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ABSTRACT 

Landslides are natural phenomena for the dynamic balance 
of the earth’s surface.  Because of frequent occurrences of 
typhoons and earthquakes in Taiwan, mass movements are 
common threats to people’s lives.  In this paper, the interpreta- 
tion of knowledge is quantified as recognition criteria.  Multi- 
source high-resolution data, for example, a SPOT satellite 
image, 20 m × 20 m Digital Terrain Model (DTM) reduced 
from Light Detection And Ranging (LiDAR) data, and aerial 
orthophotos were used to construct the feature space for land- 
slide analysis.  Landslides were recognized by an object- 
oriented method combining edge-based segmentation and a 
Supported Vector Machine (SVM) method.  The classification 
results are evaluated in comparison with those by manual 
interpretation.  Two cases from northern and central Taiwan 
are tested.  Both cases show that the object-based SVM 
method is better than a pixel-based method in classification 
accuracy.  The commission error of the proposed method is 
also smaller than that of the pixel-based method.  Moreover, 
except for the spectral features, the slope and Object Height 
Model (OHM) characteristics are also important factors for 
improving landslide classification accuracy.  Further study is 
required for assessing the mixed pixel effect when the resolu-
tion is as large as 20 m and for characterizing the effects of 
sampling rates or scaling caused by changes in resolution. 

I. INTRODUCTION 

1. Motivation and Related Work 

The World Bank (2005) released a report entitled “Natural 

Disaster Hotspots: A Global Risk Analysis,” stating that ap-
proximately 73% of the Taiwan land area and population is 
exposed to 3 or more risks of natural disasters [13].  Taiwan 
has a land area of 36, 000 m2, 26.68% of which is covered by 
planes, whereas 27.31% is hilly and 46.01% is mountainous.  
By official definition for the purpose of land conservation 
management, hilly land refers to areas between 100 m and 
1,000 m Above Mean Sea Level (AMSL) or areas under 100 m 
but with a slope greater than 5%.  Mountainous land refers to 
areas with an altitude higher than 1,000 m AMSL [28]. 

According to statistics of the National Fire Agency (NFA), 
270 natural disaster events have occurred in Taiwan from 1958 
to 2007.  These include typhoons (71.1%), flooding (15%), 
earthquakes (8.5%), torrential rainfall (2.2%), wind storms 
(1.5%), mountain flooding (0.7%), and landslides (0.7%) [34].  
Taiwan is located in the northwest of the Pacific Ocean, on  
the major tracks of typhoons.  On average, approximately 5 
typhoons are likely to affect Taiwan per year.  The frequency 
of natural disasters is on an increasing trend.  In total, 89% of 
the events concern rainfall hazards, with 97% directly or in-
directly concerning landslides.  Rainfall landslides are a criti-
cal issue in managing natural disasters [28, 29].  Moreover, 
typhoons in Taiwan cause enormous economic losses esti-
mated at approximately US$6 billion per year. 

Landslides are a natural phenomenon for the dynamic 
balance of the earth’s surface.  The potential or intrinsic fac-
tors of landslides include geological and morphological fac-
tors.  The external or triggering factors include earthquakes, 
climate, hydrology, and human activities.  In Taiwan, the ge-
ology is highly fractured and landforms are in high relief.  In 
addition, frequent earthquakes combined with heavy rainfall 
impose further stress to the earth’s surface, with mass move-
ments such as landslides, slumping, and mudflows occurring 
frequently. 

Three types of landslide survey methods exist: ground, ae-
rial, and space-borne [16, 40], or a combination [15].  Ground 
survey can be highly accurate, but is slow.  When hazards 
occur, accessibility is low.  Therefore, it is impossible to make 
the survey in near real-time or in a large coverage area after a 
torrential rainfall.  The photographic or image interpretation 
approach can be adopted and implemented manually, auto-

Paper submitted 12/22/11; revised 02/27/12; accepted 04/30/12.  Author for 
correspondence: Kuan-Tsung Chang (e-mail: ktchang1216@gmail.com). 
1 Department of Civil Engineering and Environmental Informatics, Minghsin 
University of Science and Technology, Hsin-Chu, Taiwan, R.O.C. 

