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ABSTRACT 

This study analyzes multi-temporal LiDAR data of high 
accuracy and high resolution by installing a geomorphometric 
model for extracting landslides.  First, two sets of LiDAR data 
were acquired for before and after a heavy rainfall event.   
The landslides which took place from 2005 to 2009 were classi- 
fied automatically by satellite images, and subsequently the 
landslides were interpreted and edited manually.  Geomor-
phometric parameters including slope, curvature, OHM, OHM 
roughness, and topographic wetness index were then extracted 
using stencils of landslide polygons overlaid on respective 
thematic maps derived from LiDAR, DEM and DSM.  The 
ranges of every parameter were derived from the statistics of 
the landslide area.  Some selected non-morphometric parame- 
ters were also included in a later stage to account for all pos-
sible features of landslides, such as vegetation index and 
geological strength.  The ranges of the parameters of land-
slides were optimized for the model by the statistics of the 
landslide area.  The overall accuracy predicted by the model 
was 64.9%.  When the buffer zones of old landslides and riv-
erside areas were included, the overall accuracy was 64.4%, 
showing no improvement.  When landslides smaller than 50 
m2 were filtered, the overall accuracy reached 76.6% and 
72.5% for 2005 and 2009, respectively.  The results show that 
the geomorphological model proposed in this research is ef-
fective for landslide extraction. 

I. INTRODUCTION 

Nearly three-quarters of the territory of Taiwan, and 95% of 

its population, are exposed to frequent natural hazards [7].  In 
the aftermath of Typhoon Morakot, which dramatically af-
fected southern Taiwan on August 8, 2009, and August 9, 2009, 
and caused the worst flooding in a century, authorities real- 
ized that the country is lacking detailed, accurate, and current 
elevation data and aerial imagery covering the entire territory 
of 36000 km2.  To address this problem, a national mapping 
program, spanning 2010 to 2015, was launched to capture an 
entire territory of the country with airborne LiDAR (Light 
Detecting And Ranging) and digital imagery [20].  A LiDAR 
DEM (Digital Elevation Model) and DSM (Digital Surface 
Model) and color orthophotos represent a core part of this 
national spatial data infrastructure. 

Taiwan is located on the active collision zone between the 
Eurasian plate and the Philippine Sea plate.  Mountains have a 
high slope and high relief, and rock formations are highly 
fractured and fragile.  These physiographic settings are unfa-
vorable to slope stabilities.  Taiwan is also located on the path 
of typhoons in northwest Pacific area.  Torrential rainfall dur-
ing the typhoon season often triggers geological hazards.  
Typhoon Morakot unleashed record rains of 2110 mm in 24 
hours with highest record of accumulated rainfalls of more 
than 3000 mm in southern Taiwan.  This caused the worst 
flooding in a century.  The area affected by the typhoon was 
approximately 10,000 square kilometers.  Landslides are one 
of the most important primary disasters.  A national geohazard 
mapping program employing integrated airborne LiDAR and 
digital photography was therefore initiated by the Central 
Geological Survey, Taiwan.  This national LiDAR mapping 
project is dedicated to national geohazard mapping. 

In Taiwan, a typhoon can trigger hundreds, even thousands, 
of shallow landslides in mountainous areas [3, 16, 17].  These 
landslides can deliver large amounts of sediment into local 
reservoirs, reducing their water storage capacity [4, 22].  In 
addition, the turbidity of the water in the reservoirs has a 
negative effect on the sustainable operation of water supply 
reservoirs.  The assessment and inventory of landslides is 
essential for effective watershed management and sustain- 
able development.  However, because of the steep terrain in 
Taiwan’s mountainous watersheds, most landslides are un-
reachable.  The detailed topographic mapping required for  
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Table 1.  The criteria for manual recognition of rainfall-induced landslides. 

Photographic Feature Description Discrimination rule 

Tone Light, grey light brightness BV (brightness value) > Threshold 

Location Near ridges, cut-off slopes, road-sides 
Trigger events and buffer zone of the  
feature 

Shape Spoon-shaped, elongated-oval, dendritic, rectangular, triangular Location-specific and topography-specific 

Movement Direction 
The drop direction of the landslide is the gravitational vector on the 
ground surface. 

Roughly perpendicular to the streams and 
topography-specific 

Slope 
Depend on types of landslides: e.g. (1) Shallow-seated landslides > 
45%; (2) Deep-seated landslides ~40%; (3) Debris flows ~10-20%. 

