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ABSTRACT 

This paper investigates the global delay-dependent robust 
stability in the mean square for uncertain stochastic neural 
networks with time-varying delay.  The activation functions 
are assumed to be globally Lipschitz continuous.  Based on a 
linear matrix inequality approach, globally delay-dependent 
robust stability criterion is derived by introducing some re-
laxation matrices which, when chosen properly, lead to a less 
conservative result.  Two numerical examples are given to 
illustrate the effectiveness of the method. 

I. INTRODUCTION 

Recently, it has been well-known that time delays are fre-
quently encountered in various electronic implementation of 
neural networks with time delay, such as, Hopfield neural 
networks, cellular neural networks and bi-directional associa-
tive memory networks, and its existence is a source of oscil-
lation and instability of neural networks.  Therefore, the re-
search of the dynamical characteristics (include stable, unsta-
ble, oscillatory and chaotic behavior) of neural networks with 
time delays is an important topic in the neural networks theory.  
In particular, globally stability is one of the most desirable 
dynamic properties of neural networks, there have been grow- 
ing research interest on the stability analysis problem for de-
layed neural networks.  Recently, considerable efforts have 
been extensively applied to the analysis of the stability in 

signal and image processing, artificial intelligence, industrial 
automation, and other fields [2, 6, 7, 12, 19].  It is noted that, 
so far, most works on delayed neural networks have dealt with 
the stability analysis problem for neural networks with time 
delays. 

Much of the current interest in neural networks stems not 
only from their richness as a theoretical model of collective 
dynamics but also from the promise they have shown as a 
practical tool for performing parallel computation.  In carrying 
out the computation, there are various stochastic perturbations 
to the networks and it is important to understand how these 
perturbations affect the networks.  Consequently, it is very 
urgent to know whether the networks are stable or not under 
the perturbations.  According, the stability criteria for stochas- 
tic neural networks become an attractive research problem of 
prime importance.  Lately, some initial results have just ap-
peared, for example, the stability problem for the stochastic 
neural networks without delays has been studied in [13], and 
stochastic delayed neural networks has been discussed in [3, 
11, 16, 17, 22].  The stability analysis of stochastic delayed 
cellular neural networks in terms of linear matrix inequality [5] 
approach was proposed in [22].  By using the method of varia- 
tion parameter, inequality technique and stochastic analysis, 
the sufficient conditions to guarantee the mean square expo-
nential stability of an equilibrium solution are given in [17].  It 
should be pointed out that the aforementioned results in [3, 8, 
16, 17, 21] were obtained as delay-independent conditions, 
that is, delay-independent conditions do not include any in-
formation relating to the magnitude of the delays.  However, it 
is known that delay-dependent conditions are generally less 
conservative than delay-independent conditions; particularly 
when the magnitude of the delay is small.  Although delay- 
independent results on the robust stability problem for sto-
chastic neural networks with discrete delay and mixed delays 
were presented in [21] and [18], respectively, no delay- 
dependent robust stability results on stochastic neural net-
works with time-varying delay are available in the literature, 
which motivates the present study. 

In this paper, we are concerned with the global delay- 
dependent robust stability conditions in the mean square for 
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stochastic uncertain neural networks with time-varying delay.  
Some criteria on globally delay-dependent robust stability 
conditions are presented.  Based on Lyapunov-Krasovskii 
functional combining with linear matrix inequality (LMI) 
techniques, globally delay-dependent robust stability condi-
tions for stochastic uncertain neural networks with time- 
varying delay, which are given in terms of quadratic forms of 
state and LMI, are derived.  We will also introduce some re-
laxation matrices which, when chosen properly, produce a less 
conservative result [10, 14, 20].  A numerical example will be 
finally given to determine the effectiveness of the method. 

Notation: Throughout this paper, the notation X ≥ Y (re-
spectively X > Y ) for symmetric matrices X and Y means that 
the matrix X – Y  is positive semidefinite (respectively, positive 
definite), ZT represents the transpose of the matrix Z.  The 
vector norm ||·|| refers to the Euclidean vector norm, that is 

1
2( ),T

M
W W Wλ=  where λM(W) (respectively λm(W)) stands 

for the operation of taking the maximum (respectively, mini- 
mum) eigenvalue of W. 