2 LiDAR Technology Co., Chubei City, Hsin-Chu, Taiwan, R.O.C. 
3 Institute of Civil Engineering and Environmental Informatics, Minghsin 
University of Science and Technology, Hsin-Chu, Taiwan, R.O.C. 



648 Journal of Marine Science and Technology, Vol. 20, No. 6 (2012) 

 

matically, or semi-automatically.  Manual interpretation re-
quires that a well-trained geologist delineate landslides under 
a stereoscopic environment, which is time- and labor-intensive 
[29].  Through the use of criteria for visual interpretation, 
artificial intelligence of expert systems and automatic proce-
dures can be developed to improve the efficiency and accuracy 
of landslide mapping [26].  Several investigators have at-
tempted to identify landslides by pixel-based supervised clas-
sification methods, for example, Maximum Likelihood (ML) 
[39] and the Artificial Neural Network method [1, 7, 8, 36].  
The advantage for image classification is the objectiveness of 
these approaches.  However, traditional classification methods 
such as ML are limited by a priori statistical assumptions, for 
example, a probability distribution and the Hughes Effect, 
denoting that increasing data bands imposes a need to increase 
training samples.  More than 50% of rainfall-induced land-
slides in Taiwan are less than 50 m in length.  Landslides of 
this scale are not readily identifiable by their outer shapes 
using images of a pixel size larger than 10 m.  For the resolu-
tion limitation and properties for pixel-based classification, 
landslides can occupy only one or a few pixels without form- 
ing an outer shape of a landslide.  The pixel-based methods 
must then be replaced with approaches based on objects or 
regions [25].  Object-oriented analysis (OOA) is inherently 
more suitable because it can address the phenomena under 
study, including landslides, as if they are “objects,” and not 
“pixels” that have spectral, spatial, and contextual character-
istics [6, 18, 33, 38].  In addition, this method clearly has the 
effect of reducing the “salt-and-pepper” appearance typical of 
the thematic maps generated by conventional pixel-based 
classification [3, 22].  Because regions are composed of ho-
mogeneous pixels, the total number of regions is substantially 
less than that of pixels in a study area.  Thus, efficiency can be 
improved significantly [17].  However, corresponding ex-
periments showed that if initial segmentation does not corre-
spond with the boundaries of the real-world objects of interest, 
the classification cannot provide meaningful results [33].  In 
addition, users must understand the objects under classifica-
tion for setting proper decision rules of the classifier, including 
many parameters, weighting factors, and so on. 

Different approaches of remotely sensing data exist, in- 
cluding aerial photography, optical satellites, synthetic aper-
ture radar imagery, and topographic data acquisition.  They 
can all be used for landslide inventory [1, 8, 12, 28, 34].  Aerial 
photography has long been extensively used to characterize 
landslides and to produce landslide inventory maps, particu-
larly because of their stereo-viewing capability and high spa-
tial resolution [30].  Satellite imagery can also be used to 
extract information of geological features, geomorphology, 
land use, hydrology, and so on.  However, most landslide 
detection is based chiefly on spectral features of remotely 
sensed images other than topographic features.  Because the 
spectral features of buildings and roads are similar to those of 
landslides, serious misjudgments can occur [36].  Current 
airborne LiDAR can collect multiple laser returns at pulse 

repetition rates of up to 500 kHz.  The positional accuracy of 
the resultant laser pulse return is typically at the decimeter 
level.  The obtained standard products of an airborne LiDAR 
survey thus include all points, ground points, the Digital Sur-
face Model (DSM), and the Digital Elevation Model (DEM).  
LiDAR DEM has been used for landslide interpretation [14, 
22, 37], whereas DSM is not applied as frequently [8].  The 
integration of multi-source data, including elevation informa-
tion, has been shown to be extremely useful for landslide 
inventory [5, 35].  Therefore, the purpose of this study was to 
use an OOA method with integrated spectral and geomor-
phometric features for landslide extraction.  We also assessed 
the accuracy of this method.  Geomorphometric features were 
generated from LiDAR’s DEM and DSM.  The OOA method 
combined edge-based segmentation and a Support Vector 
Machine (SVM) classification.  The accuracy assessment was 
made by comparing results of OOA with those from conven-
tional pixel-based methods. 

