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ABSTRACT 

A higher-order mild-slope equation (HOMSE) is derived 
based on theory of Hsu et al. [14].  Depth function is ap-
proximated up to third-order accurate in terms of both wave 
nonlinearity and bottom slope.  Classical Galerkin method is 
used to solve HOMSE.  Developed model is verified with  
a series of benchmark tests, including propagation of a sinu-
soidal wave past a submerged bar, wave propagating on a 
sloping bed, wave propagating over an elliptic shoal on a 
uniform slope, and wave propagating through a semicircular 
slope bottom, respectively.  Computed results are compared 
with experiment data and prediction of low-order mild-slope 
equation model as well as Boussinesq equations model, and 
show good agreement. 

I. INTRODUCTION 

The combined effect of wave refraction and diffraction can 
be described by the mild-slope equation (MSE) that was first 
derived for the two horizontal dimensions by Berkhoff [2].  
The depth average MSE is derived from the following 

 ( )0 2
0 0h zzh

f dz
−

∇ Φ + Φ =∫  (1) 

where Φ(x, y, z, t) = f0(z, h)φ(x, y, t) is the velocity potential, f0 

the depth function, ∇h = (∂/∂x, ∂/∂y) the horizontal gradient 
operator, h(x, y) the arbitrary water depth, x, y and z are  
horizontal offshore, alongshore and vertical directions, and  
t the time, respectively.  In accordance with the locally con-
stant depth (or mild-slope) assumption, the depth function is 
obtained from linear wave theory given by 

 ( ) ( )
0

cosh
,

cosh

k z h
f z h

kh

+
=  (2) 

where k is the wavenumber.  Note that f0 is only legitimate for 
a flat bottom. 

Upon substituting Eq. (2) into Eq. (1), the time invariant 
MSE can be written as 

 ( ) 2 0h g h gCC k CCφ φ∇ ⋅ ∇ + =  (3) 

Eq. (3) is the classical MSE with the mild-slope assumption 
1hh kh∇ << . 

If the mild-slope assumption is not made, then the second- 

order terms of bottom effect ( 2
hh∇  and 

2

hh∇ ) are retained.  

Chamberlain and Porter [6] developed a modified mild-slope 
equation (MMSE).  Their computation results show that the 
MMSE provides more accurate for ramp of Booij [5] and 
laboratory measurements for sinusoidal bottom undulations 
conducted by Davies and Heathershow [11]. 

It is important for the perspective to recall that MSE is only 
valid for the cases of locally constant depth and linear waves.  
Considering the extreme conditions, it is natural to ask how 
well the assumption is satisfied.  Since the vanish of the 
horizontal normal vector on a sloping bottom is neither ap-
propriate nor realistic [14].  One way to remedy the limitation 
of classic mild-slope equation is to include effect of vertical 
variation of the motion given by f0 in Eq. (2). 

Another approach is the derivation of the 1D MSE by 
Svendsen [20] which is based on the analytical solution of 
wave motion on a sloping bottom by Biesel [4].  Their solution 
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includes velocity potential proportional to hh∇  which cor-

responds to the higher-order terms of MMSE.  However, the 
derivation does not include the bottom slope hh∇  and cur-

vature term 2
hh∇ .  A complementary mild-slope equation 

(CMSE) is derived by Hsu et al. [14] for describing waves 
propagating over a sloping bottom.  CMSE introduces a new 
depth function in which analytical solution with the linear 
wave amplitude is implemented [9].  The CMSE adopts the 
second-order solution of Chen et al. [9] which includes bottom 
slope and wave refraction of obliquely incident waves.  The 
numerical results show that the CMSE provides a significant 
improvement in simulation ramp of Booij [5] and reflection 
coefficient of Bragg scattering on an undulated bottom.  
However, wave nonlinearity and frequency dispersion are not 
included in the CMSE.  Therefore, CMSE is limited in some 
situations, for example, in a shallow water region where the 
effects of nonlinearity and frequency dispersion becomes 
significant. 

An alternate is to apply Boussinesq equations (BE) [12, 18, 
22] to provide an accurate description of wave nonlinear and 
dispersive transformations in the nearshore regions.  In addi-
tion to computation of wave field, nearshore wave-induced 
currents, mean water level variation, interactions of wave- 
wave and wave-current can also be incorporated in the BE 
model.  Although, BE models can predict wave transformation 
with acceptable accuracy, their applicability and effectiveness 
still remain the possibility to develop an efficient nonlinear 
wave model. 

