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ABSTRACT 

In this paper, we present a fast block matching algorithm by 
making use of the Minkowski’s inequality.  Combined with 
other fast block matching algorithms, our method can further 
reduce the computational complexity significantly with little 
PSNR degradation.  Compared to the full search block match- 
ing algorithm, our approach can reduce the computing time by 
a factor of 6.4 to 21.5.  Compared to MSEQ, which is a well- 
known block matching algorithm preserving global optimality, 
our method can further reduce the corresponding computing 
time in average by 32.4%.  The combination of our algorithm 
and the predictive search area approach for block motion 
estimation can achieve the more reduction of computing time 
with little PSNR degradation. 

I. INTRODUCTION 

Motion estimation using block matching has been widely 
used for video coding, such as H.264 and MPEG standards [2, 
22] and for video applications [8, 18].  In a block matching 
algorithm (BMA), the current frame of an image sequence is 
divided into nonoverlapping blocks of N × N pixels.  For each 
template block in the current frame, the best matched block 
within a search window of size (2W + 1) × (2W + 1) in the 
previous frame is determined, where W is the maximum al-
lowed displacement.  The position difference between a tem-
plate block in the current frame and the best matched block in 
the previous frame is called the motion vector. 

The criterion most commonly used by block matching al-
gorithms is the sum of absolute difference (SAD), which is 
defined below, between a template block at position (x, y) in 
the current frame It and the candidate block at position (x + û , 

y + v̂ ) in the previous frame It-1. 

1 1

1
0 0

ˆ ˆ ˆ ˆSAD( , ) ( , ) ( , )
N N

t t
j i

u v g x i y j g x u i y v j
− −

−
= =

= + + − + + + +∑∑ (1) 

where gt(., .) is the gray value of a pixel in the current frame 
and gt-1(., .) is the gray level of a pixel in the previous frame.  
In this paper, the motion vector (u, v) is defined as follows: 
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where S = {( û , v̂ ) −W ≤ û , v̂  ≤ W and (x + û , y + v̂ ) is a 
valid pixel position in It-1}. 

The full search block matching algorithm (FSBMA), which 
determines the best matched block through calculating the 
SAD for all positions in the search window, is the simplest 
among the available block matching algorithms.  Although 
FSBMA can obtain the global optimal result, however it has 
very intensive computations.  To overcome this problem, 
many fast algorithms are developed [3, 5, 7, 8, 9, 11, 12, 13, 14, 
16, 23].  Some well known algorithms are the three-step search 
(TSS) [14], new three-step search (NTSS) [16], one-dimen- 
sional search [3, 11], cross search [7], one-at-a-time search [12, 
23], hierarchical search [9, 10], block-based gradient descent 
search [22], fast search with predictive searching area [5], and 
multi-resolution block matching algorithm (MRBMA) [13].  
Another approach for motion estimation is called the par-
tial-matching error technique, which can obtain the same SAD 
as the FSBMA [1, 4, 6, 15, 17, 19, 21].  Compared to FSBMA, 
this kind of approach may reduce the computational com-
plexity significantly.  This kind of technique first calculates 
the complete matching error at the predicted position and uses 
it as the initial minimum matching error (the initial minimum 
SAD).  For each other search position, some forms of partial 
matching errors are calculated.  The calculation of the com-
plete SAD can be avoided, if the partial error is larger than the 
minimum SAD.  Otherwise, the complete matching error (the 
complete SAD) is calculated and the minimum SAD is up-
dated if the newly calculated matching error is smaller than the 
original one. 

In this paper, a fast block matching algorithm will be de-
veloped.  This algorithm uses Minkowsk’s inequality [3, 15, 
21] to eliminate those impossible candidate blocks, which 
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cannot be rejected using available rejecting criteria, and obtain 
the same SAD as the full search block matching algorithm.  
Combined with other fast block matching algorithm, such as 
fast search with predictive searching area [5], our method will 
reduce the computing time significantly with little PSNR deg- 
radation.  Our proposed method is different from the method 
presented in references [15] and [21], which also used the 
pyramid structure and the Minkowski’s inequality to reject 
impossible blocks.  The major difference is that we use a dif-
ferent rejection criterion to reject impossible blocks and a 
different way of choosing the initial block.  Moreover, the 
proposed method is also extended to speed up the block 
searching speed by combining with other fast block matching 
algorithm. 

This paper is organized as follows.  We present our con-
cepts and algorithm in section II.  In section III, the combina-
tion of our algorithm and a predictive search area approach for 
block motion estimation (PSAFBME) [5] is presented.  Ex-
perimental results are given in section IV and conclusions are 
presented in section V. 