II. METHODOLOGY 

The physical appearance of landslides forms the basis for 
recognizing the boundary and type of a landslide.  However,  
displaced material of a rainfall-induced landslide is usually 
washed away from steep slopes.  What remain are only the 
fresh scars of the ruptured surface.  The fresh landslide scars at 
var-ious slope gradients and locations normally include land-
slide types such as rock falls, debris slides, channel bank fail-
ures, and debris flows.  In this study, the landslides concerned  
covered all these types except debris flows.  The exception 
was  because debris flows are triggered by a different mecha-
nism, with more contributions from flowing water instead of 
gravity.  In other words, debris flows can be treated as a trans- 
formation of other shallow-seated landslides when a high 
concentration of rainfall and liquefaction of displaced mate-
rials occur [28].  The principle of the proposed object-oriented 
workflow combining an edge-based segmentation and SVM 
classification for automatic landslide interpretation is as fol-
lows.  The segmentation procedure is used first on the partition 
of digital feature data into multiple regions (set of pixels) 
based on given criteria.  After segmentation, each region is 
assigned a unique label.  However, the labeled regions should 
be reclassified into desired classes, as defined.  Therefore, a 
supervised classification method is used next to derive the 
final result of landslide interpretation in this study. 

1. Edge-Based Segmentation Method 

A basic task of segmentation algorithms is the merging of 
image elements based on homogeneity parameters or on the 
differentiation to neighboring regions (i.e., heterogeneity).  
Thus, segmentation methods follow 2 strongly correlated 
principles of neighborhood and similarity of pixel values.  
Generally, edge-based and region-based methods can be ap-
plied to partition a scene into regions [4]. 

Region-based approaches start in image space where the 



 K.-T. Chang et al.: OOA for the Rainfall-Induced Shallow Landslide 649 

 

available elements, either pixels or already existing regions, 
are tested for similarity against other elements.  Region 
growing (i.e., bottom-up, starting with a seed pixel) and region 
splitting (i.e., top-down, starting with the entire scene) pro-
cedures are distinguished to define initial segmentation.  One 
disadvantage of the splitting method is that it tends to be 
over-segmented because splitting always produces a fixed 
number of sub-regions (normally 4), although 2 or 3 of them 
might actually be homogeneous with respect to each other.  
Consequently, one can apply an integration of the various 
methods.  Thus, it leads to the split-and-merge algorithm, such 
that, after a split process, if neighboring regions are similar, 
they should be remerged.  To strengthen the automation of 
segmentation, clustering is adopted for region-based segmen- 
tation.  An Iterative Self-Organizing CLUSTering (ISOCLUST) 
method is an unsupervised classifier based on a concept 
similar to the well-known ISODATA routine of Ball and Hall 
and cluster routines such as the H-means and K-means pro-
cedures [21].  The authors compared 2 region-based segmen-
tation methods named thresholding and the ISOCLUST 
method with the ground truth extracted on the basis of or-
thophotos and DSM-shaded relief images of the experimental 
area.  The experimental results showed that the thresholding 
met more closely with the ground truth, whereas the 
ISOCLUST method was able to demonstrate details of the 
landslide features though omission error prevailed [9].  The 
multi-resolution segmentation used in the eCognition Profes-
sional developed by Definiens Image is a process controlled 
by scale, shape, color, compactness, and smoothness parame-
ters [33].  It is a bottom-up pairwise region-merging algorithm, 
where the appropriate values of all parameters used in the 
method should be determined by trial-and-error tests [22]. 

Edge-based approaches describe regions by their outlines.  
These are generated through edge detection filtering, for ex-
ample, a Sobel or Canny operator, followed by an edge- 
linking algorithm.  Optionally, the transition from the outlines 
to the interior region can be achieved by contour-filling 
methods such as the morphological watershed algorithm.  The 
main disadvantage of edge-based approaches is that the edge 
and the contour image are affected strongly by noise, which 
may lead to unacceptable over-segmentation.  Two ways of 
solving the over-segmentation problem are to merge adjacent 
similar regions iteratively or to build a watershed hierarchy 
using different scale spaces [23]. 