In this paper, a higher-order mild-slope equation (HOMSE) 
is developed based on theory of Chen et al. [9], in which the 
depth functions are expressed in terms of the combined effect 
of nonlinearity, dispersion and bottom slope.  We extend 
method of Hsu et al. [14] to third-order accuracy in terms of 
nonlinearity as well as slope and curvature of bottom.  The 
model is validated with a series of benchmark tests where 
wave travelling over various slope bottoms.  The effects of 
nonlinearity and frequency dispersion on HOMSE are sys-
tematically analyzed and discussed. 

II. TEORETICAL DEVELOPMENT 

In the theoretical formulation, we expand all quantities in a 
power series in two parameters ε and α, where ε = ka denotes 
the wave nonlinearity, a is the wave amplitude, and α is the 
bottom slope of an arbitrary bottom configuration.  The ex-
pression of the velocity potential Φ and wavenumber k in 
terms of ε and α [9] are, respectively, 
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where the velocity potential Φ is expressed by different orders 
as follows 
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where sh = sinh, ch = cosh, th = tanh, I = coth kh, D = 1 + 
2kh/sh 2kh, k30 = (k/3D5)[D5 + (D4 – 18D2 + 32D – 15)ch2 kh + 
2D2 + (−3D2 + 15D – 15)I2], and S kr tω= −�  is the phase 
function. 

Notably we leave ω unexpanded to meet an argument to the 
trigonometric functions.  Substituting the above equations into 
the integral equation of Eq. (1) and replacing f0 by fij, we col-
lect corresponding terms proportional to the same order, the 
following approximations in MSE are thus obtained:  
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where f1, f2, Aij, Bij, Cij, Dij, Eij, Fij, Gij, Hij, Iij, Jij, i, j = 0, 1, 2 
are corresponding coefficients which are in terms of func- 
tions of the dispersion parameter kh.  Detailed derivations  
and expressions of the coefficients are referred to Lin [17].  
Following the procedure outlined by Hsu et al. [14], a  
slow varying coordinate of the time variable is introduced,  
and the following relationships are assumed, t tξ= and 

( )( , , ) m i t
mn mn x y t e ωφ ψ −= , where ξ is a perturbation parame- 

ter of the order ,hh kh∇ m represents the order of the 

nonlinearity, and n denotes the order of the bottom slope, 

mn mn mnAψ ϕ=  is the Liouville transformation proposed by 

Radder [19], Amn is the coefficient of the velocity coefficient  
in the order of ε mα n, respectively.  Substitution of these ex-
pressions into Eqs. (13)-(18), one can obtain 

 2 22 mn
h mn cmn mn mn

mn

im
k RHS

A t

ϕω ϕ ϕ∂− = ∇ + +
∂

 (19)  

where kcmn is a pseudo wavenumber given by 

( )22 2 2 2
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A A

ω= + ∇ + ∇ − +

− ∇
 

  (20) 

and RHSmn denots the additional terms in each order, as pre-
sented in Table 1. 

Here the radiation boundary condition is specified to reduce 
the reflection of waves back into the study domain.  Three 
types of radiation boundary conditions are considered: a full or 
partial reflection boundary condition, and a given boundary 
condition [15]. 

 
1. Open boundary condition 

 
2 4

2 2 4 4

1 1
1

2 8
i k

x k y k y

ϕ ϕ ϕα
 ∂ ∂ ∂= + − ∂ ∂ ∂ 

 (21) 

 
2 4

2 2 4 4

1 1
1

2 8
i k

y k x k x

ϕ ϕ ϕα
 ∂ ∂ ∂= + − ∂ ∂ ∂ 

 (22) 



606 Journal of Marine Science and Technology, Vol. 20, No. 5 (2012) 

 

Table 1.  Additional term RHSmn of each order in Eq. (19). 