II. SYSTEM DESCRIPTION AND PROBLEM 
FORMULATION 

The delayed neural network model is defined by the fol-
lowing uncertain state equations with time-varying delay 

 ( ) ( ( )) ( ) ( ( )) ( ( ))u t A A t u t W W t g u t= − + ∆ + + ∆�  

1 1( ( )) ( ( ( ))),W W t g u t tτ+ + ∆ −  (1) 

or equivalently 

1

( ) ( ( )) ( ) ( ( )) ( ( ))
n

ii i i ij ij j j
j

au t a t u t w w t g u t
=

= − + ∆ + + ∆∑�  

 1 1
1

( ( )) ( ( ( ))), 1, 2,..., ,
n

ij ij j j
j

w w t g u t t i nτ
=

+ + ∆ − =∑  (2) 

where u(t) = [u1(t), u2(t),…, un(t)]
T is the state vector of the 

neural network, A = diag(a1, a2,…, an) is a diagonal matrix 
with positive entries, ai > 0, i = 1,…, n, W = [wij]n×n, and W1 = 
[w1ij]n×n represent the connection weight matrix of the neurons 
and the delayed connection weight matrix of the neurons, 
respectively, g(u(t)) = [g1(u1(t), g2(u2(t),…, gn(un(t))]

T denotes 
the neuron activation function with g(0) = 0, τ(t) is the trans- 
mission delay satisfying 0 ( )tτ τ≤ ≤  and ( ) .t dτ ≤�  

In practical implementation of neural networks, the values 
of the constant ai and weight coefficients wij and w1ij depend 
on certain resistance and capacitance values which are subject 
to uncertainties.  This may trigger some deviations in the 
values of ai, wij and w1ij.  So, ∆A(t), ∆W(t) and ∆W1(t) are 
unknown matrices representing time-varying parameter un-
certainties, and are assumed to be of the form 

 1 1 2 3[ ( )  ( )  ( )] ( )[     ],A t W t W t HF t E E E∆ ∆ ∆ =  (3) 

where H, E1, E2 and E3 are known real constant matrices and RRF k→⋅:)( 
F(t) is an unknown real-valued time-varying matrix satisfying 

 ( ) ( ) , .TF t F t I t≤ ∀  (4) 

It is assumed that all the elements of F(t) are Lebesgue 
measurable.  ∆A(t), ∆W(t) and ∆W1(t) are said to be admissible 
if both (3) and (4) hold. 

Suppose there exists a stochastic perturbation to the neural 
network and the stochastically perturbed network is described 
by a stochastic system with time-varying delay 

( ) [ ( ( )) ( ) ( ( )) ( ( ))dx t A A t x t W W t g x t= − + ∆ + + ∆  

1 1( ( )) ( ( ( )))]W W t g x t t dtτ+ + ∆ −  

( ( ),  ( ( ))) ( ),x t x t t dB tσ τ+ −  (5) 

with initial data 

 ( ) ( ), [ ,  0].x t t tϕ τ= ∀ ∈ −  (6) 

Here B(t) is an n-dimensional Brownian motion defined on 
the given complete probability space.  We assume that ( ) :σ ⋅  

n n n mR R R ×× → is locally Lipschitz continuous and satisfies 
linear growth condition. 

 1 2 1 2 1 1 1 2 2 2( ,  ) ( ,  ) ( ) ( ) ,x x y y G x y G x yσ σ− ≤ − + −  (7) 

for all x1, x2, y1, and y2 ∈ Rn, where G1 and G2 are known real 
constant matrices.  Equation (5) has a unique global solution 
on 0t ≥  and we show the solution by ( ;  ).x t ϕ   Also, we as- 
sume that (0,  0) 0σ =  for the stability purpose and hence (5) 
permits a trivial solution ( ;  0) 0x t =  [8]. 