II. BLOCK MATCHING ALGORITHM USING 
ELIMINATION CRITERIA 

In this section, we will present our block matching algo-
rithm and the corresponding elimination criteria.  Our method 
first selects an initial candidate block to calculate its SAD and 
uses this SAD as the minimum one.  A modified version of 
pyramidal lower bound [15] is developed and is used to reject 
unlikely candidate blocks. 

1. Principles of the Algorithm 

Assume that the current frame It is divided into nonover-
lapping blocks of N × N pixels with N = 2n.  For a block X, the 
pyramid of X can be defined as a set of blocks {X0, X1,…, Xn} 
with Xm being a reduced resolution version of X, where m = 1, 
2,…, n.  It is noted that Xm has 2m×2m pixels.  The value of a 
pixel Xm-1(k, l) on the (m-1) level can be obtained from 4 pixels 
Xm(2k, 2l), Xm(2k, 2l + 1), Xm(2k + 1, 2l), and Xm(2k + 1, 2l + 
1) on the m level.  That is, 

 Xm-1(k, l) = Xm(2k, 2l) + Xm(2k, 2l + 1) + Xm(2k + 1, 2l) 

+ Xm(2k + 1, 2l + 1) (3) 

The SAD of Xm and Ym is denoted as SADm
X,Y, which can 

be calculated by the following equation: 
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where M = 2m, and Xm(k, l) and Ym(k, l) represent the values of 
the (k, l)th pixels of Xm and Ym, respectively.  Let 

PSADm
X,Y(k,l) = Xm+1(2k, 2l) − Ym+1(2k, 2l)  

+Xm+1(2k + 1, 2l) − Ym+1(2k + 1, 2l)  

+Xm+1(2k, 2l + 1) − Ym+1(2k, 2l + 1)  

+Xm+1(2k + 1, 2l + 1) 

− Ym+1(2k + 1, 2l + 1)                        (5) 

It is noted that PSADm(k, l) represents the sum of absolute 
difference for 8 pixels on the (m + 1)th level, which represents 
the higher resolution of Xm(k, l) and Ym(k, l).  Let 
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where M = 2m, k1 = the quotient of kk/2m, l1 = the remainder of 
kk/2m, and 0 ≤ kk < 2m × 2m.  From Minkowski’s inequality, we 
can easily conclude that 

 PSADm
X,Y(k, l) ≥  Xm(k, l) − Ym(k, l) (7) 

Let MSADm
X,Y(kk) be defined by 
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 Xm(k1, l)-Ym(k1, l) (8) 

where M = 2m, k1 = the quotient of kk/2m, l1 = the remainder of 
kk/2m.  MSADm

X,Y(kk) represents the sum of absolute gray 
level differences for some pixels from Xm and Ym and others 
from Xm+1and Ym+1. 

From (5) to (8), we can conclude that 

 MSADm
X,Y(kk + 1) = MSADm

X,Y(kk) -Xm(k1, l1)-Ym(k1, l1) 

+ PSADm
X,Y(k1, l1) (9) 

Where k1 = the quotient of (kk+1)/2m, and l1 = the re-
mainder of (kk + 1)/2m.  It is noted that MSADm

X,Y(2m × 2m − 1) 
= SADm+1

X,Y.  Let X and Y be two blocks of 2n × 2n pixels.  
Denote the SAD of X and Y as SADX,Y.  It is noted that 
SADX,Y = SADn

X,Y = MSADn-1
X,Y(2n-1 × 2n-1 − 1).  Using 

Minkowski’s inequality to (4) and (8), we can find that 

SADX,Y = MSADn-1
X,Y(2n-1 × 2n-1 − 1) 

≥ MSADn-1
X,Y(2n-1 × 2n-1 − 2) ≥ … ≥ MSADn-1

X,Y(0)  

≥ SADn-1
X,Y 

= MSADn-2
X,Y(2n-2 × 2n-2 − 1) ≥ … ≥ MSAD1

X,Y(3) 

≥ MSAD1
X,Y(2) ≥ … ≥ MSAD1

X,Y(0) ≥ SAD1
X,Y 

= MSAD0
X,Y(0) ≥ SAD0

X,Y (10a) 
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The above expression can also be represented as 

 MSADl
X,Y(i) ≥ MSADl-1

X,Y(j) and MSADl
X,Y(i) 

