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ABSTRACT 

When we want to calculate the transformer iron loss in op-
eration, in addition to considering the nonlinear hysteretic 
phenomenon of transformer itself and the natural unbalanced 
characteristic, the actual situation that the transformer is op-
erated under three phase unbalance state should also be con-
sidered.  This results in very non-regular change of the trans-
former iron loss, and the accuracy of the polynomial model 
that is commonly used to estimate the iron loss of the trans-
former in the past is thus reduced.  Since neural network has 
parallel processing capability, which can process highly non- 
linear function problem, hence, in this study, we try to use 
neural network model to set up the nonlinear relationship 
between the iron loss and voltage of the transformer.  Therefore, 
we can only measure the voltage value to get accurate trans-
former iron loss.  

As we compare the neural network model set up in this study 
to the conventional polynomial method, we can find that neural 
network model has lower average error rate; this is especially 
in the prediction of the total transformer iron loss in the three 
phase balance system, and it is found that the prediction error 
can be reduced by 50%. 

I. INTRODUCTION 

Since the global population keeps increasing and every 
industry keeps growing, the global consumption on energy 
thus doubles; however, the storage of these fossil fuels is lim-
ited and will get exhausted for sure someday.  In addition, 
massive use of petrochemical fuel could also cause climate 
change and endanger the environment and ecology, hence, in 
order to reduce the green house gas release as promised by 
each country in the Kyoto Protocol and to reduce the energy 
shortage pressure, each country has to devote to the enhance of 
energy utilization efficiency. 

To electric power system, in addition to the copper loss in 
power transmission and distribution loss, another loss that 
occupies a larger proportion is the transformer loss.  Trans-
former loss can be divided into two parts such as iron loss and 
copper loss; although copper loss is larger, yet it will be gen-
erated only when it is loaded; however, although iron loss is 
smaller, yet it will be generated for 24 hours as long as the 
transformer is added with voltage; hence, iron loss occupies a 
pretty large proportion in transformer loss.  

In the past, studies related to the iron loss of transformer 
can be roughly divided into (1) Measurement method [2, 3, 14, 
17, 18], (2) Finite Element Method [1, 13, 15, 19], (3) Equivalent 
circuit method [7, 8, 12, 16, 20], and (4) Neural network 
method [4, 5, 6, 9, 10, 11]; among them, equivalent circuit 
method is applied in the real operation analysis, and the 
measurement method, finite element method and neural net-
work are commonly used in the analysis of the effect on the 
iron loss of the transformer in the past when transformer core 
material and structure is changed.  All the above mentioned 
literature does not investigate in depth the effect on the iron 
loss of the transformer by the three phase non-equilibrium 
factor. 

In the past, literature that uses neural network method to 
investigate the iron loss of the transformer is mostly in the 
design and manufacturing of transformer; in this study, we try 
to apply neural network in the real operation of transformer.  
We try to use neural network model to set up the nonlinear 
relationship between iron loss and voltage of transformer.  
Therefore, we only need to measure voltage value to get accurate 
iron loss of the transformer. 

This model can evaluate the iron loss of on-line transformer 
under three phase balanced/unbalanced system, then it can 
estimate the contribution that the three phase load reorganized 
to the carbon reduction and energy saving. 

II. TRANSFORMER 

When we are about to estimate the transformer iron loss in 
operation, factors that have to be considered include the 
nonlinear magnetization characteristic of the core of the 
transformer itself, the natural unbalanced characteristic of 
three phase transformer, as well as the situation that the volt-
age of the alternating current system is not of fixed value  
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Fig. 1.  Excitation phenomenon. 
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Fig. 2.  The evolvement of three phase core-type transformer. 

 
 

but will change slightly along with the size of the loading.  In 
the following, we will make a detailed description by aiming 
at the nonlinear characteristic of the transformer itself: 

1. Nonlinear Magnetization Characteristic of Core 

Due to the nonlinear hysteresis and saturation characteristic 
of the core of transformer, when transformer is excited by AC 
voltage, the waveform of the exciting current, iφ, will have a 
sudden change and be different from the voltage sine wave (As 
shown in Fig. 1).  This nonlinear magnetization characteristic 
will make it more difficult to estimate the iron loss of trans-
former.  