Assumption 1 (Lipschitz condition): 

The activation function g(x) is nondecreasing, bounded that 
is 

 1 2

1 2

( ) ( )
0 ,j j

j

g gξ ξ
α

ξ ξ
−

≤ ≤
−

 1 2 ,ξ ξ≠  1,  , .j n= �  (8) 

The following definition is necessary in the theory of sto-
chastic differential equations [15]. 

 
Definition 1: If there exist β > 0 and 0γ >  such that 

 
2 2

0
( ) sup ( ) , 0.t

s
E x t E s e tβ

τ
γ ϕ −

− ≤ ≤
≤ >  (9) 

Then, the system (5) is said to be exponentially mean 
square stable 
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The main results of this paper hinge on the following fact. 
 
Fact 1 [9]: The trivial solution of a stochastic delayed dif-

ferential equation 

 ( ) ( ( ), ( ( )), ) ( ( ), ( ( )), ) ( )dx t F x t x t t t dt G x t x t t t dw tτ τ= − + −  

 ( ) ( ), [  0],x t  t                t ,ϕ τ= ∀ ∈ −  (10) 

on 0[ , ]t t T∈  with initial data 

( , ) ( (0), ( ), ) and ( , ) ( (0), ( ), ),f  t F t g  t G tϕ ϕ ϕ τ ϕ ϕ ϕ τ= − = −  

  (11) 

where 0: [ ,  ]n n nF R R t T R× × → and G: Rn × Rn × [t0, T] → 

Rn×m for 0( ,  ) C([ , 0]; ) [ ,  ],nt R t Tϕ τ∈ − ×  is globally asymp-

totically stable in probability if there exists a function V(t, x) ∈ 
C2(U+ × Rn) which is positive definite in the Lyapunov sense, 
and satisfies the generator LV 

 
1

( ) (tr ) 0,
2

TV
LV gradV F G G HessV

t

∂= + + <
∂

 (12) 

for x ≠ 0 and ( , )   as .V t x x→ +∞ → ∞   The matrix HessV is 
the Hessian matrix of the second-order partial derivatives.  
This fact is analogous to the well-known theorem of Lyapunov 
for deterministic systems. 

III. MAIN RESULTS 

In this section, the exponentially mean-square stability for 
uncertain stochastic system (5) with time-varying delays is 
explored.  An LMI approach is developed to solve the robust 
stochastic stability if the system associated to (5) is mean- 
square asymptotically stable for all admissible uncertainties 
∆A(t), ∆W(t) and ∆W1(t).  The analysis first gives some results 
which are essential to introduce the following Lemma 1 for the 
development of our main theorem. 

 
Lemma 1 [4]: For any vectors or matrices z and y with ap-
propriate dimensions and any positive constant ε, the follow-
ing inequality is satisfied: 

 12 .T T Tz y z z y yε ε −− ≤ +  (13) 

Define a new state variable 

 ( ) ( ( )) ( ) ( ( )) ( ( ))z t A A t x t W W t g x t= − + ∆ + + ∆  

1 1( ( )) ( ( ( ))).W W t g x t tτ+ + ∆ −  (14) 

Equation (5) can be rewritten as 

 ( ) ( ) ( ( ),  ( ( ))) ( ).dx t z t dt x t x t t dB tσ τ= + −  (15) 

For any matrices Ni and Si (i = 1, 2, 3, 4, 5) of appropriate 
dimensions, it can be shown that 

1 2 3 4[ ( ) ( ( )) ( ( )) ( ( ( ))T T T Tx t N x t t N g x t N g x t t Nτ τ+ − + + −  

5

( )

( ) ] [ ( ) ( ( )) ( )] 0,
t

T

t t

z t N x t x t t dx s
τ

τ
−

+ × − − − =∫  (16) 

1 2 3 4[ ( ) ( ( )) ( ( )) ( ( ( ))T T T Tx t S x t t S g x t S g x t t Sτ τ+ − + + −  