Slope > Threshold 

Shadow 
Depend on whether the landslides are in shadow-side or 
sunny-side 

Solar azimuth in related to slope aspect 

 
 

emergency mitigation measures cannot be completed within a 
short period using conventional on-site surveying.  Therefore, 
improving the efficiency and accuracy of landslide monitoring 
and mapping using remote sensing techniques has become an 
important research issue [1, 12, 27, 28, 34]. 

In planning optimal measures of disaster mitigation, re-
searchers often use remote sensing images and digital eleva-
tion models to map disaster features and to predict disaster 
susceptibility.  During or immediately after a disaster event, 
ground survey or photogrammetry, in addition to remote sens- 
ing images, can be used to obtain detailed topography data of 
the subjected area.  Because of its ability to obtain high- 
density point clouds and direct geo-referencing, LiDAR can  
be used to obtain a more accurate and detailed topographic 
survey.  LiDAR generates accurate 3D coordinates of discrete 
measurements.  Subsequently, DEM and DSM  can be pro-
duced with high efficiency [23].  In tropical and sub-tropical 
zones of Taiwan, most of the terrains are covered by dense 
forestry.  Ground surface would be normally predicted by  
the surface of canopy in photogrammetry if the ground points 
cannot be seen from two different perspectives of a stere- 
opair.  One of the most important advantages of airborne 
LiDAR compared with conventional photogrammetry is that 
photogrammetry requires two different lines of sight to both 
see the same points on the ground from two different per-
spectives, but LiDAR only needs a single laser pulse to pene-
trate through the trees to measure the ground beneath.  This 
means that LiDAR will have far fewer areas where the ter- 
rain is obscured by trees that block the lines of sight.  The 
images of bare ground before and after the event are thus 
derived from LiDAR surveys to understand changes in the 
landscape and their possible consequences.  The geomor-
phometric features become good tools for landslide detection, 
and are adopted in this study. 

The general feature of a rainfall-induced landslide on  
aerial photograph is a fresh landslide scar with an elongated 
shape located on a relatively steep slope.  Landslides can occur 
in any kind of geology, as there are some weathered over-
burdens on steep slopes.  In aerial photographs, landslide 
features include a bright tone, bare surface, and the other 
features shown in Table 1.  Manual interpretation uses both  

2D and 3D features of the landslides for recognition: 2D fea-
tures include tone, location, and shape, and 3D features in-
clude location, direction, slope, and shadow effects.  A sound 
consideration of the automation of landslide recognition 
should consider all these aspects. 

Geomorphometry is a major concern in manual interpret-
tation.  Geomorphometry, also known as geomorphological 
analysis, terrain morphometry, terrain analysis, and land sur-
face analysis [11], is the science of quantitative land surface 
analysis.  The purpose of geomorphometry is to extract sur- 
face parameters and objects using input from digital terrain 
models.  Pike [25] used a dozen groups of parameters as ter-
rain descriptors by manually digitized digital terrain models.  
Pike used the resulting “geometric signature or topographic 
signature” to categorize terrain characteristics, and suggested 
the degree of landslide danger.  Topographic signature of life 
and their processes are deemed to be strongly influenced by 
biota [6].  Guth [9, 10] used terrain fabric as measures of a 
point property of the digital terrain models and the underly- 
ing topographic surface.  This technique is also called topog-
raphic fingerprinting [5], and determines the location of a 
landslide on the slope.  State-of-the-art technology such as 
high resolution satellite images, digital aerial photography, 
and airborne LiDAR has opened a new era in the automa- 
tion of landslide recognition, especially the possibility of 
applying geomorphometrics.  The extraction of land surface 
parameters is becoming increasingly attractive for both sto-
chastic and process-based modeling, as it makes use of all  
the levels of detailed digital terrain models.  Topographic- 
based analyses can be used to objectively delineate landslide 
features, generate mechanical inferences about landslide be-
havior, and evaluate recent landslide activity [8, 21].  Surface 
roughness derived from LiDAR DTM allows the objective 
measurement of landslide topography.  Eigenvalues of sur- 
face normals are an effective parameter for differentiating 
shallow landslides and debris flows [38].  Expert knowl- 
edge of the geomorphometric properties of landslides may be 
required to establish an automatic interpretation method.   
High resolution and high accuracy LiDAR DEM and DSM 
and orthophotos are now basic constituents of NSDI in  
Taiwan [20].  Therefore, it is high time to further apply  
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Fig. 1. SPOT image taken on 2009/08/24 after Typhoon Morakot.  The 
8-digit numbers are the map numbers of national 1/5000 map  
series. 

