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ABSTRACT 

Although there have been lots studies about vehicular ma-
neuvers on land or sea, maneuvers within a small area that 
require direction changes have rarely been discussed.  Many 
reports on the arrival or departure of ships from ports have 
revealed more about what are safe and effective turning ma-
neuvers within a narrow area.  Convenient navigation systems 
for ship maneuvering should allow quick avoidance of ob- 
stacle to find the shortest distance in the whole seaway is 
important.  This study proposes a review model that will sat-
isfy optimal turning maneuvering anywhere and be applicable 
to any type of ship.  However, the water-based environment is 
more complex and there are many factors that will affect the 
formula.  By using a nonlinear unified state-space model to 
discuss another model we can divide and conquer the problem.  
In recent studies some categories have been evaluated to de-
termine where the main attention should be directed.  In this 
review study we look at how to construct the optimal turning 
maneuver within a limited sea area. 

I. INTRODUCTION 

Water-based transportation is more complex than land- 
based transportation and there are various environmental 
factors and vessel characteristics that should be considered in 

the control of ships for maneuvers.  There have been lots 
studies about structure control in the natural physics [2, 4, 
13-67, 68-83, 97-103, 105, 108-111, 113-134, 136, 137].  
Nevertheless, a unified numerical model for ship maneuvers is 
difficult to establish, because the factors affecting it (as de-
scribed above) are normally nonlinear [157, 158, 197-231]. 

Ships are of various types designed according to their 
purpose.  The ship’s length, weight and even appearance, and 
the power of its rudders and thrusters, all have a significant 
effect on the characteristics of its maneuverability [159, 163- 
177, 179-187, 192, 193].  Due to these conditions, even if a 
numerical model can be established, it would be difficult to 
apply to all types of ships.  In previous research studies it is 
common to give restrictions when discussing particular issues 
about a specific ship.  However, it is still necessary to define 
the basic conditions of an objective ship type.  Most models 
cannot be applied to all types of ships. 

In this paper we will discuss several different levels that are 
related to the behavior of ships.  These three levels introduce 
optimal ship maneuvering, for instance ship positioning, op-
timal path of ship maneuvering and inland ship maneuvering. 

II. LITERATURE REVIEW 

1. Ship Positioning 

There are different ways to control a ship’s yaw.  The basic 
system uses a single rudder or twin rudders at the stern, oper-
ating in conjunction.  Of course, there are more advanced 
system, for example, to use twin tunnel thrusters, one installed 
on the bow section and on the stern, which offers transversal 
thrust.  A contemporary ship might use one or several systems 
operating in conjunction, for instance, the Glomar Explorer 
deep-sea mining ship in 1974 and the Glomar C. R. built Luigs 
drillship in 1999. 

Obviously, from prior definition, the control system finds 
optimal control of ship maneuvers.  Therefore, we focus on the 
basic system which is based on having a single rudder located 
at the stern to control the ship [140, 147, 148, 150].  Various 
methods for the study of ship maneuvering have been studied 
[5, 68, 107, 194].  For more details about ship control mod-
eling see: Inoue, Hirano, Kijima and Takashina [104]; Barr  
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Table 1.  Four sub problems of the Mayer problem. 

 Problem description Quasi-steady state 
P1 Not required 
P2 

Change the yaw angle by a given amount 
Required 

P3 Not required 
P4 

Bring the ship from a given initial course 
to a parallel course Required 

 
 

[9], Fossen [86] and Mandel [135].  For more on the theme of 
optimal ship maneuvering see: Amerongen and Lemke [3]; 
Miloh and Pachter [153]; Teo and Lim [178]; Tzeng [189]; 
Yavin, Francos, Miloh and Zilman [196]; Yavin, Francos and 
Miloh [195].  In particular, see Tseng [189] and the work of 
Yavin et al. for discussion in either a deterministic setting or a 
stochastic setting with the boundary conditions handled via 
penalty function techniques [194-196]. 

In this type of problem, when describing the ship’s move-
ment, we calculate the center of ship which is a fixed point 
ship, rather than the center of gravity, because this is a variable 
point.  A more complete set of equations is needed to describe 
the motion of the ship, so as to enable one to consider the 
restriction of complex boundary conditions without adapting 
to penalty function techniques.  Actually, having a new trans- 
formation technique allows one to avoid singularities at the 
upper and lower bounds of the rudder angle when it and its 
time derivative incur symmetric upper and lower bounds.  
Hence, two problems are considered that is course change 
maneuvers and sidestep maneuvers.  The restriction is that the 
ship must initially be in a quasi-steady state.  The criteria for 
optimization of course change maneuvers and sidestep ma-
neuvers are studied as Mayer problems of optimal control.  There 
are a total of four problems that need to be solved in Table 1. 

