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ABSTRACT 

This paper aims at presenting a method to determine the 
“exact” natural frequencies and mode shapes of a hybrid beam 
composed of multiple elastic beam segments and multiple 
rigid bodies with each rigid body connected with two adjacent 
elastic beam segments.  Furthermore, each rigid body has its 
own mass and rotary inertia, and is supported by a transla- 
tional spring and/or a rotational spring.  First, based on the 
equations of the continuity of deformations and the equilib-
rium of moments and forces for each of the intermediate rigid 
bodies and boundary conditions, the coefficient matrices of 
the entire hybrid beam are derived.  The overall coefficient 
matrix for the entire hybrid beam is obtained using the nu-
merical assembly technique.  The exact natural frequencies are 
determined by equating the determinant of the last overall 
coefficient matrix to zero.  With respect to each of the natural 
frequencies, one may obtain the associated integration con-
stants from the simultaneous equations.  Finally, substituting 
these integration constants into the displacement functions for 
all the elastic beam segments and replacing the space occupied 
by each of the rigid bodies by a straight line, one determines 
each of the corresponding mode shapes of the hybrid beam.  
Finally, the influence of materials for the elastic beam seg-
ments on natural frequencies and mode shapes of the hybrid 
beam is studied. 

I. INTRODUCTION 

For the free vibration analysis of an elastic beam carrying  

a heavy tip body, the authors of Refs. [1, 4, 9, 17] are the 
pioneers in this aspect.  Later, Liu and Huang [14] examined 
the vibrations of constrained beam carrying a heavy tip body 
with an elastically restrained condition and effects of the tip 
mass center.  Zhou [20] studied the exact frequencies and 
mode shapes of a cantilever beam carrying a heavy tip mass 
with translational and rotational elastic supports.  Kopmaz  
and Telli [7, 8] presented the eigenfrequencies of a two-part 
beam-mass system consisted of two beam segments carrying  
a mass.  Naguleswaran [16], Banerjee and Sobey [2], and 
Ilanko [5] presented a set of amended equations of Ref. [7].  
Ilanko [6] used the transcendental dynamic stability func- 
tions to determine the natural frequencies of a beam con- 
nected to a rigid body supported by elastic restraints.  In the 
foregoing literature, by considering influence of “dimension 
(size)” of the rigid body, the free vibration characteristics for a 
single beam or a two-part beam carrying “one” rigid body  
are studied. 

Recently, Maiz et al. [15] presented the exact natural fre-
quencies of Bernoulli-Euler beams carrying point masses with 
rotary inertias.  Wu and Chen [18, 19] studied the free vibra-
tion problem of a non-uniform beam with various boundary 
conditions and carrying multiple concentrated elements by 
lumpedmass and continuous-mass transfer matrix methods, 
respectively.  Lin [10-12] presented the exact natural fre-
quencies and mode shapes of a beam carrying a number of 
concentrated elements.  Since each mass and its rotary inertia 
are located at a “point”, it is evident that the influence of di-
mension (size) for each concentrated element is not consid- 
ered in the last literature [10-12, 15, 18, 19].  In Ref. [13], Lin 
presented the “exact” natural  frequencies and mode shapes of 
a single beam carrying a number of elastic-supported rigid 
bars fixed on the beam.  This paper is a continuation of Ref. 
[13] to present a method for investigating the “exact” natural 
frequencies and mode shapes of a hybrid beam composed of 
“multiple” elastic beam segments and “multiple” rigid bodies 
with effect of “dimension (size)” of each rigid body consid- 
ered. 

Paper submitted 10/29/10; revised 03/12/11; accepted 05/06/11.  Author for 
correspondence: Hsien-Yuan Lin (e-mail: lin.syg@msa.hinet.net). 
Department of Mechanical Engineering, Cheng Shiu University, Kaohsiung,
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Fig. 1. Sketch for a hybrid beam composed of arbitrary elastic beam 

segments and elastic-supported rigid bodies in the pinned-pinned 
(support) condition. 

 

II. FORMULATION OF THE PROBLEM 

Fig. 1 shows the sketch of a hybrid beam composed of 
arbitrary elastic beam segments and elastic-supported rigid 
bodies with each rigid body connected with two adjacent 
elastic beam segments, furthermore, each rigid body has its 
own mass M and rotary inertia J and is supported by a transla- 
tional spring kT and a rotational spring kR.  The cross-section of 
each elastic beam segment is arbitrary (e.g., rectangular, 
square or circular).  Each rigid body has two joints (for con-
necting with its left and right adjacent elastic beam segments), 
the position of its left joint is defined by xul with the subscripts 
u (u = 1, 2, 3, …) and l denoting the numbering and left joint of 
the uth rigid body, respectively.  For the uth rigid body, its 
length is denoted by �u, the distance between its left joint and 
its center of gravity (represented by the symbol •) is denoted 
by �mu, and the distance between its left joint and the attaching 
point of the supporting translational spring is denoted by �tu.  It 
is evident that total length of the entire hybrid beam is denoted 
by L as one may see from Fig. 1. 