 
 

geomorphometry in active landslide study [19]. 
A geomorphometric model is urgently needed for disaster 

management.  Therefore, the purpose of this study is to de-
velop a geomorphometric model based on highly accurate and 
high resolution LiDAR topographic data with parameters 
calibrated by optimized thresholds [33].  The demonstration 
case in this study was located in southern Taiwan near 
Hsiaolin village, the village destroyed by Typhoon Morakot.  
The landslide type which can be detected by this model is a 
shallow landslide [19]. 

II. THE STUDY AREA AND DATA  
COLLECTION 

1. Physiographic Settings of the Study Area 

Hsiaolin village is located in Chiahsien Township, Kaoh-
siung City (Fig. 1).  The study area is covered by 9 map- 
sheets of 1/5000 national photomaps: 95193025~95193027; 
95193035~95193037, and 95193045~95193047.  The village 
is located on a river terrace of Chisan River.  The geological 
map in Fig. 2 [31] shows that the area is situated in the Western 
Foothill Zone of Miocene sedimentary formations including 
Changchikeng Formation, Tangenshan Sandstone, Yenshui-
keng Shale, and Peliao Shale.  The area is primarily covered 
by Tangenshan Sandstone and Yenshuikeng Shale.  Tangen-
shan Sandstone consists of alternate layers of sandstone and 
shale, whereas Yenshuikeng Shale consists of alternations of 
siltstone and shale with occasional lens-type conglomerates.   

Dip direction
and dip angle
of formation

Fault

Fold

River

Regional Geological Map of the Study Area
LEGEND

Pliocence - Pleistocene
Peiliao Shale

Holocene alluvia and
Pleistocene Terrace

Pliocene
Yenshuikeng Shale

Miocene
Changchikeng Formation

Pliocene
Tangenshan Sandstone

 
Fig. 2.  A regional geological map near the Hsiaolin village [31]. 

 
 

The river terrace materials include recent fluvial and colluvial 
deposits of sand and gravel. 

2. Satellite Images 

This study uses SPOT images taken at approximately the 
same season as the first LiDAR survey in 2005 used for 
comparison.  The Formosat-2 image taken after Typhoon 
Morakot was collected and compared with the second LiDAR 
survey in 2010.  In addition, there are several typhoon events 
from 2007 to 2009.  Therefore, this study also uses SPOT 
images acquired from 2005 to 2009 (Fig. 3) to analyze land-
slide recurrence rate.  The resolution of enhanced-mode SPOT 
images is 2.5 m, pan-sharpened Formosat-2 image have a 
resolution of 2.0 m. 

3. Airborne LiDAR Data 

LiDAR data before and after Typhoon Morakot were col-
lected for this study.  The LiDAR feature of multiple returns 
provides a good means for editing the point clouds and pro-
duce DSM, DEM, and CHM (Canopy Height Model) or DBM 
(Digital Building Model).  This in turn enables the analysis  
of multi-temporal datasets.  As Fig. 4 shows, the DEM and 
DSM in this study are based on 2005 LiDAR survey.  The 
landscape suffered from dramatic changes after Typhoon 
Morakot (Fig. 5).  The large landslide near Hsiaolin Village is 
the most conspicuous example.  Fig. 6 shows the DEM and  
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Fig. 3. Satellite images of the study area from 2005 to 2009.  Bright grey 

features on the images are mostly landslide scars.  Landslide oc-
currence increasingly increases in this period of time, as shown in 
Fig. 8. 
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Fig. 4.  DEM and DSM images before Typhoon Morakot. 

 
 

DSM of the study area acquired in 2009 after Typhoon 
Morakot.  Both of the LiDAR datasets in this study were 
surveyed using a common guideline [23] and a common da-
tum—TWD97 for geodetic coordinates and TWV2010 for 
vertical system—to maintain the same level of accuracy.   
The RMSE (Root mean square error) was 16.7 cm with a 
standard deviation of 16.3 cm for 2005 LiDAR data.  The 
RMSE was 20.2 cm with a standard deviation of 18.3 cm for 
2009 LiDAR data.  RMSE is a measure of the dispersion 
between the coordinates obtained by Airborne LiDAR and  

(a)(a)    BeforeBefore    typhoontyphoon    MorakotMorakot (b)(b)    AfterAfter    typhoontyphoon    MorakotMorakot(a)  Before  typhoon  Morakot (b)  After  typhoon  Morakot

 
Fig. 5. 3D perspective views of Hsiaolin Village before and after Typhoon 

Morakot.  Hsiaolin Landslide has a volume of ~25 million cubic 
meters with a maximum depth of 85 m on top area and a maxi-
mum length of 3,396 m from top to the other side of Chisan River. 
The landslide completely destroyed the village. 
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Fig. 6. DEM and DSM obtained after Typhoon Morakot.  As compared 

to those of Fig. 4, dramatic landform change can be found in  
river valley as well as mountain slopes, especially the example of 
Hsiaolin Landslide. 