≥ MSADl
X,Y(i − 1), 

 0 ≤ l < n, 0 ≤ i < 2l × 2l, and 0 ≤ j < 2l-1 × 2l-1 (10b) 

With the above results in hand, we can describe our algo-
rithm as follows.  Our algorithm first constructs the sum 
pyramid of the previous frame using the method present in 
reference [16].  For an image frame of W × H pixels, the 
computational complexity of constructing the sum pyramid is 
4(2W − 1)(H − 1) for N = 16, where N is the block size in It-1.  
For a template block X in It, an initial motion vector ( û , v̂ ) is 
estimated using the spatial correlation between two frames.  
The estimation of ( û , v̂ ) will be discussed in the next subsec-
tion.  The SAD between block X and the block with dis-
placement ( û , v̂ ) in frame It-1 is calculated and this value is 
stored as the minimum SAD, SADmin For other candidate 
block Y in frame It-1, SAD0

X,Y is determined first.  If SAD0
X,Y 

is larger than SADmin, the candidate block Y is rejected; oth-
erwise SAD1

X,Y is computed.  If SAD1
X,Y is greater than 

SADmin, block Y is eliminated.  Otherwise MSAD1
X,Y(0) is 

calculated and check whether it is larger than SADmin.  If 
MSAD1

X,Y(0) is larger than SADmin, then block Y is rejected; 
otherwise If MSAD1

X,Y(1) is calculated.  This process is re-
peated until block Y is rejected, or the bottom level of the sum 
pyramid of Y is reached and SADX,Y is calculated.  If SADX,Y 
is greater than SADmin, then block Y is rejected; otherwise 
SADmin is replaced by SADX,Y.  This technique can eliminate 
many candidate blocks without calculating their SADs. 

2. Initial Motion Vector Estimation 

The initial motion vector (MV) can be estimated through 
using spatial and temporal correlations of motion vectors.  The 
idea is that select a set of candidate motion vectors from spa-
tially and/or temporally neighbors and choose the best one as 
the initial motion vector. 

Let TBi, j be a template block of N × N pixels at the (i, j)th 
position of the current frame It and SBk, l be a candidate block 
at the (k, l)th position of the previous frame It.  Denote the 
motion vector of block TBi, j as (u, v)i, j.  Let the sum pyramids 
of TBi, j and SBk, l as {TB0

i, j, TB1
i, j, .., TBn

i, j} and {SB0
k, l, SB1

k, 

l, .., SBn
k, l}, respectively, where n = log2 N.  The SAD between 

TBm
i, j and SBm

i, j is denoted as SADm
u, v, where m = 1, 2, …, 

n, u = k – i, and v = l – j.  Denote the four neighboring blocks 
of TBi, j as TBp (p = 1 − 4) as shown in Fig. 1.  Let the motion 
vector of TBp (p = 1 − 4) be (up, vp).  Similarly, denote the 
SAD between TBm

i, j and SBm
up, vp as SADm

up, vp, p = 1 – 4.  The 
estimated motion vector of TBi, j is represented by ( û , v̂ )i, j, 
which is determined as 

 , ,( , )
ˆ ˆ( , ) arg min SAD1

i j u vu v S
u v

∈
=  (11) 

where S = {(u1, v1), (u2, v2), (u3, v3), and (u4, v4)}. 

TB2 TB3 TB4

TB1 TBi, j

 
Fig. 1.  A block TBi, j and its four neighboring blocks. 

 
 

At this stage, we would like to present our fast block match- 
ing algorithm using Minkowski’s inequality (FBMAUMI) as 
follows. 

 
(1) Input a template block TB in frame It and use equation (11) 

to determine its estimated motion vector ( û , v̂ ).  Set the 
motion vector (u, v) = ( û , v̂ ). 

(2) Use Eq. (1) to calculate SAD( û , v̂ ) and let SADmin = 
SAD( û , v̂ ). 

(3) For each block SB in the search window of size (2W + 1) × 
(2W + 1), use block rejection algorithm to update SADmin 
and the motion vector (u, v). 

(4) Output SADmin and the motion vector (u, v) of TB. 
 

The block rejection algorithm is presented below. 
 

(1) Let the motion vector of SB with respect to TB be (u*, v*) 
and set m = 0. 

(2) Calculate SADm
TB, SB.  If SADm

TB, SB ≥ SADmin, rejected the 
candidate block SB and leave (u, v) and SADmin unchanged; 
otherwise set MSAD0

TB, SB(−1) = SADm
TB, SB. 