2. Three Phase Transformer Natural Unbalanced  
Characteristic 

During the development process of three phase trans-
former, it is first three single phase core-type transformer as 
shown in Fig. 2(a), and each transformer is similar to single 
phase transformer.  If the electromotive force of these trans-
formers are balanced sine waves, then the magnetic fluxes 
φa , φb , φc will be balanced sine waves too, and the total 
magnetic flux that passes through the core legs of these 
magnetic fluxes will be zero, hence, the core leg can be ne-
glected as shown in Fig. 2(b).  However, since core is formed 
by stacked pieces, hence, it is easier to be manufactured by 

using the linear arrangement structure as shown in Fig. 2(c).  
From the core structure of Fig. 2(c), it can be seen that the 
magnetic path of A and C part is slightly longer than that of B, 
hence, A, B, C phases are not totally symmetrical, and this is 
the reason of the natural unbalanced characteristic of the three 
phase transformer. 

III. THE IRON LOSS MODEL OF 
TRANSFORMER 

1. Polynomial Representation of the Transformer Iron 
Loss 

In conventional way of calculation, the transformer iron 
loss is divided into hysteresis and eddy current loss for re-
spective calculation.  However, magnetic flux density is not as 
easy to be measured as voltage, hence, many people proposed 
respectively polynomials that use voltage as the independent 
variable for the calculation.  The past researches can be 
roughly divided into the following three models:  

 
Polynomial model 1 [11]:  

 
22KVA Rating

( )
System Base

CV
coreP AV Be= +  (1) 

Polynomial model 2 [14]: 

 4 2( )core o a puP C C Vφ′ ′= +  (2) 

Polynomial model 3 [15]:  

 6 6 5 5 4 4 3 3 2 2 1 0coreP C V C V C V C V C V C V C= + + + + + +  (3) 

Here Pcore is the per-unit value of iron loss of transformer, V 
is the per-unit value of the operation voltage of transformer, 
φpu is the per-unit value of magnetic flux, A, B, Ci, Cj are re-
spectively the coefficient of each model. 

2. Neural Network Model of the Transformer Iron Loss 

The neural network model of three phase voltage and three 
phase iron loss (Model I): In this model, A, B, C three phase 
voltages are used as the three inputs of the neural network, and 
the three phase iron losses are three output terms.  

The neural network model of three phase voltage and total 
iron loss (Model II): In this model, A, B, C three phase volt-
ages are used as the three inputs of the neural network, and the 
three phase total iron loss is the output term.  

The neural network model of voltage of each phase and 
iron loss of each phase (Model III): In this model, the neural 
network model for the voltage and iron loss of each phase is 
set up respectively; the phase voltage is used as one input term 
of the neural network and phase iron loss is used as one output 
term. 
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Fig. 3.  The architecture of back-propagation network. 

 

IV. NEURAL NETWORK 

1. Introduction to Back-Propagation Networks 

In 1985, Rumelhart Mcclelland added a buried layer to the 
back-propagation network and change the operation function 
into smooth and differentiable transfer function, the back- 
propagation network that is mostly used currently is thus 
formed; back-propagation network can process the exclusive OR 
(which is abbreviated as XOR) issue that the back-propagation 
model can not handle.  

Back-propagation network is a multiple layer feed-forward 
network that has learning capability; the concept of the gra-
dient steepest descent method is used to adjust the parameter, 
then after iterative operation, the error is minimized and the 
most accurate solution is obtained.  

Since back-propagation network has higher learning accu-
racy and faster recall speed, the output value can be continuous 
and complicated sample identification as well as highly 
nonlinear function issue can be handled.  Therefore, back- 
propagation network is the most representative one among the 
current neural network learning models and is the most used 
neural network. 