Constraint: the yaw angle time rate vanishes at the final 
point. 

The sequential gradient-restoration algorithm (SGRA) de-
veloped by Miele et al. during the years 1968 to 1986 is used 
to solve the above problems [91, 138, 139, 144, 145, 146].  
This first-order algorithm has proven to be a powerful method 
to improve trajectory tracking problems in the following 
situations: 

 
● Flight in windshear [149] 
● National aerospace plane [145] 
● Aeroassisted orbital transfer [152] 
● Interplanetary flight [161] 
● Next-generation orbital spacecraft [141] 

 
SGRA has been used to calculate variations/optimal control 

in the Bolza problem.  The Lagrange and Mayer problems are 
special cases of the Bolza problem.  Since they are Mayer-type 
problems, the SGRA can deal with Problems P1 to P4 (in a 
minimum time). 

In 1999, Miele, Wang, Chao and Dabney used the sequen-
tial gradient-restoration algorithm to formulate and solve  

 
Fig. 1.  The ‘‘Esso Osaka’’ model ship [156]. 

 
 

Mayer problems of optimal control [151].  They assumed the 
criterion of optimization to be the minimum time.  The final 
goal of this method is correctly calculate the module which is 
significant for improving control of ship maneuvers in a par-
ticular situation. 

2. Optimal Path of Ship Maneuvers 

Both surface and underwater ships are used for monitoring 
of coastal and inland waters monitoring.  Especially, the use of 
autonomous marine vehicles has grown significantly in recent 
years, partly due to their low cost, and partly due to their ap-
plication of autonomous guidance and control technologies 
that can accomplish tasks by themselves. 

There is a scale model of a tanker, the “Esso Osaka” (Fig. 1), 
which allows different guidance and control strategies to be 
tested in a natural environment, but it is not have the same type 
of hull as surface autonomous vehicles do. 

The application of autonomous guidance and control tech- 
nologies to marine vehicles is an important goal because of 
their lower cost and being able to navigate in multiple mission 
or test scenarios.  Typically such autonomous vehicles must 
have good maneuverability and be able to keep an optimal 
path, normally in shallow waters and confined spaces, under 
the influence of external disturbances such as currents, wind 
and waves.  Therefore we introduce a guidance and control 
system capable of controlling the path followed by marine 
surface vehicles. 

In this chapter, we design a model of the “Esso Osaka” 
tanker to demonstrate the performance of the guidance and 
control systems.  The whole system can be implemented and 
evaluated through tests in lakes or other confined bodies of 
water. 

Basically, autonomous vehicles must have three subsys-
tems on board the platform: guidance, navigation and control.  
Here we offer a line-of-sight (LOS) algorithm to solve the 
above problem.  Trajectory points can be generated using many 
criteria, usually based on the specific vehicle and relevant  
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Table 2.  Four sub problems of the Mayer problem. 

Year Author Method Main idea 

2000 Chung, Qi [84] 
Successive learning track-keeping control 
(SLTC) algorithm 

1. Correctly maintain track-keep the requirement tar-
get track of set points or minor path. 

2. After the initial off-track disturbance, the first 3 to 
5 tracks of the learning process are taken to move 
the vehicle in a zigzag track. 

2003 Fossen [90] Trajectory tracking control based on LOS 

1. Geometric assignment based on the LOS projection 
algorithm for minimization of the cross-track error 
to the path. 

2. The desired speed along the path can be specified 
independently. 

2003 Velagic, Vukic, Omerdic [191] Adaptive Sugeno fuzzy type autopilot 
Used in an ordinary feedback loop. The adjustable 
scaling factor mechanism in an additional feedback 
loop. 

2004 Breivik, Fossen [11, 12] Guidance-based approach 

1. A way to specifically control the velocity vector of 
the vehicles in such a way that they converge to 
follow the desired geometrical paths in a natural 
and elegant manner. 

2007 Moreire, Fossen, Soares [156] 
Way-point guidance algorithm based on 
LOS 

1.  Calculation of a dynamic LOS vector norm to im-
prove the convergence of the vehicle to the desired 
trajectory. 

2.  Independent of the initial design value for the LOS 
distance (radius). 

2009 Lee, Surendran, Kim [112] PID control algorithm and fuzzy logic 
Numerical simulations are carried out to discuss 
heading control. 

 
 

information such as environmental and geographical data 
(wind, waves, currents, shallow water, islands, etc.), obstacles 
and collision avoidance (introducing safety margins) and fea-
sibility meaning that every point must be satisfied [87]. 