 
 
those surveyed in the field.  Whereas, standard deviation is  
a measure for the concentration of the differences between 
these two datasets.  The accuracy of these two datasets meets 
the requirement set in the MOI guideline [23]. 

III. GEOMORPHOMETRIC MODEL 

1. The Geomorphometric Model of Landslides 

The proposed model includes both global and local detec-
tion procedures, and uses a supervised classification method 
for global landslide detection.  Because of the diversity of the 
geologic and topographic environments in which landslides 
occur, omission and commission errors are unavoidable when 
using the global approach.  Thus, local landslide detection is 
required to increase the accuracy of the resulting landslide 
map.  The local approach employs several interactive manual 
editing tools to compile landslide information and minimize 
commission and omission errors.  For error analysis, the user 
accuracy, producer accuracy, average accuracy, and overall 
accuracy were calculated from a confusion matrix [15]. 
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Fig. 7.  Flowchart of the geomorphometric model. 

 
 
Landslide areas possess geomorphometric characteristics 

that can be used to establish a geomorphometric model to 
describe the topographic feature of landslides.  As the first  
step, global parameters based on landslides extracted from 
satellite images by classifying bare land and then filtering  
out commission errors produced by bare agriculture lands and 
debris flows were obtained.  Landslide polygons were then 
overlaid on parametric maps derived from 2005 LiDAR data.  
The parametric parameters of the extracted samples were  
then used as training sample globally.  Thresholds of various 
parameters were derived based on statistics of the training 
samples of landslides.  Threshold values of the six geomor-
phometric parameters (T1~T6) were defined a priori based on 
some user-defined training areas, that is, the landslide poly-
gons.  The mean and standard deviation values of each index 
were calculated and the threshold values were set to be the 
mean ± 3 standard deviations.  The proposed method classi- 
fies a pixel as a landslide pixel if the following expression  
is true:  (Slope > T1)∩(Roughness < T2)∩(Curvature > T3)
∩(OHM < T4)∩(Greenness < T5)∩(Wetness > T6).  Oth-
erwise, it is classified as a non-landslide pixel.  Because the 
global landslide detection algorithm is pixel based, isolated 
landslide pixels were removed by morphological filtering  
(e.g., opening and closing).  Small landslides were eliminated 
by setting a minimum mapping unit.  Finally, the detected 
landslide pixels were converted into vector-based polygons.  
In other words, the pixel conforms to the threshold criterion is 
designated as 1, otherwise it is designated as 0.  The area of the 
intersecting set of all the parameters was categorized as land-
slide area.  Fig. 7 shows the flowchart of the geomorphometric 
model established in this study. 

2. Geomorphometric Parameters of Landslides 

For extracting landslides from high accuracy and high 
resolution LiDAR data, parameters for establishing the model 
were selected based on the criteria usually used in manual 
interpretation of landslides, including the 2D and 3D land- 
slide features detailed previously in Table 1.  The parame- 
ters of the geomorphometric model in this study were derived 

from LiDAR DEM and DSM.  The major parameters in this 
model include slope, surface curvature, OHM (object height 
model), OHM roughness, and topographic wetness index.   
In addition, NDVI (Normalized Difference Vegetation Index) 
or greenness is one of the most important indexes for land- 
slide recognition due to that fresh shallow-seated landslides 
are characterized by bare land without or with little vegetation 
cover.  Therefore, it is also included in the model.  A number  
of vegetation indices, such as the NDVI  [13], EVI (Enhanced 
Vegetation Index) [18], and LAI (Leaf Area Index) [2] have 
been used in remote sensing for analyzing vegetation cover.  
Of these indices, NDVI is the standard method for compare- 
ing relative biomass and vegetation greenness in remotely 
sensed images.  A higher NDVI indicates a higher level of 
healthy vegetation cover.  The greenness index is similar to the 
NDVI, except that it substitutes a green band for the near- 
infrared band. 