2. Network Architecture of Back-Propagation Network 

Figure 3 is the architecture of back-propagation network, 
where there are N neural units in the input layer, L neural units 
in the buried layer and K neural units in the output layer; here 
the number of neural unit in the buried layer will be dependent 
on the problem and there is no specific method to decide it; 
usually, the optimum number is found by trial and error 
method.  

3. Network Operation of Back-Propagation Network 

Back-propagation network is a way of setting up mapping 
input value and output value; it assembles simple and  

Set up network parameters

Use even distribution random
number to generate initial weight

and bias value

Calculate the output values of
buried layer and output layer

Calculate the error value

Adjust the weight and 
bias value of each layer

Is there
still training

sample?

Network
termination

principle

Calculate the corrected amount

Network
termination

NO

NO YES

YES

 
Fig. 4.  The learning process flow of back-propagation network. 

 

 
nonlinear function, and after many times of assemblies, a 
complicated function form is set up to solve the complicated 
mapping issue.  Figure 4 is the learning process flow of back- 
propagation network. 

V. MEASUREMENT OF THE TRANSFORMER  
IRON LOSS 

1. Measurement of Three Phase Balance System 

Since in real AC system, voltage is not fixed but will have 
slight change along with the change of the loading and the 
amplitude of change is about within ± 10% of the nominal 
voltage; therefore, in this study, the iron loss change of the 
transformer within ± 10% of the nominal voltage will be 
measured.  Figure 5 is the iron loss measurement process 
flow of the transformer under three phase balance system.  
The transformer for experimental use is Shihlin three phase, 
10KVA, 11400V/120V transformer.  The standard power supply 
is Elgar 5200. 

2. Measurement of Three Phase Unbalance System 

Since the load connected to real three phase AC system will 
not be the same, hence, three phase transformer is operating 
under three phase unbalance.  However, the voltage combination 
for three phase unbalance is infinite, and in order to distribute 
evenly all kinds of three phase unbalance voltage combina-
tions, this study divides 90% nominal voltage to 110% nomi- 
nal voltage into three sections, hence, there will be 27 con-
figurations for the three phase voltage, and 10 three phase 
unbalance voltages will be taken randomly from each con-
figuration to perform the experiment.  Figure 6 is the meas-
urement process flow of the transformer iron loss under three 
phase unbalance system. 
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Fig. 5. The experimental flow of open circuit of transformer under three 

phase balance system. 
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Fig. 6. The experimental process flow of open circuit of transformed under 

three phase unbalance system. 

120

100

80

60

40

20

0
95 105 115

Voltage
125

Iron
loss

A Phase

B Phase

C Phase

 
Fig. 7. The relationship between iron loss value and voltage of each phase of 

the transformer. 

 

VI. IRON LOSS MEASUREMENT AND 
ANALYSIS FOR TRANSFORMER 

1. Three Phase Balance System 

Figure 7 shows the relationship between the iron loss and 
voltage of each phase of transformer.  It can be seen from the 
figure.  that even under three phase balance system, the iron 
loss value of each phase of the transformer is not the same; 
meanwhile, the larger the voltage, the larger the difference of 
the three phase iron loss value.  In addition, we can also that 
the iron loss value of each phase will increase with the increase in 
the voltage; among them, the A phase iron loss change is the 
most regular one and C phase iron loss change is the most 
irregular.  There are a total of 57 measurement data.  

2. Three Phase Unbalance System 

In this study, one of the configurations (Va ∈ [107, 114],  
Vb ∈ [114, 121], Vc ∈ [99, 107]) is randomly taken for 10 sets 
of three phase unbalance voltage experimental measurement 
results and listed in Table 1; it can be seen from the experi-
mental data in the table that under three phase unbalance system, 
the different mutual inductance voltage of each phase of the 
transformer has resulted in more irregular change of the iron 
loss.  Therefore, it is very difficult to use general method to 
acquire accurate iron loss for the operation of transformer 
under three phase unbalance system.  

