω Ω − − 
 

  

  (15) 

The condition at which the Melnikov function has simple 
zeros is: 

 32

2 4 16
( ) 0

2 3 35
Sech

k k k

πγ π δ δΩ Ω − − = 
 

 (16) 

When damping and external excitations are added to the 
unperturbed system, the perturbed stable and unstable mani-
folds will no longer coincide.  The distance that separates them 
depends upon the position on the unperturbed manifolds, and 
is called the Melnikov distance.  To first order, the Melnikov 
distance is proportional to the absolute value of the Melnikov 
function calculated by (15).  If the Melnikov function has 
simple zeros, the stable and unstable manifolds intersect 
transversely.  By a theorem attributed to Poincaré (Gucken-
heimer and Holmes [7]), if the stable and unstable manifolds 
cross each other once, they will intersect an infinite number of 
times, thus forming homoclinic tangles. 

Here for illustration purpose only we choose the system 
parameters as Ω = 1, k = 1, δ = 0.15 and δ3 = 0.3.  Equation (16) 
leads to a critical value of the wave excitation amplitude of 
γ = 0.153 at which homoclinic tangles are created simultane-
ously on both sides of the origin, due to the symmetry.  Chaos 
will likely to occur at forcing amplitudes above the critical 
value.  Here it should be noticed that the Melnikov boundary is 
a necessary but not a sufficient condition for observed chaos 
(i.e., it is a lower bound).  For wave amplitudes above the 
critical, the ship dynamics resulting from the homoclinic in-
tersection would be an erratic oscillation between the two loll 
angles and loss of prediction of which side the ship will lean to.  
Although this is not a disastrous behavior, it is very disturbing. 

IV. PHASE PLANE DIAGRAMES AND 
POINCARE MAPS 

The ship rolling equation of motion (6) is also studied by 
using phase plane diagrams and Poincare maps.  Keeping the 
system parameters Ω = 1, k = 1, δ = 0.15 and δ3 = 0.3 un-
changed, we systematically vary the value of the wave exci-
tation amplitude γ  in (6) to study the motion responses of the 
vessel.  We first choose a value of γ  = 0.15 which is smaller 
than the critical wave excitation amplitude predicted by the 
Melnikov criterion.  Equation (6) is then numerically inte-
grated in a time range of (0, 100) with the initial conditions 
randomly chosen to be ( ) ( )(0), (0) 1.45, 0.5 .x x =�  The obtained 
phase plane diagram is shown in Fig. 1(a).  We see from  
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Fig. 1. phase plane diagrams of the ship rolling equation of motion (6) 

when (a) γ  = 0.15; (b) γ  = 0.16; (c) γ  = 0.2; (d) γ  = 0.3. 

 

Fig. 1(a) that the trajectories of the ship rolling responses are 
quite regular.  Next we increase the value of the wave excita-
tion amplitude to γ = 0.16 which is slightly bigger than the 
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critical wave excitation amplitude predicted by the Melnikov 
criterion.  Equation (6) is again numerically integrated in a 
time range of (0, 100) with the initial conditions randomly 
chosen to be ( ) ( )(0), (0) 0.9375, 0.216 .x x =�  The obtained phase 
plane diagram is shown in Fig. 1(b).  We find that the ship 
rolling response trajectories start to get intersected.  To sys-
tematically study the influence of the wave excitation ampli-
tude on the ship response, we continually choose two values 
γ = 0.2 and γ  = 0.3, and numerically integrated (6) in a time 
range of (0, 100).  The obtained phase plane diagrams are 
shown in Figs. 1(c) and 1(d).  We notice that the trajectories of 
the ship rolling responses are becoming messy and hard to 
interpret. 

We finally utilize Poincare maps to study the ship rolling 
and validate the Melnikov criterion obtained in Section III.  
Keeping the system parameters Ω = 1, k = 1, δ = 0.15 and δ3 = 
0.3 unchanged, we first choose a value of γ  = 0.15 which is 
smaller than the critical wave excitation amplitude predicted 
by the Melnikov criterion.  Equation (6) is then numerically 
integrated in a time range of (1000, 10000) with the initial 
conditions randomly chosen to be (x(1000), (1000))x� = (0.5, 
0.4).  The obtained Poincare map is shown in Fig. 2(a).  We 
then use a value of γ  = 0.16 which is slightly larger than the 
critical wave excitation amplitude predicted by the Melnikov 
criterion.  Integrating (6) in a time range of (1000, 10000) 
with the initial conditions randomly chosen to be (x(1000), 

(1000))x� = (0.9375, 0.216), a Poincare map is again obtained 
and is shown in Fig. 2(b).  It is seen from Fig. 2(b) that the 
system has not become chaotic at this moment.  There are 6-7 
points clustered together in a small region of the phase plane, 
indicating that the system is still quasi-periodic.  However, this 
situation does not contradict the result predicted with our 
Melnikov criterion in Section 3 since the Melnikov boundary 
is a necessary but not a sufficient condition for observed chaos 
(i.e., it is a lower bound).  As we continue to increase the wave 
excitation amplitude value to γ  = 0.2, a chaotic attractor looms 
to appear as shown in Fig. 2(c).  The time integration range of 
(100, 10000) and the initial conditions (x(100), (100)x� = 
(–1.16, 1.02) are used for getting the Fig. 2(c).  Please notice 
that we have intentionally utilized a different kind of color 
for the Poincare map in Fig. 2(c) to make it distinguishable.  
Finally, when the wave excitation amplitude value is increased 
to be γ  = 0.3, a clear picture of a chaotic attractor has been 
obtained and is shown as Fig. 2(d).  To get this chaotic attractor, 
the initial conditions (x(1000), (1000)x� = (–0.77, 0.39) and a 
time integration range of (1000, 10000) are adopted. 

The above numerical integration results qualitatively con-
firm the conclusion drawn by using our Melnikov criterion in 
Section III.  For wave amplitudes above the critical, the cha-
otic ship dynamics predicted using the Melnikov criterion 
would be an erratic oscillation between the two loll angles and 
loss of prediction of which side the ship will lean to.  There-
fore, it can be said that the Melnikov criterion in this article 
can yield meaningful results for predicting ship erratic rocking 
when water is trapped on deck. 
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Fig. 2. Poincare maps of the ship rolling equation of motion (6) when (a) 

γ  = 0.15; (b) γ  = 0.16; (c) γ  = 0.2; (d) γ  = 0.3. 

 

V. CONCLUSION 

In this article, a nonlinear equation of motion with cubic 
typed viscous damping term has been established for studying 
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the ship rolling motion with water-on-deck in regular beam 
waves.  A ship stability criterion based upon the Melnikov 
function is obtained to provide an upper bound on the domain 
of the potential chaotic rolling motion.  Physically, the chaotic 
ship dynamics predicted by using the Melnikov criterion will 
be an erratic oscillation between the two loll angles and loss of 
prediction of which side the ship will lean to. 

To validate the Melnikov criterion obtained in this article, 
the value of the wave excitation amplitude in the equation of 
motion of the ship is systematically varied, and the equation of 
motion is numerically integrated to obtain the phase plane 
diagrams and Poincare maps.  The numerical integration re-
sults qualitatively confirm the conclusion drawn by using our 
Melnikov criterion.  It can be concluded that the Melnikov 
criterion in this article can yield meaningful results for pre-
dicting ship erratic rocking when water is trapped on deck. 
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