Order RHSmn 
0( )O εα  0 

( )O εα  0 
2( )O εα  0 

2 0( )O ε α  20 10 10( )h hE φ η− ∇ ⋅∇  

2( )O ε α  21 10 10 21 11 10 21 11 10 21 20 21 20( ) ( ) ( )h h h h h h hG H I K Lφ η φ η φ η φ φ− ∇ ⋅∇ + ∇ ⋅∇ + ∇ ⋅∇ − ∇ −    

3 0( )O ε α  30 10 20 30 20 10 30 20 10( ) ( ) ( )h h h h hG H Iφ η φ η φ η− ∇ ⋅∇ + ∇ ⋅∇ + ∇    

 
 

Table 2. Incident wave condition and still water depth of 
experiment of Beji et al. [1]. 

Case T (sec) H (m) h/L H/L Ur 

case 1 1.25 0.025 0.1951 0.012 1.64 
 
 
 where α = (1 – R)/(1 + R) is the absorption coefficient, and 

R is the reflection coefficient.  When 0α =  and 1α = , the 
above boundary condition represents total reflection and 
total passing through boundary, respectively.  

2. Lateral boundary condition 

 0( , ) 0, ( , ) 0px y x y
y y

φ φ∂ ∂= =
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 (23) 

 
3 3

03 3( , ) 0, ( , ) 0px y x y
y y

φ φ∂ ∂= =
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 (24) 

3. Given boundary condition 
 For a given nonlinear incident wave height H, period T,  

and incident wave angle θ 0, the velocity potential is given 
by theory of Chen et al. [7, 8]. 

III. MODEL VERIFICATIONS AND 
APPLICATIONS 

Developed HOMSE model is verified against a series of 
benchmark tests, and computed results are compared with 
experiment data and/or results of other numerical models, 
such as low-order mild-slope equation (MSE) model and 
Bousinessq equations (BE) model, in this section. 

1. Wave Past A Submerged Bar 

HOMSE is used to simulate wave propagation over a  
submerged breakwater and computed results are compared 
with experiment data of Beji et al. [1].  The input wave  
conditions are summarized in Table 2, where Ur denotes the 
Ursell number measuring the nonlinearity of incident waves 

2 3
0 0( / ).rU H L h=   Fig. 1 shows the bathymetry of the sub-

merged bar.  Comparison of computed results and laboratory 
observations is illustrated in Fig. 2.  It depicts wave height  

0 4 8 12 16 20
X (m)

0.4
0.3
0.2
0.1
0.0

h 
(m

) 0.1 m
0.4 m

wave

1/201/10

 
Fig. 1.  Illustration of experimental setup of Beji et al. [1]. 
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(a)
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Fig. 2. Wave past a submerged bar: Comparison of wave height distri-

butions of (a) first harmonic, (b) second harmonic, and (c) third 
harmonic among present model, BE model of Hsu et al. [16], and 
experimental data of Beji et al. [1]. 

 
 

variations around the submerged breakwater of the first three 
harmonics.  The numerical results are found to agree well with 
laboratory observations [1]. 



 Y.-J. Lan et al.: Wave Simulation Using High-Order Mild-Slope Equation 607 

 

0 1 2 3 4 5 6
0

1

2

3

4

0.5

1.5

2.5

3.5

k0x

H
/H

0

m = 1/40 Present model
Guza and Bowen (1976)

0 1 2 3 4 5 6
0

1

2

3

4

0.5

1.5

2.5

3.5

k0x

H
/H

0

m = 1/40 Present model
Guza and Bowen (1976)

(a)

(b)

 
Fig. 3. Wave propagation on a sloping bed: Comparison of wave ampli-

tude distribution of HOMSE with theory value of Guza and Bo-
wen [13] for (a) α = 1/40 and (b) α = 1/10, respectively. 

 

2. Wave Propagation on A Sloping Bed 

HOMSE model is then applied to wave propagation on a 
sloping bed, whose general solution based on velocity po- 
tential was derived by Guza and Bowen [13].  Fig. 3 shows 
computed wave amplitude along the  sloping beach for wave 
with H0 = 2 m, T = 10 sec, reflection coefficient R = 0.2, and  
α = 1/40 and 1/10, respectively.  Model prediction agrees well 
with theory value for both bed slopes.  It is noted that partial 
standing waves are formed due to wave reflection from the 
bottom.  The relative wave amplitudes vary as an envelope in 
the wave propagation direction.  Variations of wave amplitude 
near shoreline are larger than that farther from shoreline be-
cause of wave shoaling and wave reflection. 