VII. SIMULATION RESULT ANALYSIS 

1. Three Phase Balance System 

In this study, three different types of transformer iron loss 
neural network models will be used for the simulation and 
analysis.  Meanwhile, the accuracy, training time and the av-
erage prediction error rate of these three neural network  
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Table 1.  The iron loss measurement result under three phase unbalance system. 

 1 2 3 4 5 6 7 8 9 10 

Va 113.24 112.09 110.07 109.96 113.09 109.34 107.81 108.81 112.80 111.84 

Vb 115.16 118.43 116.39 114.12 119.13 120.76 117.05 115.85 117.52 114.49 

Vc 105.32 101.19 100.26 104.55 103.86 104.68 99.95 106.19 104.00 103.29 

Pa 54.90 63.50 49.30 44.70 66.00 64.80 48.60 51.80 54.80 53.10 

Pb 39.40 37.90 40.30 36.42 43.60 46.80 37.60 41.60 43.40 35.51 

Pc 41.75 38.88 31.74 36.58 42.90 40.71 31.38 33.70 42.55 36.18 
 
 

Table 2.  The training result of neural network model I. 

Number of neural 
unit in first buried 

layer 

Number of neural  
unit in second 
buried layer 

Number of 
iteration 

Training 
time 

Accuracy 
Single phase predicted 

average error (%) 

Three phase 
predicted average 

error (%) 

80 25 30000 4 min 3.87241 × 10-5 1.18 1.19 3.85 2.07 
90 25 30000 4 min 2.69858 × 10-5 0.89 1.46 3.49 1.95 

95 25 30000 4 min 1.61946 × 10-5 0.94 1.19 3.67 1.93 
97 25 30000 4 min 3.67521 × 10-5 1.43 1.62 2.64 1.90 
100 25 30000 4 min 1.84568 × 10-5 0.96 1.58 3.44 1.99 
110 25 30000 4 min 1.32434 × 10-5 0.89 1.53 3.84 2.08 
120 25 2914 40 sec 9.99737 × 10-6 0.76 1.29 4.22 2.09 
200 25 11125 2 min 9.94484 × 10-6 1.04 1.59 3.72 2.12 
97 10 30000 4 min 1.5733 × 10-5 0.94 0.82 4.49 2.08 
97 15 30000 4 min 4.6379 × 10-5 0.43 1.39 2.97 1.60 
97 20 30000 4 min 1.108 × 10-4 0.64 2.08 2.10 1.61 
97 25 30000 4 min 3.67521 × 10-5 1.43 1.63 2.64 1.90 
97 30 30000 4 min 2.2498 × 10-5 0.56 1.30 3.53 1.80 
97 35 30000 4 min 1.0351 × 10-5 0.41 1.52 3.44 1.79 

 
 
deductions will be compared; moreover, the result will be 
compared to all kinds of polynomial models as proposed in the 
literature.  

Table 2 is the training result of model I neural network.  
Here three phase average error rate is used to adjust the 
number of neural unit in the buried layer.  Since the prediction 
and estimation of single layer buried layer is worse, hence, in 
this study, two layers of buried layer are adopted to set up 
neural network model.  First, the number of neural unit in 
second buried layer is fixed at 25, then different number of 
neural unit of first layer is tried, and it is found that the average 
error rate of 1.898171% when the first layer is of 97 neural 
unit is minimum.  Next, we fix the first buried layer at 97 
neural units and let the second buried layer neural unit number 
vary from 10 to 35 with interval of five neural units for the 
testing of average error rate, then it can be found that when the 
second buried layer is of 15 neural units, the average error rate 
is minimum.  Therefore, the model architecture of model I 
neural network is: input layer composes the three neural units 
for the input of A, B, C phase voltage; the first buried layer is 
of 97 neural units, the second buried layer is of 15 neural units, 
and the output layer composes three neural units for the output 

of A, B, C phase iron loss value.  Model II and model III are 
set up by the same steps.  The number of neural unit is as 
shown in Table 3.  The training sample number is 23 and the 
verification sample number is 2.  