These parameters are also closely related to the factors for 
landslide susceptibility [35].  The control factors of slope 
stability usually include slope angle, strength of materials, 
and pore water pressure [36].  If the slope gradient is high, 
the slope can be unstable.  Slope angle was thus selected as 
the first parameter because of its importance, and can be 
easily derived from DEM.  Because DEM represents the bare 
ground surface and DSM represents the upper envelope of all 
the objects above the bare ground surface, the difference 
between these two well-defined surfaces is minimal in the 
area of rainfall-induced landslide.  In this case, the OHM, 
defined as the difference between these two surfaces, can be  
a good parameter for automatic landslide recognition.  After 
wash out or sliding, the surface of landslides in nature should 
be smoother than the surroundings.  Surface roughness is an 
objective and useful measurement of landslide topography  
[8, 21, 38].  Landform curvature is another critical factor con- 
trolling the susceptibility of landslide occurrence [26]. 

The definition of the parameters is as follows [37, 39]: 
 

(1) Slope.  The slope angle of a landslide is the angle between 
the horizontal surface and the ground surface of the lon-
gitudinal axis of the landslide.  The slope angle for each 
landslide can be derived from LiDAR DEM data.  A va-
riety of methods are available for terrain slope gradient 
estimation.  However, the details of a high-resolution 
terrain model may introduce high variations in changes of 
local slope gradients [30].  This study adopts the method 
proposed by Parker [24] to overcome this problem, that is 
the derivatives of the Gaussian function are convoluted 
with the DEM in the x and y directions, respectively, and 
then combined to estimate the slope. 

(2) OHM.  Object height models (i.e., OHMs) are obtained by 
subtracting DSM from DEM to describe the height of 
objects above bare ground.  The OHM describes the 
heights of above-ground objects in raster format.  Objects 
close to zero in height may represent the bare soil that 
characterizes landslides. 
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(3) OHM Roughness.  Roughness is a derivative of OHM, 
defined as one standard deviation in a 5 × 5 moving 
window.  This measure, which is a function of geological 
structure and lithology, describes the relief variation in the 
local area.  Because most landslides occur in bare soil 
areas, the surface is smoother than that of forested areas.  
Thus, a surface roughness index can be used to detect 
landslide areas.  To account for the high terrain variation 
in mountainous areas, this study uses object heights rather 
than surface heights.  For simplicity, the standard devia-
tion of object heights within a local window serves as the 
surface roughness index. 

(4) Curvature.  Curvature is the second derivative of the sur-
face [29].  Two optional output curvature types are pos-
sible: the profile curvature is in the direction of the 
maximum slope, and the plan curvature is perpendicular 
to the direction of the maximum slope.  The  curvature is 
the slope form and has a significant effect on surface 
runoff, soil erosion, and deposition processes [32].  This 
study applies a 15 × 15 medium filter to the DEM to 
suppress any accidental height changes in the high reso-
lution elevation model.  The curvature along the slope 
direction was then calculated with a 5 × 5 mask. 

(5) Topographic wetness index (TWI).  Wetness is derived 
from the concentration of a small watershed [14, 37].  
Topography is often one of the major controls of the spa-
tial pattern in saturated areas, which in turn is a key to 
understanding the variability of hydrological processes.  
The topographic wetness index has become a widely-used 
tool to describe wetness conditions.  The formula is as 
follows: 

 ln( )
tan

Aω
θ

=  (1) 

 where A is the local upslope contributing area and θ is 
local slope. 

(6) NDVI or greenness.  This parameter is derived from sat-
ellite images or orthophotos acquired at a compatible time 
as the LiDAR survey.  In other words, there are no rainfall 
events between the time that both the LiDAR data and the 
images or orthophotos are acquired.  Because rainfall- 
induced landslides of natural slopes are mostly covered by 
densely-vegetated surroundings, the vegetation index is 
critical for indicating the areas of bareness.  The most 
popular index is the NDVI: 

 NDVI = (NIR-R)/(NIR+R) (2) 

 where R stands for the grey value of the red band and  
NIR stands for grey value of the near infrared band.  
Theoretically, if the image digital values are calibrated to 
stand for the reflectance of the target, the NDVI can be 
widely applicable.  However, the digital numbers of the 
red band and NIR band of digital aerial cameras are not  

(a) (a) SPSPOT: : 16 Nov 16 Nov 20052005(a) SPOT: 16 Nov 2005 (b) (b) SPSPOT:OT: 21 Dec 200721 Dec 2007(b) SPOT: 21 Dec 2007 (c) (c) SPSPOT:OT: 1212 Nov 2008 Nov 2008(c) SPOT: 12 Nov 2008

(d) (d) FS-II: 24S-II: 24 Aug 2009 Aug 2009(d) FS-II: 24 Aug 2009 (e) (e) Landslides increasedLandslides increased
      from      from 2005 to 2008 2005 to 2008
(e) Landslides increased
      from 2005 to 2008

(f) Landslide incr(f) Landslide increasedeased
 from 20 from 2008 to 200908 to 2009
(f) Landslide increased
 from 2008 to 2009

 
Fig. 8. Landslide distribution between 2005 and 2009. Landslides on 

images are high-lighted with yellow polylines.  New landslides are 
in red polylines when comparing images taken in 2005 and 2008 
(E) and those in 2008 and 2009, respectively. 