Therefore, an edge-based segmentation algorithm as used 
in this study was fast and required only one input parameter 
(Scale Level) .  By suppressing weak edges to different levels, 
the algorithm yielded multiscale segmentation results from 
finer to coarser segmentation.  First, the used segmentation 
algorithm was used to calculate a gradient map and its corre-
sponding density function (called cumulative relative histo-
gram) for the whole image.  A sub-image window was then 
selected to compute a modified gradient map using the origi-
nal gradient map, density function, and Scale Level .  The 
watershed transform was applied on the modified gradient 

map for the sub-image to determine an acceptable scale pa-
rameter according to the segmented result for sub-images 
iteratively.  Finally, the watershed transform was reapplied to 
segment the modified gradient map for the whole image [20, 
23].  Prior to segmenting the modified gradient map, a sub- 
image can be segmented at the selected scale level to deter-
mine if the scale level provides the desired segmentation.   
The used edge-based segmentation method can overcome the 
mentioned disadvantage for other edge-based segmentation 
methods, for example, broken edges or over-segmentation.  
Moreover, its computation performance (computational com-
plexity is O(n)) is among the fastest segmentation algorithms.  
The ability to perform a result preview and sub-image seg-
mentation can reduce a tedious and time-consuming trial-and- 
error process where a reasonable scale parameter is found [23]. 

2. Support Vector Machine Method 

The supervised classification can be considered one of the 
modeling probability distributions [3].  SVM is a relatively 
new supervised classifier and is based on strong foundations 
from statistical learning theory.  Since its inception in the early 
1990s, it has found applications in a wide range of pattern 
recognition problems, image classification, financial time 
series prediction, face detection, biomedical signal analysis, 
medical diagnostics, and data mining [10, 19].  It separates 2 
classes with a decision surface that maximizes the margin 
between the classes.  The surface is often called the optimal 
hyperplane, and the data points closest to the hyperplane are 
called support vectors.  The support vectors are the critical 
elements of the training set [11]. 

Under the basic assumption of the SVM approach, the 
training sample is expressed as follows: 

 0T
iw x b+ =  (1) 

The weighing vectors w and b are deemed satisfactory once 
they are converged. 

 ( ) 1T
i iy w x b ε+ ≥ −  (2) 

The ε value is a loose variable existing in a linear, undi- 
vidable condition.  It describes the degree of module deviation 
under the ideal linear circumstances.  The goal of the SVM is 
to identify a decision support phase where the average error of 
the training samples is minimized.  The optimization equation 
is therefore derived as follows: 

 
1

1
( , )

2

N
T i

i

w w w Cϕ ε ε
=

= + ∑  (3) 

where C is a positive parameter assigned by the end user.  It 
serves as a penalty for the correctness of the SVM.  The C 
value is used to leverage the probable misinterpretation per-
centage and the complexity of the algorithm.  A converged 
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optimization equation can be derived adopting the Lagrange 
multiplication method: 

 
1 1 1
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N
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α

=
 is the Lagrange multiplier, and Eq. (4) fulfills 

the following criteria: 

 
1
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N
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i
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=
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( , )i jK x x is a kernel function.  After kernelization, the SVM 

can be applied to situations in which 2 classes are not linearly 
separable [3].  Four types of kernel functions are included in 
the Mercer theorem: 
 
1. Linear: 

 ( , ) T
i j i jK x x x x=  (6) 

2. Polynomial 

 ( , ) ( ) , 0T d
i j i jK x x x x rγ γ= + >  (7) 

3. Radial Basis Function (RBF): 

 
2

( , ) exp( ), 0i j i jK x x x xγ γ= − − >  (8) 

4. Sigmoidal: 

 ( , ) tanh( ), 0T
i j i jK x x x x rγ γ= + >  (9) 

 Here, γ, r, and d are kernel parameters [2, 24]. 
 