In Table 3, under three phase balance system, all the major 
parameters of the neural network models of three transformer 
iron losses are compared.  It can be seen from the table that the 
training time for model III is the shortest and the network 
response is the best, which is because the relationship between 
voltage of each phase and iron loss of each phase is simpler.  
On the contrary, the relationship of model I is more compli-
cated and the time needed for the training is thus longer and 
the network response is worse as well as a higher prediction 
error rate. 

However, the total iron loss has the most obvious change 
along with voltage and the change is more regular, hence, 
model II has the lowest prediction error rate.  

Table 4 is a comparison among neural network model II and 
three polynomial models under three phase balance system, 
wherein the coefficient of the polynomial is obtained through 
the least square method.  By comparing the result, it can be 
seen that the error rate by using neural network to estimate the  
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Table 3.  The training comparisons of all kinds of neural network models under three phase balance system. 

Model III 
 Model I Model II 

A B C 
Number of neural unit in first buried layer 97 97 50 50 40 
Number of neural unit in second buried layer 15 21 5 10 10 
Number of iteration 30000 30000 4059 5206 4969 
Training time 4 min 4 min 15 sec 15 sec 15 sec 
Accuracy (×10-5) 4.638 1.646 1.0 1.0 1.0 
Predicted average error (%) 1.596 0.588 0.185 0.821 1.587 

 
 

Table 4.  Comparisons between neural network model 2 and three polynomial models under three phase balance system. 

Estimation model  Error (%) 

Polynomial model 1 
22 0.0006396510KVA

(0.007 0.020 )
10KVA

V
coreP V e= +  1.25 

Polynomial model 2 
10 4 2( 0.006 (1.22 10 ) )coreP V V−= − + ×  11.02 

Polynomial model 3 
7 6 5 4 3 2 6( 5.43 10 ) (0.0002) 0.013 4.25 853.38 59143 1.47 10coreP V V V V V V−= − × + − − + − + ×  1.06 

Neural network model II Pcore 0.59 
 
 

Table 5.  Comparisons between neural network model 3 and three polynomial models under three phase balance system. 

Estimation model  Error (%) 

20.000672
,

10KVA
(0.002 0.004 )

10KVA
V

core AP V e= +  1.71 

20.000652
,

10KVA
(0.002 0.006 )

10KVA
V

core BP V e= +  0.93 Polynomial model 1 

20.00062
,

10KVA
(0.002 0.013 )

10KVA
V

core CP V e= +  2.01 

11 4 2
, ( 0.002 (3.96 10 ) )core AP V V−= − + ×  12.21 

11 4 2
, ( 0.002 (4.09 10 ) )core BP V V−= − + ×  10.85 Polynomial model 2 

11 4 2
, ( 0.002 (4.17 10 ) )core CP V V−= − + ×  10.13 

9 6 5 5 4 3 2 5
, ( 3.91 10 ) (1.70 10 ) 0.010 2.31 257.17 14224 3.13 10core AP V V V V V V− −= − × − × + − + − + ×  0.88 

8 6 5 5 4 3 2 5
, ( 6.75 10 ) (1.68 10 ) 0.021 5.55 653.12 37068 8.27 10core BP V V V V V V− −= − × − × + − + − + ×  1.31 Polynomial model 3 

8 6 5 5 4 3 2
, ( 8.95 10 ) (6.47 10 ) 0.019 3.06 272.45 12948 256669core CP V V V V V V− −= − × + × − + − + −  2.54 

Pcore, A 0.19 

Pcore, B 0.82 Neural network model III 

Pcore, C 1.59 

 
 

total transformer iron loss is about half of that of the polyno-
mial model.  

Table 5 is a comparison between neural network model III 
and three polynomial models under three phase balance sys-
tem; among three polynomial models, model 3 has smaller A 

phase iron loss estimation error rate, that is, about 0.88%, 
model 1 has smaller estimation error rates for B, C phase iron 
losses, and the error rates are respectively 0.93% and 2.01%; 
however, the use of neural network to estimate the iron loss 
value of each phase of transformer has error rates smaller than  
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Table 6.  Comparisons of all kinds of neural network models. 