 
 
 calibrated for this purpose.  Therefore, the NDVI value is 

a relative indicator of vegetation cover.  NDVI can be 
applied to modern digital aerial cameras, which usually 
include an NIR band.  If color aerial photographs include 
only RGB bands, an alternative greenness parameter can 
be used.  Greenness is also a relative indicator with ra-
diometric values that are not normalized: 

 Greenness = (G-R)/(G+R) (3) 

 where G is the grey value of the green band, and R is the 
grey value of the red band.  The values of NDVI and 
Greenness range from -1 to 1.  Nevertheless, the range for 
these values in landslides may change depending on 
natural weather, terrain conditions and type, and camera 
sensor settings.  A relatively low value implies that the 
area of the pixel is low vegetated or bare. 

IV. RESULTS AND DISCUSSION 

1. The Geomorphometric Model of Landslides 

Bare land has a relatively low reflectance in the infrared 
region of the electromagnetic spectrum.  This feature can be 
used in unsupervised classification to obtain a preliminary 
map of landslides.  On an interactive screen, manual editing of 
the results can filter out commission errors such as bare crop 
fields and debris flows.  Fig. 8(a)-8(d) show the distribution of 
landslides over four different years.  Six typhoons affected 
Taiwan in 2008: Kalmaegi, Fung-wong, Nuri, Sinlaku, Ha-
gupit, and Jangmi.  A comparison of the images in 2007 and 
2008 reveals more landslides in 2008 (Fig. 8(e)).  The number 
of landslides increased substantially after the torrential rainfall 
of Typhoon Morakot (Fig. 8(f)). 

The recurrence rate of landslides, defined as the repetitive  
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Fig. 9. The distributions of major LiDAR-derived geomorphometric 

parameters selected for landslide recognition in this study.  The 
coordinates of the maps are (209810, 2566339) and (217609, 
2557916) for the lower right and upper left, respectively. 

 
 

occurrence of landslides between two different times, was 
65% between 2007 and 2005.  The recurrent rate was even as 
high as 95.9% between 2009 and 2008.  64.1% of the land-
slides in 2008 reappeared in 2009 after Typhoon Morakot.  
The high recurrence rate between succeeding years shows  
that landslides happen in similar environmental conditions. 

To verify the accuracy of the landslides obtained by satellite 
images, conventional aerial photo-interpretation was con-
ducted.  It is shown that the overall accuracy was 92.4% with 
omission error of 9.2% and commission error of 16.1%. 

2. Statistics of Geomorphometric Parameters 

Fig. 4 and Fig. 6 are the primary data of DEM and DSM 
obtained in 2005 and 2009, respectively.  For further under-
standing the features of landforms, geomorphometric pa-
rameters have to be extracted from these primary datasets.   
Fig. 9 shows the distributions of major LiDAR-derived geo-
morphometric parameters selected for landslide recognition in 
this study. 

Fig. 10 shows the frequency distribution of geomor-
phometric parameters based on 2005 landslide data.  Fig. 11 
shows the frequency distribution of these parameters based  
on 2009 landslide data.  The average slope of landslides in 
2005 is 31.2 degrees.  The surface roughness is generally 
below 1.5 m, with a cumulative fraction of 90% below 1.5 m 
(Fig. 10(b)).  On basis of the OHM derived from the differ- 
ence of DSM and DEM, the average OHM is 9.1 m with  
20% and 30% of all the landslide pixels having a value  
below 0.5 m and 3.3 m, respectively.  Fig. 10(d) is a frequency 
distribution of OHM.  The major fraction of OHM is distrib-
uted between 5 m to 20 m.  A cumulative fraction is 37% and 
92% for OHM under 5 m and 20 m, respectively.  Only 8% of 
OHM exceeds 20 m, indicating commission errors of trees can 
be as high as 8%. 
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Fig. 10. Frequency distribution of geomorphologic parameters of land-

slides in 2005. 
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Fig. 11. Frequency distribution of geomorphologic parameters of land-

slides in 2009. 
 