5( ) ] {[ ( ( )) ( ) ( ( )) ( ( ))Tz t S A A t x t W W t g x t+ × − + ∆ + + ∆  

1 1( ( )) ( ( ( )))] ( )}.W W t g x t t z tτ+ + ∆ − −  (17) 

Theorem 1: For any given τ > 0 and 0 1d≤ <  satisfying 
0 ( )tτ τ≤ ≤  and ( ) ,t dτ ≤�  if there exist matrices P > 0, R > 0, 

Q1 > 0, Q2 > 0, S5 < 0, X11 ≥ 0, X22 ≥ 0, X33 ≥ 0, X44 ≥ 0, X55 ≥ 0, 
X12 ≥ 0, X13 ≥ 0, X14 ≥ 0, X15 ≥ 0, X23 ≥ 0, X24 ≥ 0, X25 ≥ 0, X34 ≥ 
0, X35 ≥ 0, X45 ≥ 0 and diagonal matrix T > 0 and any matrices 
Ni (i = 1, 2, 3, 4, 5), S1, S2, S3 and S4 of appropriate dimensions 
and positive scalars ε1, ε2 and ρ such that 

 1

2

(1, 1)                

                0 0,

        0          

T

T T

N SH

N

H S

ε
ε

 
 

− < 
 − 

 (18) 

 
       

0,
     T

X N

N R

 
≥ 

 
 (19) 

and 

 .P Iρ≤  (20) 

Then the system described by (5) is exponentially stable in 
the mean square, where 

 (1,  1) ,Xτ= Π +  

 

11 12 13 14 15

12 22 23 24 25

13 23 33 34 35

14 24 34 44 45

15 25 35 45

                        

                        

                        

                        

                    

T

T T

T T T

T T T T

Π Π Π Π Π

Π Π Π Π Π

Π = Π Π Π Π Π

Π Π Π Π Π

Π Π Π Π 55

,

    

 
 
 
 
 
 
 
 Π 
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11 1 1 1 1 1 1 2 1 1 1 1( ) ,T T T T TQ G G N N E E S A A Sτε δ εΠ = + + + + + + +  

12 2 1 2 ,T T TN N A S∏ = − +  

13 1 3 2 1 2 3 ,T T T T TT S W A S E E Nε∏ = Γ − + + +  

14 4 1 1 4 2 1 3 ,T T T TN S W A S E EεΠ = − + +  

15 5 1 5 ,T T TN P S A SΠ = + + +  

22 1 1 2 2 2 2(1 ) ( ) ,T Td Q G G N Nτε δΠ = − − + + − −  

23 2 3 ,TS W NΠ = − −  24 2 1 4 ,TS W NΠ = − −  25 2 5 ,TS NΠ = −  

33 2 3 3 2 2 2 ,T T T TQ T T S W W S E EεΠ = − − − − +  

34 4 3 1 4 2 2 3 ,T T T TN S W W S E EεΠ = − − +  35 3 5 ,T TS W SΠ = −  

44 2 2 3 3 4 1 1 4(1 ) ,T T Td Q E E S W W SεΠ = − − + − −  

45 4 1 5 ,T TS W SΠ = −  55 5 5 ,TS S RτΠ = + +  

 

11 12 13 14 15

12 22 23 24 25

13 23 33 34 35

14 24 34 44 45

15 25 35 45

                        

                        

                        

                        

                    

T

T T

T T T

T T T T

X X X X X

X X X X X

X X X X X X

X X X X X

X X X X

=

55

,

    X

 
 
 
 
 
 
 
  

 

 1 2 3 4 5 1 2 3 4 5[ ] , [ ] .T T T T T T T T T T T TN N N N N N S S S S S S= =  

Proof: Consider the following Lyapunov-Krasovskii func-
tional for the system (5) 

1 2 3 4( ( ), ) ( ( ), ) ( ( ),  ) ( ( ), ) ( ( ), )V x t t V x t t V x t t V x t t V x t t= + + +  

5 ( ( ), )V x t t+   (21) 

where 

 1( ( ), ) ( ) ( ),TV x t t x t Px t=  (22) 

 2 1

( )