Model III 
 Model I Model II 

A B C 
Number of neural unit in first buried layer 97 97 50 50 40 
Number of neural unit in second buried layer 15 21 5 10 10 
Number of iteration 30000 30000 4059 5206 4969 
Training time 4 min 4 min 15 sec 15 sec 15 sec 
Accuracy (×10−5) 4.638 1.646 1.0 1.0 1.0 
Predicted average error rates (%) 1.596 0.588 0.185 0.821 1.587 

 
 

Table 7.  Comparisons of the error rate of model II and three polynomial models. 

Estimation model  
Min 

error (%) 
Max 

error (%) 
Avg 

error (%) 

Polynomial 
model 1 

22 0.00016
,

KVA Rating
( 0.020 55.30 )

System Base
V

core TotalP V e= − +  2.64 22.34 9.62 

Polynomial 
model 2 

11 4 2 12 4 2
,

11 4 2

( 0.011 (6.33 10 ) ) (0.012 (5.72 10 ) )

( 0.006 (5.94 10 ) )

core Total a a b b

c c

P V V V V

V V

− −

−

= − + × + − ×

+ − + ×
 2.35 13.31 6.00 

Polynomial 
model 3 

7 6 4 5 4 3
,

2 7 6 4 5 4

3 2 7 6 4 5

4 3 2

( 5.02 10 ) (3.07 10 ) 0.077 10.291

763.98 29974 (7.15 10 ) (2.79 10 ) 0.024

4.24 983.6 70897 (6.40 10 ) (3.69 10 )

0.087 10.57 694.99

core Total a a a a

a a b b b

b b b C C

C C C

P V V V V

V V V V V

V V V V V

V V

− −

− −

− −

= − × + × − +

− + + × − × +

+ − + + × − ×

+ − + 622808 2.01 10CV− − ×

 1.56 8.22 3.56 

Neural network 
model II 

,core TotalP  0.15 7.85 2.45 

 
 

those of three polynomial models, the error rates are respec-
tively 0.19%, 0.82% and 1.59%. 

2. Three Phase Unbalance System 

In this study, three different types of transformer iron loss 
neural network models will be used for the simulation and 
analysis; meanwhile, the accuracy, training time and the pre-
dicted average error rates of these three neural network de-
ductions will be compared, and will be further compared to the 
result of polynomial model as proposed in the reference lit-
erature.  There are 270 training samples in the neural network 
model, and 20 verification samples. 

In Table 6, under three phase unbalance system, all the 
major parameters of the neural network models of three 
transformer iron losses are compared.  It can be seen from the 
table that the training time for model II is the shortest, the 
network convergence response is the best and the prediction 
error rate is the lowest, which is because that the total iron loss 
shows the most obvious trend and more regular change along 
with the change in voltage.  On the contrary, the relationship of 
model I is more complicated, hence, the time needed will be 
longer and the network convergence response is worse and the 
prediction error rate is higher. 

Table 7 is a comparison of the error rates between model II 

and three polynomial models, among them, the coefficient of 
polynomial model is found by the least square method; among 
the polynomial models, model 3 has minimum error rate with 
average error rate of 3.56%; however, the use of neural net-
work for the prediction of total iron loss has an average error 
rate of 2.45%.  Table 8 is a comparison of the error rate of 
model III and those of three polynomial models, and among 
the three polynomial models, model 3 has minimum error rate, 
and the error rates are respectively 4.78%, 4.44% and 4.86%; 
however, when neural network is used to predict the total iron 
loss of each phase of transformer, the error rates can be re-
duced to 3.32%, 4.02% and 4.29%.  

VIII. CONCLUSION 

Since in real three phase AC system, the connected three 
phase loadings will not be the same, hence, three phase 
transformer operates under three phase unbalance state, which 
in turn makes the iron loss change of transformer very ir-
regular.  In this study, three different neural network models 
are used respectively to set up the nonlinear relationship be-
tween voltage and iron loss of the transformer under three 
phase system.  After neural network operation, no matter in the 
prediction of the iron loss of each phase of the transformer or  
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Table 8.  Comparisons of the error rate of model III and those of three polynomial models. 