SVM can be adapted to become a nonlinear classifier 

through use of nonlinear kernels.  Although SVM is a binary 
classifier in its simplest form, it can function as a multiclass 
classifier by combining several binary SVM classifiers (cre-
ating a binary classifier for each possible pair of classes).  For 
comparison, the SVM function built in an ENVI software 
developed by ITT Co. was used after the segmentation.  The 
most popular kernel in the SVMs is the RBF kernel, which 
functions well in most cases and was, therefore, chosen in this 
study.  The parameter essentially determines the training/ 
testing trade-off when it sets a large value that leads to overfit 
[3]. 

To recognize landslides, the authors compared the pixel- 
based SVM  by using the Back-Propagation Neural Network 
(BPNN) and an ML method.  Results showed that the recog-
nition accuracy for the BPNN and pixel-based SVM method 
are better than the ones for the ML method [6].  A superiority 
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Fig. 1. (a) Satellite image of the Alishan study area and (b) its ground 

truth. 

 
 

of the SVMs for remote sensing image classification over 
neural networks is the unambiguity of the solution.  Because 
one maximizes a quadratic function, the extreme is global and 
is always found.  No possibility exists of becoming trapped in 
a local maximum [3]. 

III. CASE STUDY 

1. Two Test Areas and Their Ground Truths 

Two test areas were selected for this study.  The first test 
area is located at the Alishan upstream basin near central 
Taiwan.  The Alishan study area has an area of approximately 
36 km2.  The geological formations are composed of alterna-
tions of highly fractured sandstone and shale.  In the study  
area, the accumulated rainfall reached 811 mm in 24 h  and 
1,200 mm in 48 h since 2006 June 9.  This heavy rainfall  
event, called the six-nine torrential rainfall, induced enormous 
amounts of debris flows and slides.  LiDAR data were ac-
quired by a Leica ALS50 airborne LiDAR system.  Both 
LiDAR data and aerial photographs were taken in 3 d on June 
18, June 19, and June 22 of 2006.  The point density of LiDAR 
point clouds was approximately 4 points/m2.  Moreover, 
SPOT-5 multispectral satellite images containing green (G), 
red (R), and near-infrared bands (NIR) (Fig. 1(a)) were used.  
No record of heavy rainfall events one year prior to this event 
exist.  The landslides observed with these data sets could be 
attributed solely to this torrential rainfall event. 

The second experiment was conducted using a LiDAR  
data set in Yilan County of eastern Taiwan, acquired after 
Typhoon Kalmaegi, which affected Taiwan area from July 16 
to July 18, 2008.  Data acquisition using a Leica ALS50 air-
borne LiDAR system was conducted on 2008 November 4.  
The point density of all points was 1.454/m2 and that of ground 
points was 0.454/m2.  The orthophoto used in this study is 
shown in Fig. 2(a). 
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Fig. 2. (a) The aerial photo of the Yilan study area and (b) its ground 

truth. 

 
 
The perception of landslides from a bird’s eye view of ae-

rial photographs largely depends on the scale or spatial reso-
lution of the photographs.  Six criteria can be used for the 
visual recognition of landslides on aerial photographs, in-
cluding tone, location, shape, direction, slope, and shadow 
effects.  According to these expert criteria, orthophotos and 
corresponding river and road maps were imported into the 
ArcGIS 9.2 software to aid in the visual digitization of the 3 
classes.  The results of manual air-photo interpretation as 
shown in Figs. 1(b) and 2(b) could be used as the ground truth.  
The pixels in brown, red, and white indicate landslide area, 
vegetation, and river bed, respectively. 

2. Experimental Workflow and Interpretation Keys 

The detailed experimental workflow is shown in Fig. 3.  
First, an orthophoto or a SPOT multispectral image, LiDAR’s 
DEM and DSM, and corresponding vector data containing 
river and road maps for the study areas were collected.  Manual 
interpretation was then performed to obtain the ground truth.  
According to the land-use status of the study areas and the 
purpose of this study, 3 classes were present for the ground 
truth needing interpretation, including landslide, river bed, and 
vegetation.  Next, the feature layers required for automatic 
processing of segmentation were generated from the raw data 
sets, including spectral and geomorphometric features.  If the 
segmentation and merging results were satisfactory for the 
experiments, then representative training regions for each land 
class would be selected.  After selection of the training regions, 
training could be performed for the used SVM classification 
method.  Finally, accuracy assessments of each experiment 
could be performed based on the classification results and the 
ground truth.  In the accuracy assessment, both the omission 
error (type I error) and commission error (type II error) should 
be also considered [27]. 