(3) If m < n, where n = log2 N, do the following procedures: 
(3a) For i = 0 to (2m-1 × 2m-1 − 1), calculate MSADm

TB, SB(i) 
using Eq. (9).  If MSADm

TB, SB(i) ≥ SADmin, rejected 
the candidate the block SB and leave (u, v) and 
SADmin unchanged. 

(3b) Set m = m + 1, MSADm
TB, SB(−1) = MSADm-1

TB, SB  
(2m-1 × 2m-1 − 1), and go to step (3). 

(4) Let (u, v) = (u*, v*) and SADmin = MSADn-1
TB, SB(2n-1 ×  

2n-1 − 1). 

III. OMBINATION OF OUR APPROACH WITH 
PSAFBME 

The proposed fast motion block matching algorithm can be 
combined with other fast algorithms to achieve further 
speedup.  However, the guarantee of global minimum solution 
may be sacrificed.  In this paper, we use the algorithm of pre-
dicting search area for block motion estimation [5] as an ex-
ample.  The predictive search area approach for block area 
motion estimation (PSAFBME) generates a search area SA for 
a template block TBi, j in the current frame It.  It is noted that 
SA in general is much smaller than the full search window of 
size (2W + 1) × (2W + 1).  SA can be represented by 

 SA = SA1 ∪ SA2 ∪ SA3 ∪ SA4  (12) 
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Where SAk (k = 1 − 4) denotes the subsearach area of size 
(2D + 1) × (2D + 1) with center at (i + uk, j + vk), where (uk, vk) 
is the motion vector of the block TBk (k = 1 − 4) as shown in 
Fig. 1.  It is noted that TBk is the kth neighboring block of     
TBi, j.  D = 2 or 3 may be used to obtain little image degrada-
tion.  The combination of our approach with PSAFBME is 
referred to as MPSAFBME in this paper.  Compared to 
PSAFBME, MPSAFBME has the much less computational 
complexity.  Now, we would like to present the modified pre-
dictive search area for block motion estimation (MPSAFBME) 
as follows. 

 
(1) Input a template block TB in frame It and use Eq. (11) to 

determine its estimated motion vector ( û , v̂ ).  Set the 
motion vector (u, v) = ( û , v̂ ).  

(2) Use Eq. (1) to calculate SAD( û , v̂ ) and let SADmin = 
SAD( û , v̂ ). 

(3) For each block SB in the search area SA, use block re-
jection algorithm to update SADmin and the motion vector 
(u, v).  

(4) Output SADmin and the motion vector (u, v) of TB. 

IV. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed algorithm, six 
sets of video sequences (as shown in Fig. 2) are used and 
several motion block estimation algorithms are implemented.  
The first 50 frames in six video sequences are used in the 
simulation.  Each image of the above mentioned video se-
quences is of size 352 × 240. 

All computing is performed on an Intel Core 2 Duo 6600 
2.4 GHz PC with 1 GB of memory.  The full search block 
matching algorithm (FSBMA), the partial distortion elimina-
tion (PDE) [1], the successive elimination algorithm (SEA) 
[17], the multilevel successive elimination algorithm (MSEA) 
with three levels [6], the winner-update algorithm with the 
lower bound derived from Minkowski’s inequality (WinUpMI) 
[4], and our proposed method (FBMAUMI) provide the global 
optimality.  It is noted that MSEA with three levels obtains the 
same results as references [15] and [21] in our implementation.  
MPSAFBME (presented in section III), PSAFBME [5], TSS 
[14], and BBGDS (block-based gradient descent search) [20] 
sacrifice motion estimation accuracy to gain the reduction of 
computational complexity.  The global optimality is not guar-
anteed by these four algorithms.  

The PSNR (peak signal-to-noise ratio) and computing time 
are used to evaluate the performances of block matching al-
gorithms.  In this paper, PSNR is defined by 

 PSNR = 10log10(2552/MSE) (13) 

where MSE is the mean square error between the original and 
estimated image frames.  In this paper, all the template and 
candidate blocks are of size 16 × 16.  The size of search win-
dow is 33 × 33.  Tables 1 and 2 show the PSNRs and com- 

(b)(a)

(d)(c)

(f)(e)  
Fig. 2. The six test video sequences are (a) Mobile, (b) Football, (c) Gar-

den, (d) Salesman, (e) Susie, and (f) Tennis. 
 