( ( ),  ) ( ) ( ) ,
t

T

t t

V x t t x s Q x s ds
τ−

= ∫  (23) 

 3 2

( )

( ( ), ) ( ( )) ( ( )) ,
t

T

t t

V x t t g x s Q g x s ds
τ−

= ∫  (24) 

2 2

4 1 1 2( ( ), ) ( ) ( ( )) ,
t t

t s

V x t t G x v G x v v dvds
τ

ε τ
−

 = + −
 ∫ ∫  (25) 

 5 ( ( ), ) ( ) ( ) .
t t

T

t s

V x t t z v Rz v dvds
τ−

= ∫ ∫  (26) 

Along trajectories of (5) and making use of the It ô - 
differential rule [9], then the generator ( ( ), )LV x t t  for the 

evolution of ( ( ), )V x t t  is given by 

 ( ( ), )LV x t t  

 2 ( ) ( )Tx t Pz t≤   

 1( ( ),  ( ( ))) ( ( ),  ( ( ))) ( ) ( )T TTrace x t x t t P x t x t t x t Q x tσ τ σ τ + − − +   

 1 2(1 ) ( ( )) ( ( )) ( ( )) ( ( ))T Td x t t Q x t t g x t Q g x tτ τ− − − − +  

2 2
2 1 1 2(1 ) ( ( ( ))) ( ( ( ))) ( ) ( ( ))Td g x t t Q g x t t G x t G x t tτ τ τε τ − − − − + + −  

 

 2 2
1 1 2( ) ( ( )) ( ) ( ) ( ) ( )

t t
T T

t t

G x s G x s s ds z t Rz t z s Rz t ds
τ τ

ε τ τ
− −

 − + − + −  ∫ ∫  

 1 2 3 4 52[ ( ) ( ( )) ( ( )) ( ( ( )) ( ) ]T T T T Tx t N x t t N g x t N g x t t N z t Nτ τ+ + − + + − +  

( )

[ ( ) ( ( )) ( )]
t

t t

x t x t t dx s
τ

τ
−

× − − − ∫  

1 2 3 4 52[ ( ) ( ( )) ( ( )) ( ( ( )) ( ) ]T T T T Tx t S x t t S g x t S g x t t S z t Sτ τ− + − + + − +  

{[ ( ( )) ( ) ( ( )) ( ( ))A A t x t W W t g x t× − + ∆ + + ∆  

1 1( ( )) ( ( ( )))] ( )}  ( ) ( )TW W t g x t t z t q t Xq tτ τ+ + ∆ − − +  

 
( )

( ) ( ) 2 ( ( )) ( ( )) 2 ( ( )) ( ( )),
t

T T T

t t

q t Xq t d g x t Tg x t g x t Tg x t
τ

α
−

− − +∫  

  (27) 

where 

( ) [ ( )   ( ( ))   ( ( ))   ( ( ( )))   ( ) ,]
TT T T T Tq t x t x t t g x t g x t t z tτ τ= − −  

0X ≥  and diagonal matrix 0.T >  
It follows from Lemma 1 that for any ε1 > 0 and ε2 > 0, 
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 1 2 32[ ( ) ( ( )) ( ( ))T T Tx t N x t t N g x t Nτ− + − +   

 4 5

( )

( ( ( )) ( ) ] ( )
t

T T

t t

g x t t N g t N dx s
τ

τ
−

+ − + ∫  

 1
1

( )

2 ( ) ( ) ( ) ( )
t

T T T

t t

q t N z s ds q t NN q t
τ

ε −

−

≤ − +∫  

 
2

1 ( )
( ( ), ( ( )) ( ) ,

t

t t
x s x s s dB s

τ
ε σ τ

−
+ −∫  (28) 

 1
2 22 ( ) ( ) ( ) ( ) ( ) ( ),T T T T T Tq t SHF t Eq t q SHH S q t q t E Eq tε ε−− ≤ + � �  