Key rules for the automatic landslide interpretation con-
sisted of spectral and geomorphometric features summarized 
from the literature, case studies, and expert experience.  Be-
cause newly formed landslides are mostly bare ground, their  
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Fig. 3.  The experimental workflow in the study. 

 
 

spectral reflectance curve becomes changed than before.  
Vegetation indices can be calculated by multispectral satel- 
lite images to explore the spectral characteristics of land- 
slides.  Among more than 20 types of vegetation indices, a 
standardized vegetation index called the Normalized Vegeta-
tion Index (NDVI) is the most commonly used indicator for 
surface biomass cover.  The NDVI calculation formula is as 
follows: 

 
NIR R

NDVI
NIR R

−=
+

 (10) 
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Fig. 4.  The NDVI*slope histogram for the ground truth data. 

 
 
where NIR and R indicate the digital number on the near- 
infrared band and the red band, respectively.  In the second 
case, because the adopted orthoimage did not cover the near- 
infrared band, the Green-Red Vegetation Index was used.  This 
index is also called Greenness [22].  Moreover, some geomor- 
phometric features including slope and normalized Digital 
Surface Model (nDSM, also called OHM) were used in the 
experiments.  If only the spectral characteristics are used for 
the landslide interpretation, it is difficult to recognize land-
slides and other land cover classes with similar spectral fea-
tures (such as bare soil and river).  The local slope was cal-
culated using the third-order finite difference weighted by the 
reciprocality of the squared distance algorithm.  The mathe-
matical formula for the slope computation can be found in ref. 
[39].  OHM obtained by subtraction of DSM and DEM is a 
normalized height of objects above the bare ground surface.  
Because the terrain effects have been removed, OHM exhibits 
a good appearance of landslides [6]. 

IV. EXPERIMENTAL RESULTS AND  
ANALYSIS 

1. The Alishan Upstream Case 

SPOT images and airborne LiDAR data were used in this 
study.  Applied feature space includes spectral features such as 
G, R, IR, and NDVI, and spatial features such as slope and 
OHM.  After a few preliminary experiments, 4 features were 
selected, including G, R, IR, and NDVI*slope.  The “*” in the 
NDVI*slope feature represents a multiplier of NDVI and 
slope value.  It is a composite feature that possesses a unique 
capability of enhancement for effective separation of the fea-
ture value distribution of a landslide and other land cover 
classes (e.g., river).  A statistical NDVI*slope histogram, as 
shown in Fig. 4, generated from the ground truth shows that 
the NDVI*slope value for landslides ranging from a minimum 
value to -2, and one for a river ranging from -5 to -0.01.  Be-
cause the resolution of SPOT is 20 m and that of LiDAR is 1 m, 
the relatively low resolution of SPOT images requires a pa-
rameter for segmentation with a low scale level to obtain more 
detailed regions (or objects).  If the scale level is high, more  

(a)

(b)

(c)  
Fig. 5. The best object-based classification result for the Alishan case.   

(a) Segmentation result, (b) The selected training regions for the 
object-based SVM method, and (c) Object-based SVM classifica-
tion result. 

 
 

mixed objects are formed and classification accuracy is lower.  
To assure pure objects that include only one land class, the 
training objects were not merged for similar classes.  There-
fore, the only parameter for the segmentation scale level was 
set to 0, and subsequently, the scale level for merging was set 
to 0 as well.  The object-based classification result for the 
Alishan case is shown in Fig. 5.  A comparison was also made 
using pixel-based SVM.  The parameters used were based on 
our former study [8].  The pixel-based classification result for 
this case is shown in Fig. 6. 

The analytical results after the Confusion Matrix are shown 
in Table 1.  The accuracy is expressed in percentages.  The 
results show that the producer accuracy (PA) of the ob-
ject-based and pixel-based SVM methods are 82% and 41%, 
respectively.  User accuracy (UA) of the two SVM methods 
are 84% and 43%, respectively.  The authors used the same 
training data on the object-based SVM and pixel-based SVM 
method to evaluate the landslide interpretation.  Experimental 
results indicate that PA and UA accuracy for the pixel-based 
SVM are only 41% and 43% accurate, respectively.  Obvious 
differences in accuracy exist between the results of OOA and  
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Table 1. Accuracy comparison between object-based and 
pixel-based methods for the Alishan case. 