 
Fig. 11 shows the frequency distribution of geomor-

phometric parameters based on 2009 landslide data  obtained 
from images after Typhoon Morakot.  In other words, the 
training samples of the geomorphometric parameters are ob-
tained from the LiDAR data taken in 2009.  The average slope 
of the landslide areas is 33.8 degrees, with a major range in 
25~50 degrees.  A cumulative fraction is 25% and 90% for 
slope under 25 and 50 degrees, respectively.  The average 
roughness is 1.2 m, with 90% less than 1.5 m.  The average 
curvature is -0.008, showing that most of the slope forms are 
more concave than convex.  The OHM ranges from 5~20 m 
with an average of 9.1 m.  Similarly, there are 30% of the 
landslide pixels having an OHM less than 3.3 m.  The av- 
erage roughness of OHM is 2.6 m, with a standard deviation  
of 1.2 m. 

The frequency distributions of various parameters derived 
by landslides in 2005 and 2009 show no obvious differences.  
In both cases, the average slopes fall within the range of 30~50 
degrees, with a roughness of 1.1~1.7 m, curvature of -0.04~ 
-0.02, OHM under 17 m, and OHM roughness of 1.5~3.5 m. 
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Table 2.  Tries of different combinations of thresholds for model parameters. 

tries 
slope 

(degree) 

DEM  
roughness 

(m) 
curvature 

OHM 
(m) 

OHM 
roughness 

(m) 
Wetness 

Overall 
accuracy 

(%) 

Producer 
accuracy 

(%) 

Omission 
error  
(%) 

User  
accuracy  

(%) 

Commission 
error  
(%) 

  1 > 22 < 1.8 > -0.15 < 25 < 4.5 > 0.5 53.59 15.67 84.33 56.45 43.55 

  2 > 23 < 1.8 > -0.15 < 25 < 4.5 > 0.5 53.81 15.68 84.33 56.1 43.89 

  3 > 24 < 1.8 > -0.15 < 25 < 4.5 > 0.5 54.22 15.68 84.32 55.46 44.54 

  4 > 25 < 1.8 > -0.15 < 25 < 4.5 > 0.5 54.72 15.75 84.25 54.93 45.07 

  5 > 22 < 1.7 > -0.15 < 25 < 4.5 > 0.5 54.95 15.76 84.24 54.58 45.42 

  6 > 23 < 1.7 > -0.15 < 25 < 4.5 > 0.5 55.35 15.77 84.23 53.94 46.06 

  7 > 24 < 1.7 > -0.15 < 25 < 4.5 > 0.5 55.91 15.84 84.16 53.31 46.68 

  8 > 25 < 1.7 > -0.15 < 25 < 4.5 > 0.5 56.14 15.84 84.16 52.97 47.03 

  9 > 22 < 1.6 > -0.15 < 25 < 4.5 > 0.5 56.55 15.86 84.16 52.32 47.68 

10 > 23 < 1.6 > -0.15 < 25 < 4.5 > 0.5 57.16 15.93 84.07 51.61 48.39 

11 > 24 < 1.6 > -0.15 < 25 < 4.5 > 0.5 57.09 15.74 84.06 51.26 48.74 

12 > 25 < 1.6 > -0.15 < 25 < 4.5 > 0.5 57.8 15.76 84.04 50.62 49.28 

13 … … … … … … … … … … … 
 
 
When using the landslides in 2008 for training samples,  

the slope ranges from 25~55 degrees, with an average of  
38.2 degrees.  As a comparison, the general average slope for 
2009 landslides is 33.8 degrees, with an OHM of less than  
20 m, roughness less than 1.5 m, and average curvature of 
-0.018.  More concave slope forms were present in 2008 than 
in 2009.  Before the Morakot landslide event, the average 
OHM was 7.3 m, and the average roughness was 2.4 m with  
a standard deviation of 1.2 m. 

The average slopes of 2008 landslides are higher than  
those of 2009 landslides.  However, the curvature for 2008 is 
less than that for 2009.  There are no obvious differences in 
OHM and roughness.  In 2008, a total of 60% of the landslides 
have an area of less than 0.5 hectares, whereas the average 
area of individual landslides in 2009 become larger, with 73% 
of them possessing an area of less than 1.0 hectare. 