  (29) 

with 1 2 3   0          0 .E E E E=   
�  

Next, it follows from the condition (7) and (20) that 

 Trace ( ( ),  ( ( ))) ( ( ),  ( ( )))T x t x t t P x t x t tσ τ σ τ − −   

 1 1 2 2( ) ( ) ( ( )) ( ( )),T T T Tx t G G x t x t t G G x t tρ τ ρ τ≤ + − −  (30) 

where ρ = λmax(P). 
Using Assumption 1 yields 

 2 ( ( )) ( ( )) 2 ( ( ))  ( ),T Tg x t Hg x t g x t H x t≤ Γ  (31) 

where 1 2diag( ,  ,  , ).nα α αΓ = �  

Moreover, 

 

2

2 2
1 2

( ) ( )

( ( ),  ( ( )) ( ) ( ) ( ( ))
t t

t t t t

E x s x s s dB s E G x s G x s s ds
τ τ

σ τ τ
− −

 − ≤ + −  ∫ ∫  

  (32) 

Combining now (27)-(32) yields 

 { } { } { }1 2

( )

( ( ), ) ( ) ( ) ( ,  s) ( ,  ) ,
t

T T

t t

E LV x t t E q t q t E q t q t s ds
τ−

≤ Π − Π∫  

  (33) 

with ( ,  ) [ ( )     ( )].T T Tq t s q t z s=  

Next, from (18) and (19), we can show LV < 0. 
Define a new function as  

 ( ( ),  ) ( ( ),  ),tY x t t e V x t tβ=  (34) 

its infinitesimal operator L is given by 

 ( ( ), ) ( ( ), ) ( ( ), ).t tLY x t t e V x t t e LV x t tβ ββ= +  (35) 

By integrating this relation both sides between 0 to t and 
then taking expectation yield 

{ } { }

{ } { }
0 0

( ( ),  ) ( (0),  0)

( ( ),  ) ( ( ),  )
t t

E Y x t t E Y x

e E V x s s ds e E LV x s s dsβα βαβ

−

= +∫ ∫
 (36) 

By using the similar analysis method in [15], it can be seen 
from (21), (34) and (36) that, if β > 0 is chosen small enough, a 
constant γ > 0 can be found such that 

 { } { }2

0
( ( ), ) sup ( ) .t

s
E V x t t E s e β

τ
γ ϕ −

− ≤ ≤
≤  (37) 

It follows from (21) that 

 ( ( ), ) ( ) ( ),TV x t t x t x tδ≥  (38) 

where δ = min{λmin(P)}, it can further imply from (37) that 

 { } { }2

0
( ) ( ) sup ( ) ,T t

s
E x t x t E s e β

τ
γ ϕ −

− ≤ ≤
≤  (39) 

where 1 .γ δ γ−=   From this the result follows.    □ 

 
Remark 1: This paper is concerned with the global delay- 
dependent mean square exponential robust stability for sto-
chastic uncertain neural networks with time-varying delay.  
The delayed neural networks via LMI approach in [1, 14] can 
be regarded as the speciality of the stochastic delayed neural 
networks.  Therefore, the global asymptotic stability presented 
in [1, 14] is the specialization of Theorem 1 obviously. 
 

Let us now work out two numerical examples to show the 
usefulness of the proposed results. 

IV. NUMERICAL EXAMPLES 

Example 1: Consider a stochastic uncertain delayed neural 
network 

( ) [ ( ( )) ( ) ( ( )) ( ( ))dx t A A t x t W W t g x t= − + ∆ + + ∆  

1 1( ( )) ( ( ( )))]W W t g x t t dtτ+ + ∆ −  

( ( ),  ( ( ))) ( ),x t x t t dB tσ τ+ −   

  (40) 
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where 

1

2      0 1          0 0.9      1.2
, , ,

0      0.9 0.5    1 0.05    0.9
A W W

− −     
= = =     − − −     

 

1 2

0.1       0   0.02     0.02 0.07      0.3
, , ,

  0       0.3 0.1       0.2 0.01      0.2
H E E

−     
= = =     − −     

 

3 1 2

0.02      0.02 0.1        0
, .