Object-based PA% UA% Pixel-based PA% UA% 
Landslide 81.94 84.44 Landslide 41.34 43.11 
River bed 72.29 78.46 River bed 42.02 48.88 
Vegetation 99.00 98.65 Vegetation 96.92 96.39 
Kappa Coefficient = 0.8246 Kappa Coefficient = 0.4776 
Overall Accuracy = 97.5% Overall Accuracy = 89.6% 

 
 

(a)

(b)  
Fig. 6. The best pixel-based classification result for the Alishan case.  (a) 

The selected training samples for the pixel-based SVM method 
and (b) Pixel-based SVM classification result. 

 
 

Pixel-based methods.  Evidently, an object-oriented classifi-
cation approach combining both the edge-based segmentation 
and supervised SVM classification methods can achieve 
greater results in landslide assessment than the pixel-based 
methods. 

2. The Yilan Case 

In this case, orthophotos had a resolution of 25 cm with that 
of airborne LiDAR 1 m.  The applied feature space included 
spectral features of G, R, and Greenness, and spatial features 
of slope and OHM.  Results by using spectral features alone 
for landslide extraction were not good because of spectral 
similarities between the river bed and landslides.  Geomor-
phological features of rainfall-induced landslides, for example, 
OHM, have been shown to be useful in the automatic recog-
nition of landslides.  Three features of Greenness, OHM, and 
slope were selected for this experiment after a few trial tests.  
In addition, because of the high resolution of the data sets, the 
scale level for segmentation could be set with a high value 
other than 0.  Regions with similar attributes could also be  

(a) (b)

(c)  
Fig. 7.  The best object-based classification result for the Alishan case. (a) 

Segmentation result for the Yilan case, (b) The selected training 
regions for the object-based SVM method, and (c) Object-based 
SVM classification result. 

 
 

(a) (b)  
Fig. 8. The best pixel-based classification result for Yilan case.  (a) The 

selected training samples for the pixel-based SVM method and  
(b) Pixel-based SVM classification result. 

 
 

merged.  The adverse effect of mixed pixels was low under the 
high scale level of segmentation and merging.  The optimal 
scale level for segmentation was 2.5 and that for merging was 
85 after trials.  A pixel-based SVM method was also adopted 
for conducting a similar procedure of comparison as with the 
Alishan case.  After trials, we obtained the best classification 
results for the object-based SVM and pixel-based SVM 
methods, which are shown in Figs. 7 and 8, respectively. 
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Table 2. Accuracy comparison between object-based and 
pixel-based methods for the Yilan case. 

Object-based PA% UA% Pixel-based PA% UA% 
Landslide 85.68 80.41 Landslide 72.01 76.20 
River bed 83.21 87.81 River bed 70.88 76.20 
Vegetation 95.72 96.59 Vegetation 94.55 93.53 
Kappa Coefficient = 0.8170 Kappa Coefficient = 0.7043 
Overall Accuracy = 93.4% Overall Accuracy = 89.6% 

 
 
Table 2 shows the confusion matrix or accuracy table of  

the results.  The accuracy is expressed in percentages.  The 
results show that the producer accuracy of the object-based 
and pixel-based SVM method was 86% and 81%, respectively.  
The user accuracy of the 2 SVM methods was 80% and 52%, 
re-spectively.  The assessment using the same training data 
was also applied on this test case; however, despite the UA 
accuracy for the pixel-based SVM method increasing to 76%, 
the PA accuracy decreased to 72%.  The differences in UA 
accuracy are significantly .  We obtained a similar trend for  
the classes of riverbeds and vegetation.  Evidently, an object- 
oriented classification approach combining both the edgebased 
segmentation and supervised SVM classification meth- 
ods could achieve greater results in landslide assessments than 
the pixel-based methods. 