Estimation 
model 

 
Min 
error 
(%) 

Max 
error 
(%) 

Avg 
error 
(%) 

22 7 0.0012
,

KVA Rating
(0.004 (3.56 10 ) )

System Base
V

core AP V e−= + ×  2.27 63.67 15.68 

22 0.00043
,

KVA Rating
(0.004 377.78 )

System Base
V

core BP V e−= +  0.98 64.50 22.15 
Polynomial 

model 1 

22 10 0.0017
,

KVA Rating
(0.004 (4.80 10 ) )

System Base
V

core CP V e−= + ×  3.75 43.12 22.92 

12 4 2 11 4 2 11 4 2
, (0.006 (1.73 10 ) ) ( 0.0005 (1.26 10 ) ) ( 0.007 (2.43 10 ) )core A a a b b c cP V V V V V V− − −= + × + − + × + − + ×  0.42 17.08 7.41 

11 4 2 11 4 2 11 4 2
, ( 0.007 (1.71 10 ) ) (0.008 (1.06 10 ) ) ( 0.003 (3.07 10 ) )core B a a b b c cP V V V V V V− − −= − + × + − × + − + ×  2.28 16.69 9.12 

Polynomial 
model 2 

11 4 2 12 4 2 12 4 2
, ( 0.01 (4.44 10 ) ) (0.004 (7.68 10 ) ) (0.004 (4.43 10 ) )core C a a b b c cP V V V V V V− − −= − + × + − × + + ×  0.81 19.49 5.79 

8 6 5 5 4 3 2 8 6
,

5 5 4 3 2 8 6 5 5

4 3 2

(8.46 10 ) (2.94 10 ) 0.0009 0.90 158.68 10624 (5.94 10 )

(2.39 10 ) 0.002 0.26 71.31 5321.3 (9.71 10 ) (3.33 10 )

0.0007 1.12 192.01 127

core A a a a a a a b

b b b b b C C

b C C

P V V V V V V V

V V V V V V V

V V V

− − −

− − −

= × − × + + − + + ×

− × + + − + − × + ×

− − + − 04 89092CV −

 0.72 25.52 4.78 

8 6 5 5 4 3 2 7 6
,

5 4 3 2 8 6 5 5

4 3 2

( 7.35 10 ) (1.27 10 ) 0.007 2.52 336.98 20573 (3.20 10 )

0.0001 0.014 1.27 374.02 28211 (5.17 10 ) (5.00 10 )

0.02 3.31 326.21 16714 8.

core B a a a a a a b

b b b b b C C

C C C C

P V V V V V V V

V V V V V V V

V V V V

− − −

− −

= − × + × + − + − − ×

+ − − + − − × + ×

− + − + + 56378 10×

 1.08 13.33 4.44 
Polynomial 

model 3 

7 6 5 5 4 3 2 7 6
,

5 4 3 2 7 6 5

4 3 2

( 1.32 10 ) (9.26 10 ) 0.03 4.08 346.85 15645 (2.8676 10 )

0.0001 0.008 1.92 412.67 29093 (1.94 10 ) 0.0001

0.031 4.17 317.56 12844 8.063

core C a a a a a a b

b b b b b C C

b C C C

P V V V V V V V

V V V V V V V

V V V V

− − −

−

= − × + × − + − + + ×

− + + − + + × −

+ − + − − 57 10×

 1.07 16.79 4.86 

Pcore,A  9.78 3.32 

Pcore,B  9.25 4.02 
Neural network 

model III 

Pcore,C  11.21 4.29 

 
 

the total iron loss, the error rate of the neural network model 
set up by this study is lower than that of polynomial method, 
this is especially true in the prediction of the total iron loss of 
transformer under three phase equilibrium system, the pre-
diction error rate can be reduced by 50%.  Therefore, neural 
network is more suitable to be used in the estimation of the 
transformer iron loss within dynamic power system. 
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