In some practical applications, the reflected waves are ne-
glected, and only progressive waves are solved for efficient 
calculations.  Therefore, we assume variation of wave ampli-
tude in the alongshore direction is an order of magnitude 
smaller than that in the onshore direction.  Fig. 4 depicts 
comparison wave amplitude distribution of HOMSE with 
theory value of Chen et al. [9] for α = 1/10 and 1/3, respec-
tively.  As one can see, prediction of HOMSE model is close  
to theory value of Chen et al. [9]. 

3. Wave Propagating over An Elliptic Shoal on A Uniform 
Slope 

Fig. 5 depicts the bathymetry of experiment of Berkhoff  
et al. [3] for wave propagating over an elliptic shoal lying on a 
uniform slope.  Computational domain is 21.5 m × 20 m, x and 
y denote the axes directed to offshore and alongshore, respec-
tively.  The bathymetry h is given as 
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Fig. 4. Wave propagation on a sloping bed: Comparison of wave ampli-

tude distribution of HOMSE with theory value of Chen et al. [9] 
for (a) α = 1/10 and (b) α = 1/3, respectively. 
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Fig. 5. Wave propagating over an elliptic shoal on a uniform slope: 

Bathymetry of experiment of Berkhoff et al. [3].  Dashed lines in- 
dicate transects of wave measurements. 
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Fig. 7. Wave propagating over an elliptic shoal on a uniform slope: Comparison of wave profile of HOMSE with result of linear model of Dalrymple et 

al. [10], BE model of Wei et al. [23], and experiment data of Berkhoff et al. [3] along (a) 1st section to (h) 8th section which are shown in Fig. 5. 
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Fig. 6.  Wave propagating over an elliptic shoal on a uniform slope: Wave 

height pattern behind the elliptical shoal. 

where x′ = (x – 10.5)cos 20° – (y – 10)sin 20° and y′ = (x – 
10.5)sin 20° – (y – 10)cos 20°, hs is the depth of the uniform 
bottom with a slope of 1/50, the deepest bottom depth is 0.45 
m and the shallowest depth is 0.1332 m. 

Incident wave conditions are: wave height H0 = 0.0232 m 
and period T = 1.0 sec, respectively.  Fig. 6 shows computed 
wave height pattern behind the elliptical shoal.  As one can  
see wave refraction and diffraction occur, and it leads to 
dramatic increase of wave height behind the elliptical shoal.  
Fig. 7 shows comparison of computed dimensionless wave 
height distributions of HOMSE with experiment data and 
other numerical results on the eight chosen cross-sections 
which are illustrated in Fig. 5.  Solid circle are experiment data 
of Berkhoff et al. [3], long dashed lines are the model predic-
tion of the original MSE model [10], short dashed lines are 
simulation results of BE model [23], and the solid lines rep-
resent the computed results of HOMSE model, respectively.   
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Table 3. Wave propagating over an elliptic shoal on a uniform slope: Comparisons of agreement index Sf among MSE, 
BE, and HOMSE model, respectively. 

Section 
Numerical model 

1 2 3 4 5 6 7 8 

Present model (HOMSE) 0.965 0.946 0.958 0.980 0.975 0.975 0.950 0.891 

MSE (Dalrymple et al. [10]) 0.850 0.839 0.958 0.872 0.701 0.453 0.775 0.867 

BE (Wei et al. [23]) 0.946 0.924 0.986 0.989 0.968 0.934 0.966 0.880 
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Fig. 8. Wave propagating through a semi-circular slope bottom: Sketch 

of experimental configuration of Whalin [24]. 
 
 
Computed wave height of HOMSE model is in good agree-
ment with experiment data – It’s more accurate than original 
MSE and comparable to BE model, in general.  Table 3 sums 
up the agreement index between model predictions and labo-
ratory experiment data on each section.  Formula of the agree- 
ment index is given as [25] 
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where Xi is the computed results from numerical models, Yi is 
the experimental data, Y  is the average of the experimental 
data, and N is number of data, respectively.  It is noted that 
discrepancy between the original MSE model [10] and ex-
perimental data is obvious, especially on sections 4 and 6.  
However, HOMSE model is as accurate as BE model, and 
more accurate than original MSE. 

4. Wave Propagating through a Semicircular Slope  
Bottom 

Wave passing through the seabed of the semicircular slope 
topography, which was laboratory experiment conducted by 
Whalin [24], is simulated.  The experimental seabed is divided  

Table 4. Incident wave condition and still water depth of 
experiment of Whalin [24]. 