 

puting time of six video sequences for the FSBMA, PDE, SEA, 
MSEA, WinUpMI, and FBMAUMI methods.  From Tables 1 
and 2, we can find that all algorithms obtain the same PSNR 
for each video sequence and our proposed method FBMAUMI 
performs better than the other methods.  Comparing to 
FSBMA, FBMAUMI can reduce the computing time by a 
factor of 6.4 to 21.5.  Compared with MSEA, which is the 
second best, our proposed method FBMAUMI can reduce the 
computing time in average by 32.4%. 

Tables 3 and 4 give the PSNRs and computing time for 
MPSAFBME with D = 2, PSAFBME with D = 2, TSS, and 
BBGDS.  From Tables 2 and 4, we can find that any one of 
these four algorithms obtains the lower PSNR than that of 
FSBMA or FBMAUMI, since these four methods sacrifice 
motion estimation accuracy to gain the reduction of computa-
tional complexity.  From Table 3, we can find that MPSAFBME 
has the highest PSNR.  Compared with BBGDS, MPSAFBME 
with D = 2 gives the higher PSNR with about the same com-
puting time.  From Tables 1 to 4, we may conclude that com-
pared to FBMAUMI, MPSAFBME with D = 2 can reduce the 
computing time by a factor of about 2.86 with little PSNR 
degradation.  Compared with PSAFBME, our proposed method 
can further reduce the computing time by 55.0% to 69.5%. 

V. CONCLUSIONS 

In this paper, we develop a fast block matching algorithm 
using Minkowski’s inequality (FBMAUMI) to speed up mo-
tion estimation.  Combining PSAFBME with our method, we 
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Table 1. PSNR comparison for six methods preserving 
global optimality. 

Method Video 
Sequence FSBMA PDE SEA MSEA WinUpMI FBMAUMI 

Mobile 23.34 23.34 23.34 23.34 23.34 23.34 

Football 22.79 22.79 22.79 22.79 22.79 22.79 

Garden 23.78 23.78 23.78 23.78 23.78 23.78 

Salesman 35.40 35.40 35.40 35.40 35.40 35.40 

Susie 35.96 35.96 35.96 35.96 35.96 35.96 

Tennis 29.07 29.07 29.07 29.07 29.07 29.07 

Average 28.39 28.39 28.39 28.39 28.39 28.39 

 

 
Table 2. Computing time (in seconds) comparison for six 

methods preserving global optimality. 

Method Video 
Sequence FSBMA PDE SEA MSEA WinUpMI FBMAUMI 

Mobile 10.687 6.641 4.281 0.703 0.811 0.564 

Football 10.827 7.297 6.455 1.735 1.438 0.969 

Garden 10.660 6.562 4.421 0.922 0.952 0.581 

Salesman 10.718 5.812 2.779 0.466 0.516 0.499 

Susie 10.703 6.110 3.096 1.014 1.156 0.669 

Tennis 10.685 7.423 7.406 2.484 2.982 1.671 

Average 10.713 6.641 4.740 1.221 1.309 0.826 

 

 
Table 3. PSNR comparison for four methods not preserv- 

ing global optimality. 

Method 
Video Sequence 

TSS PSAFBME BBGDS MPSAFBME 

Mobile 23.05 23.33 23.33 23.33 

Football 22.01 21.66 21.55 21.66 

Garden 21.80 23.66 23.42 23.66 

Salesman 35.14 35.37 35.37 35.37 

Susie 34.90 35.89 35.78 35.89 

Tennis 27.58 27.87 27.73 27.87 

Average PSNR 27.41 27.96 27.87 27.96 

 

 
Table 4. Computing time (in seconds) comparison for four 

methods not preserving global optimality. 

Method 
Video Sequence 

TSS PSAFBME BBGDS MPSAFBME 

Mobile 0.344 0.718 0.173 0.219 

Football 0.358 0.828 0.266 0.359 

Garden 0.359 0.797 0.220 0.251 

Salesman 0.343 0.625 0.188 0.281 

Susie 0.342 0.749 0.218 0.344 

Tennis 0.358 0.780 0.266 0.280 

Average time 0.351 0.750 0.222 0.289 

can reduce computing time significantly with little PSNR 
degradation.  Compared to FSBMA, our proposed method 
(FBMAUMI) can reduce the computing time by a factor of 6.4 
to 21.5.  Compared to the well-know multilevel successive 
elimination algorithm preserving global optimality (MSEA), 
our algorithm can further reduce the computing time in aver-
age by 32.4%.  MPSFBME with D = 2 reduces the computing 
time of FSBMA by 96.7% to 98.0% with the average PSNR 
degradation of 0.43 dB. 
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