There are several methods for determining the optimal path 
of ship maneuvers summarized in Table 2, Fossen, Breivik and 
Fossen offer a general method for finding the optimal path, but 
Moreira, Fossen and Soares use a special approach that is 
based on a way-point guidance LOS algorithm [94] A new 
approach can improve the convergence of the LOS algorithm 
to minimize the crosstrack error by the calculation of a dy-
namic LOS vector norm.  For example, the shortest distance 
between the vehicle and a straight line [160]. 

A mathematical model of the ‘‘Esso Osaka’’ tanker is used 
to simulate the results an demonstrate the performance of the 
system.  This approach is simple to apply to other vehicles or 
extend to higher dimensional control and guidance problems. 

3. Inland Ship Maneuvers 

First we discuss ocean-going ship-steering autopilots de-
signed to implement course-keeping maneuvers in the open 
sea and course-changing maneuvers along the coast.  Typically, 
the most important performance criterion for the course- 
keeping maneuver is minimum course deviation with smallest 
control exertion.  However, it is desirable to track the new set 
course as quickly as possible with minimum overshoot [86].  
Many controllers arc designed to achieve optimal control per- 
formance during course-keeping and course-changing ma-

neuvers [106].  Of greatest concern for control of ocean-going 
vessels is the heading angle. 

For inland ships, the autopilot does not so much aim to con- 
trol the heading angle of the ship as the turning rate.  In prac-
tice, the captain should track the ship route and consider this 
when calculating the required turning rate.  This is reference 
input for the inland ship autopilot serves [85].  Hence, the 
yaw-rate-control is a useful tool for the inland ship captains. 

Recent progress in computer science progress has made the 
use of Global Positioning System (GPS) technology for track- 
keeping autopilots become more practical.  Theoretically, once 
the track of the ship is defined the ship can sail automatically 
without interference from the captain [95].  However, we still 
believe that an experienced captain is more reliable than an 
autopilot for inland sailings and then human beings are better 
at dealing with unexpected incidents.  Hence, the captain’s 
input is indispensable to help determine the turning-rate- 
control of the autopilot.  This is the preferred operation mode. 

Wave filtering is a central issue when designing the auto-
pilot for ocean-going vessels.  It is important that the autopilot 
only compensate for the low-frequency wave force rather than 
the high-frequency oscillatory force [96].  The central issue for 
inland vessels is avoidance of collisions.  Interference mainly 
comes from wind gusts and encounters with other ships. 

Therefore, inland ships should have optimal maneuver- 
ing to avoid collisions.  Always pushing the actuator to un-
knowingly exceed its saturation (SAT) and slew rate limitation 
(SRI) boundary will lead to considerable deterioration of the  
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Fig. 2.  Definition of motion in the horizontal plane [189]. 

 
 

maneuverability of the ship [6].  An automatic gain reduction 
technique has been offered to avoid actuator SRL which may 
lead to the controller wind-up problem [190].  Another tech-
nique is the reference conditioning technique to avoid actuator 
SAT that may also lead to undesirable controller wind-up 
problems [162]. 

When designing ships for inland waters both the actuator 
SAT and SRL should be considered.  There is a technique for 
realizing an inversion in terms of non inverted dynamics in a 
local feedback loop, the inversion by feedback technique [92].  
If this can be accomplished the SAT and SRL boundaries will 
be avoided. 

Based on Newton’s law in space-fixed coordinates x0-y0 are 
used to define the equations of motion describing the steer- 
ing dynamics of a ship arc (Fig. 2). 

In the section we discuss the internal model control (IMC) 
approach to designing a turning rate control autopilot.  The 
most important thing to remember is that IMC is a model- 
based design approach, so it satisfies the required system 
response time [155].  After numerical testing we discover that 
this approach offers captains a very convenient way to tune the 
autopilot to meet different maneuvering requirements. 

The above complex formula of motion in the horizontal 
plane is simplified, after which the IMC is used to solve the 
problem and the results tested.  Fig. 3(a) shows that a smooth 
transition is reached and the reference turning rate is also 
achieved within in 20 s when the initial speed of response 
parameter β is set to 0.1 and the controller uses a constant 
reference turning rate of 2.5 o/s.  Fig. 3(b) gives the regular 
pattern for the rudder angle.  Specifically, the SRL and SAT 
have been reached.  After a short period of oscillation, the 
rudder is maintained at a constant value slightly lower than the 
SAT limit. 