For the interpretation keys, in addition to spectral features, 
spatial features such as slope or OHM were also important 
factors for landslide classification, both for object-based and 
pixel-based methods.  Such features  must be defined in rela-
tion to local conditions and the specific events triggering the 
land-slides [28, 31, 32].  However, spatial features contributed 
little to the classification accuracy in the Alishan case.  The 
reason may be due to the incompatibility between the spectral 
images and DTM used.  Finally, used data, feature indices,  
and corresponding setting for parameters related to the OOA 
method can be summarized as shown in Table 3. 

V. CONCLUSIONS AND SUGGESTIONS 

1. Conclusions 

We adopted an OOA method in this study to extract land-
slide features.  We assessed its performance for accuracy in 2 
cases integrating multi-resolution digital data, for example, 
aerial or satellite imagery, terrain data derived from an air-
borne LiDAR sensor, and its derivative indicators including 
slope and OHM in the landslide interpretation.  We also com-
pared these data with a conventional pixel-based SVM method.  
We applied edge-based segmentation first, and then merged 
similar attributes.  Subsequently, we selected patches of train-
ing samples for an SVM classification. 

Our conclusions from the experimental results are as 
follows: 

 
1. In general, the resolution of the feature layers in feature  

Table 3.  The parameters setting in the OOA. 

 Test area #1-Alishan case Test area #2-Yilan case 

Used data 
SPOT-5 satellite image 
LiDAR DEM, DSM 
Topographic maps 

Aerial orthophoto 
LiDAR DEM, DSM 
Topographic maps 

Spatial  
resolution 

20 meter 1 meter 

Used features G, R, IR, NDVI*Slope Greenness, Slope, OHM 
Segment scale 
level 

0 2.5 

Merge scale 
level 

0 85 

Classifier 
Object-based SVM 
Pixel-based SVM 

Object-based SVM 
Pixel-based SVM 

SVM Kernel RBF kernel function RBF kernel function 
SVM  
parameters 

Gamma (γ) in RBF Kernel (default value is 1.000) 
Penalty Parameter C (default value is 100.00) 

 
 

 space is an important characteristic for both  pixel-based 
and object-based analyses.  Better resolution usually gen-
erates improved accuracy.  The accuracy of the vegetation 
class was as high as 82% for PA and 95% for UA.  These 
results show that the spectral information of vegetation 
suffices for the recognition of the biomass-rich class. 

2. Spectral features cannot be applied effectively for land- 
slide recognition without additional input from spatial in-
formation.  Geomorphological features of rainfall-induced 
landslides, such as slope and OHM, are useful in the auto- 
matic recognition of landslides.  However, in the Alishan 
case, spatial information did not contribute substantially  
in improving accuracy because the resolution for SPOT 
images (20 m) does not conform with that of LiDAR DEM 
(1 m). 

3. Parameters for segmentation and object merging depend on 
the resolution of images.  In this study, when ground reso-
lution was as small as 1 m, the optimal scale level for 
segmentation was 2.5, and that for merging was 85.  When 
the ground resolution was 20 m,  and the optimal scale level 
for both segmentation and merging was set to 0, to avoid the 
adverse effect of mixed pixels. 

4. One of the advantages of the method raised in this study is 
that it is not dependent on sound rules for interested classes.  
Initially, only limited training samples are required and 
selected manually.  Subsequently, rules can be established 
automatically by using the attributes of the considered ob-
jects.  The SVM algorithm automatically converges the at-
tributes for selected training samples. 

5. Rules for classification using eCognition must be pre- 
pared adequately, including all settings for segmentation and 
merging.  Results generated in each step can be visu-alized 
and inspected for further modification.  Human expert 
knowledge is thus implemented in the analytical proc- 
esses.  This is one of the most important advantages of this 
method. 
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2. Suggestions 

1. In the future, significant geomorphological features such as 
roughness and diversity should be considered to evaluate 
and improve object-oriented classification accuracy. 

2. Future research should confirm the causes of erroneous 
judgments in the procedures for the landslide inventory.  
The method applied in this study has the advantage of a 
knowledge base of rules that can be applied in similar cases.  
Rules for interested classes can be further ana-lyzed to 
verify their contribution to the final accuracy. 
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