3. Verification of the Geomorphometric Model 

By comparing the spatial distribution of landslides in 2005 
and 2009, this study shows that the recurrent rate is as high as 
55%.  It is therefore reasonable to suppose there is a higher 
susceptibility in the buffer zone of old landslides.  River bank 
erosion is another important trigger factor for river bank 
landslides, and upstream erosion has the same effect.  There-
fore, the proposed model includes buffer zones for river bank 
and upstream areas.  In addition to six geomorphometric pa-
rameters, the model includes buffer zones of old landslides 
and river banks and up-streams. 

A sensitivity analysis of the different combinations of 
thresholds was conducted to find out the optimum combina-
tion of thresholds.  Tries with major ranges of each parameters 
have been tested (Table 2).   The final optimized results show 
that the overall accuracy obtained in this study is 68.2%, 
where the user accuracy is 42.6% and the omission error is 
57.4%.  Because spatial resolution of DEM and DSM is 1 m,  
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Fig. 12. Landslide prediction with geomorphometric model: (a) Predic-

tion of 2008 landslide susceptibility based on 2005 landslides in 
vector segments.  (b) Prediction of 2009 landslide susceptibility 
based on 2005 landslides in vector segments. 

 
 
slivers or dispersed isolated small patches of landslides gen-
erated when grids are transformed into vectors can be treated as 
noise.  In this study, polygons with an area smaller than 50 
square meters are filtered out and manually edited to delete 
some commission errors, improving the accuracy of the final 
result.  Fig. 12(a) and 12(b) are examples of the modeled re-
sults of landslides in 2008 and 2009, respectively.  After 
manual editing, Tables 3 and 4 show that the average accura-
cies in 2008 and 2009 are 76.6% and 72.5%, respectively.  
Because landslides only covers small fraction of the study area, 
the result detected by the model with loose criteria set for the 
parameter thresholds can be prone to commission errors.  This 
leads to user accuracy as low as 5.0% and 20.2% for 2008 and 
2009, respectively.  For conservation purposes, commissions 
cause no big problems, whereas omission errors overlook  
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Table 3.  Model accuracy for 2008 training samples in polygons. 

Category Landslides (hectare) Non-landslides (hectare) Producer accuracy (%) 
Landslides   75.54 1,430.51   5.02 
Non-landslides 105.88 4,957.16 97.91 
User accuracy (%)   41.64     77.61   

Overall accuracy: 76.61% 
Average accuracy: 51.47% 

 
 

Table 4.  Model accuracy for 2009 training samples in polygons. 

Category Landslides (hectare) Non-landslides (hectare) Producer accuracy (%) 
Landslides 317.18 1,245.36 20.3 
Non-landslides 560.31 4,446.24 88.7 
User accuracy (%)   36.15     78.12   

Overall accuracy: 72.51% 
Average accuracy: 54.19% 

 
 

hazardous areas.  Therefore, this model remains meaningful 
though further effort is required to filter the commission errors. 

V. CONCLUSIONS AND FUTURE RESEARCH 

Both of the LiDAR datasets used in this study, including  
the one obtained from the Ministry of  the Interior in 2005 and 
the one obtained from July 23, 2010, to July 28, 2010, were 
manually edited for ground points.  This editing produced  
a DEM and DSM grid of 1-m resolution.  The parameters of 
the geomorphometric model were generated using these high 
resolution data.  These parameters include slope, curvature, 
OHM, OHM roughness, and topographic wetness index.  
Based on the training samples of landslide polygons in 2009, 
modeled results give an overall accuracy of 65.8%.  Because 
the recurrent rate from 2005~2009 is more than 55%, the 
model includes buffer zones of old landslides, river bank, and 
upstream erosions.  To account for sliver noise, polygons 
smaller than 50 m2 were filtered out.  The accuracies of the 
model results improved to 76.6% and 72.5% when using 
training samples of landslide polygons in 2008 and 2009, 
respectively.  These results show that the geomorphological 
model proposed is effective for landslide extraction. 

To improve the model, other physiographical regions 
should be considered to calibrate the parameters.  In addi- 
tion, more parameters including hydrological conditions and 
geological environments should be considered to ensure the 
inclusion of all possible factors of susceptibility.  Rainfall is 
one of the most important factors in hydrological conditions.  
The critical rainfall and rainfall intensity required to trigger a 
specific landslide is a challenge for future research.  Soil 
moisture is another important factor in hydrology which might 
affect landslide occurrence and requires further study.  The 
attitudes of geological formations and the strength of rock 
bodies are the major factors that should be considered for 
inclusion in the model. 

As the national Taiwanese LiDAR Project progresses, more 
datasets of multi-temporal and various physiographical set-
tings are becoming available.  Future research should inves-
tigate the dependence of morphometric parameters on trig-
gering events or geographical locations. 
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