The IMC approach implements the SAT and SRL nonlin-
earities in a local feedback loop and allows the controller to 
exert its full power without pushing the actuator to exceed its 
SAT or SRL boundaries [188].  This is an important study 
because it describes inland ship maneuvering in a limited 
space with random encounters with other vessels. 

reference turning rate

achieved turning rate
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Fig. 3.  (a) Controlled turning rate (b) Rudder angle [189]. 

 

III. APPLICATION SUMMARY 

Our final goal is to find a approach which can arrive de-
termine optimal maneuvering under any sea conditions.  Un-
fortunately, this is a difficult task, because there are many 
factors that will affect the formulation.  Motivated by the work 
of Bishop and Price [10] and Bailey et al. [7] a unified state- 
space model for optimal of ship maneuvering, state-keeping, 
and control in a seaway is derived.  There are two main di-
rections should be considered of the dynamic equations of 
motion for ship maneuvering: 

 
● Maneuvering theory 
● Seakeeping theory 

 
An ideal unified theory for determining ship motion could 

be applied to different sea states, speeds and operations, as-
suming that the motion of the ship is in calm water, for ex-
ample in a harbor or in sheltered waters. 

In order to conveniently test performance and design of 
feedback control systems, the time-domain should be defined. 

Feedback control system designs for ships have a long 
history, dating back to 1908.  In recent yearsm the develop-
ment of global satellite navigation systems and inertial meas-
urements technology have made possible the design of nonlin- 
ear model-based ship control systems.  This evolution is de-
scribed in Table 3. 

The unified model is derived using a state-space method.  
This is the standard representation used in feedback control 
systems.  Hence the unified model can be used to simulate 
ship maneuvers given different sea states and at any speed.  
Note this model can also satisfy nonlinear maneuvering 
formulas by unifying the theories of seakeeping and ma-
neuvering [89]. 
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Table 3.  Evolution of feedback control systems. 

Year Author Contribution 

1908 Anschutz Invention of the North-seeking gyroscope 

1911 Sperry [1] Ballistic gyroscope 

1922 Minorsky [154] Analysis of the three-term PID-controller 

1976 Balchen [8] Wave filtering technique 

1994, 2002 Fossen [86, 88] Using Lyapunov methods for stability analysis to design nonlinear ship control systems 
 
 

Table 4.  Major ship maneuver pattern theories. 

Central theory Description Usage 

Sequential gradient-restoration 
algorithm (SGRA) 

Solve special cases of the Mayer problem including 
the Bolza problem. 

The algorithm can be used fo find the optimal 
seaway for a moving ship that needs to change 
course or sidestep with time. 

‘‘Esso Osaka’’ model 
Improve ship guidance and control to find an optimal 
seaway path. 

Reduce overall distance for ships that want to dy-
namically call at many harbors. 

Internal model control (IMC) 
approach 

Design a model for inland ship maneuvering in a 
limited space with randomized encounters with 
other vessels. 

In an environment where one can randomly en-
counter other ships, the captain will conveniently 
avoid such encounters given limited space. 

 
 
The nonlinear unified state-space model is used to consider 

the three situations in Table 3.  The method can improve per-
formance to avoid collisions during ship maneuvering in 
natural environment, find the optimal seaway path that will 
reduce time wastage and satisfy the requirements for inland 
ship maneuvering in limited space. 

Now the nonlinear unified state-space model is used to 
consider three situations as in the Table 4.  It can offer im-
proved collision avoidance performance during maneuvering 
in particular natural environments, optimize the path on the 
seaway to reduce time wastage and satisfy the requirements 
for inland ship maneuvering in a limited space. 

IV. CONCLUSIONS 

In this study the literature related to optimal turning and 
ship maneuvering has been reviewed.  Simple classifications 
of different approaches depending upon different practical 
purposes and areas have been defined.  However an overall 
model to control of ship maneuvering in a natural environment 
for any type of ship has not been designed, because there are 
so many factors that will affect the formulation.  Hence our 
strategy is to use the nonlinear unified state-space model, 
joined with another approach according to the requirements of 
the situation.  In this way, no matter what the conditions are,  
an optimal method to solve any problem can always be found, 
while still noting the restrictions of one of the whole ap-
proaches. 

Future work will focus on particular problems related to 
this study.  Perhaps some features in each approach can be 
combined with others.  It is hard to determine which one is 
more significant and valuable than the other.  Therefore, we 
hope to attract more scholars to join this work, and do a more 

comprehensive study.  At the same time, the different types of 
ship should be considered gradually.  Our final goal is to de-
velop a suitable system to determine optimal ship maneuver-
ing for any type of ship in our particular natural environment. 
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