  0.1       0.1     0      0.1 
E G G

 − 
= = =   −     

 

The activation function is assumed to satisfy α1 = 0.5 and 
α2 = 0.3 in Assumption 1. 

Then, it can be shown that the global delay-dependent ro-
bust conditions in [3, 5, 22] cannot be satisfied for any τ > 0.  
Accordingly, they cannot provide any results on the maximum 
allowed delay τ.  However, utilizing Theorem 1 in this paper, 
the maximum allowable value of τ for different d can be got as 
follows. 

 

d Maximum allowable value of τ 
0 5.38 

0.5 4.5 
0.9 3.26 

 

Therefore, the stochastic uncertain neural networks with 
time-varying delay in Theorem 1 of this paper are less con-
servative than those results in [3, 5, 22]. 

 
Example 2: Consider a stochastic uncertain delayed neural 
network in (5) with parameters 

1.1      0        0 3.4     0.1      0.4

 0      2.1       0 , 3.9     4.8      1.9 ,

 0       0       2.9 0.9   0.6   1.1

A W

−   
   = = −   
   − − −   

 

1

3.4      0      0 0.1        0       0

    0   4.8     0 ,   0       0.2      0 ,

    0        0    3.5   0         0     0.3

W H

−   
   = − =   
      

 

1 2

  0.2     0.2     0.1 0.1       0.3      0.2

0.1     0.2     0.3 , 0.1       0.2      0.3 ,

  0.3     0.2     0.1   0.2       0.1      0.3

E E

−   
   = − = −   
      

 

3 1 2

0.1        0         00.2    0.2     0.3

0.1    0.1     0.2 ,     0      0.1       0 .

0.2        0.1     0.3     0          0     0.1 

E G G

 − 
  = − = =   
      

 

The activation function is assumed to satisfy Assumption 1 
with α1 = 0.3, α2 = 0.4 and α3 = 0.5.  Furthermore, the time 
delay is assumed to satisfy 0 ( ) 0.5.tτ< ≤�   For the stochastic 
uncertain neural networks with time-varying delay, it is found 
that the conditions in [3, 11, 17, 21] and [21] are not satisfied 
for any τ > 0.  Accordingly, they fail to conclude whether this 
stochastic uncertain neural network with time-varying delay is 
globally delay-dependent robust stability.  However, by using 
Matlab LMI Control Toolbox, it can be verified that this sto-
chastic uncertain neural network with time-varying delay is 
globally delay-dependent robust stability for all 0 < τ(t) ≤ 6.5.  
In this case, the solution can be got as 

1.9301       0           0

    0       1.9301       0 ,

    0            0     1.9302

P

 
 =  
  

 

1

4.5589 0.0029 0.0018

0.0029 4.5489 0.0003 ,

0.0018 0.0003 4.5238

Q

− 
 = − − 
 − 

 

2

1.7730 0.0314 0.0501

0.0314 1.3677 0.0881 ,

0.0501 0.0881 1.6200

Q

− − 
 = − 
 − 

 

0.3715 0.0262 0.2341

0.0262 0.0286 0.0624 ,

0.2341 0.0624 0.5811

R

− − 
 = − 
 − 

 

4.6884        0             0 2.3592        0             0

      0      0.2568         0 ,       0      5.8334         0

      0           0       3.2044       0           0       3.1481

C T

  
  = =  
    

,






 

1 21.7392, 2.2728.ε ε= =  

Therefore, by Theorem 1 in this paper, this stochastic un-
certain neural network with time-varying delay is globally 
robust delay-dependent stability, which implies that for this 
example Theorem 1 in this paper can be less conservative that 
the existing results in the literature. 

V. CONCLUSIONS 

In this paper, the problem of globally delay-dependent ro-
bust stability for a class of stochastic neural networks with 
time-varying delay has been considered.  A sufficient condi-
tion for the solvability of this problem, which depends on the 
size of the time delay, has been presented by means of the 
Lyapunov-Krasovskii functional and the LMI approach.  Two 
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numerical examples have shown the effectiveness of the pro- 
posed approach. 
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