Case T (sec)  ai (m)  H (m)  k0h 

Case 1 1.0 0.0195 0.4572 1.922 

Case 2 2.0 0.0075 0.4572 0.735 

 
 

into three parts.  The first segment is a deep-water plane bed 
with depth h1 = 0.4572 m, the second seabed is the semicir-
cular slope of α = 1/25, and the last segment is a horizontal 
seabed which the depth h2 = 0.1524 m, respectively.  Fig. 8 
illustrates the experiment configuration, where the computa-
tion domain is 25.6 m × 6.096 m, x is the offshore coordinate 
and y is the alongshore coordinate, respectively.  The depth 
function h(x, y) is 

0.4572 for 14.93 25.6

( , ) 0.4572 (10.67 ) / 25 for 7.31 14.93

0.1524 for 7.31

G x

h x y G x G x G

x G

+ < ≤
= + − − + ≤ ≤ +
 ≤ +

 

  (28) 

where G = y(6.096 – y)]1/2, 0 ≤ y ≤ 6.096. 
Two incident wave conditions are considered, as shown in 

Table 4.  Figs. 9 and 10 show computed wave harmonics of 
HOMSE, experiment data, and other model simulations along 
the centerline of the wave tank (y = 3.048 m) of Case 1 and 
Case 2, respectively.  Solid lines are computed results of 
HOMSE model (ε iα j, i + j ≤ 3), solid circle points are the 
experiment data [24], and dashed lines are the numerical 
simulations of Tang and Ouellet [21] (ε iα 0, i ≤ 3), respectively.  
As the waves pass through a semi-circular slope bed, water 
depth decreases, high-order harmonic waves are generated.  
Amplitude of 1st-order harmonic wave increases gradually by 
the effects of shoaling and focusing; Amplitude of 2nd- and 
3rd-order harmonic wave also raises in the shallow water 
region, due to nonlinear effect.  Table 5 shows the agreement 
index between the computed results from numerical models 
and laboratory experiment data.  HOMSE model offers an 
accurate prediction for the first three wave harmonics. 

IV. CONCLUSION 

In the present study, a new form of the higher-order 
mild-slope equation (HOMSE) which describes the depth  
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Table 5. Wave propagating through a semi-circular slope bottom: Comparisons of agreement index Sf among MSE, BE, 
and HOMSE model, respectively. 

Wave harmonic 
Case 

First harmonic Second harmonic Third harmonic 

Present model (HOMSE) 0.888 0.934 
1 

Tang and Ouellet [21] 0.866 0.950 
 

Present model (HOMSE) 0.978 0.971 0.897 
2 

Tang and Ouellet [21] 0.956 0.949 0.909 
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Fig. 9. Wave propagating through a semi-circular slope bottom: Com-

parison of wave amplitude distribution of (a) 1st harmonic and (b) 
2nd harmonic of HOMSE with result of Tang and Ouellet [21], 
and experiment data of Whalin [24] along the center line of the 
wave tank.  (Case 1: ai = 0.0195 m and T = 1.0 sec) 

 
 
function in a more accurate form is derived.  Parameter of 
wave nonlinearity and bottom slope are included in the theo-
retical formulation, therefore, it can accurately predict wave 
propagation over a sloping beach. 

HOMSE model has been verified and applied to some test 
cases, including propagation of a sinusoidal wave past a sub- 
merged bar, wave propagating on a sloping bed, wave propa-
gating over an elliptic shoal on a uniform slope, and wave 
propagating through a semicircular slope bottom, respectively.  
It can accurately predict wave shoaling, refraction, diffraction, 
reflection, and high-order harmonics generation.  Computed 
results show that prediction of HOMSE model agree well with 
experiment data.  It shows the improvement of accuracy of 
HOMSE model compared with low-order mild-slope equation 
model.  It’s accuracy and applicability is comparable to Bous- 
sineq equations model for the cases considered. 
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Fig. 10. Wave propagating through a semi-circular slope bottom: Com-

parison of wave amplitude distribution of (a) 1st harmonic, (b) 
2nd harmonic, and (c) 3rd harmonic, respectively, of HOMSE 
with result of Tang and Ouellet [21], and experiment data of 
Whalin [24] along the center line of the wave tank.  (Case 2: ai = 
0.0075 m and T = 2.0 sec) 
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