Based on the Euler-Bernoulli beam theory, the equation of 
motion for free vibration of the ith uniform elastic beam seg- 
ment is given by [3] 

 
( ) ( )4 2

4 2

, ,
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E I m i

x t

∂ ∂
+ = =

∂ ∂
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where Ei, Ii and im are Young’s modulus, moment of inertia of 

cross-sectional area and mass per unit length of the ith beam 
segment, respectively, while yi(x, t) is the transverse displace- 
ment at position x and time t of the ith beam segment. 

For free vibrations, one has  

 ( ) ( ), j t
i iy x t Y x e ω=  (2) 

where Yi(x) is amplitude of yi(x, t), ω is natural frequency of 

the vibrating system and 1j = − . 

The substitution of Eq. (2) into Eq. (1) gives 
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where βv,i is the dimensional frequency parameter for the  
ith beam segment corresponding to the vth vibration mode 
defined by 
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with 

 , ,v i v i LβΩ =  (4c) 

It is evident that Ωv,i is the non-dimensional frequency pa-
rameter for the ith beam segment corresponding to the vth 
vibration mode. 

The general solution of Eq. (3) takes the form: 
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which is the displacement function for the ith beam segment 
located at left side of the ith rigid body.  It is noted that i ≡ u as 
one may see from Fig. 1. 

1. Coefficient Matrix [Bu] for an Intermediate Rigid Body 

If the numbering of an intermediate rigid body is u, then the 
continuity of deformations and the equilibrium of moments 
and forces (cf. Fig. 1) at the uth rigid body require that  

 ( ) ( ) ( )1
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where ξul = xul/L and ξur = (xul + �u)/L are the non- dimensional 
coordinates of left joint and right joint of the uth rigid body, 
respectively.  In Eqs. (6a)-(6d), the primes refer to differentia- 
tions with the respect to the non-dimensional coordinate ξu = 
xu/L. 

From Eqs. (5) and (6a)-(6d) one obtains  
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  (8a,b,c,d,e,f,g,h,i) 

Writing Eqs. (7a)-(7d) in matrix form, one has 

 { } 0u uB C =    (9) 

where 

 { } { },1 ,2 ,3 ,4 1,1 1,2 1,3 1,4u u u u u u u u uC C C C C C C C C+ + + +=  

  (10) 

In the above Eqs. (9) and (10), the symbols, [ ] and { }, 
denote the rectangular matrix and column vector, respectively.  
The coefficient matrix [Bu] is given by Eq. (A1) as one may 
see from Appendix A at the end of this paper. 

2. Coefficient Matrix [B0] for the Left End of the Entire 
Hybrid Beam 

If the left-end support of the beam is “pinned” as shown in 
Fig. 1, then the boundary conditions are 

 0 0(0) (0) 0Y Y ′′= =  (11a,b) 

From Eqs. (5), (11a) and (11b), one obtains 
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 0,2 0,4 0C C+ =  (12a) 

 0,2 0,4 0C C− + =  (12b) 

or in matrix form 

 { }0 0 0B C =    (13) 

where 
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0 1 0 1 1

0 1 0 1 2
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 (14) 

 { } { }0 0,1 0,2 0,3 0,4C C C C C=  (15) 

Similarly, if the left-end support of the beam is “clamped”, 
one obtains the following boundary coefficient matrix 
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3. Coefficient Matrix [Bn+1] for the Right End of the Entire 
Hybrid Beam 

If the right-end support of the beam is “pinned” as shown in 
Fig. 1, then the boundary conditions are 

 1 1( ) ( ) 0n nY L Y L+ +′′= =  (17a,b) 

where n is the total number of (intermediate) rigid bodies. 
From Eqs. (5), (17a) and (17b), one obtains  
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or 
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 { } { }1 1,1 1,2 1,3 1,4n n n n nC C C C C+ + + + +=  (21) 

In Eq. (20), q denotes the total number of equations for the 
integration constants given by 

 4( 1)q n= +  (22) 

Similarly, if the right-end support of the beam is “free”, one 
obtains the following boundary coefficient matrix 

, 1 , 1 , 1 , 1
1
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  (23) 

The integration constants relating to the left-end and right- 
end supports of the hybrid beam are defined by Eqs. (15) and 
(21), respectively, while those relating to the intermediate 
rigid bodies are defined by Eqs. (10).  The associated coeffi-
cient matrices are given by [B0] (cf. Eq. (14) or (16)), [Bu] (cf. 
Appendix A), and [Bn+1] (cf. Eq. (20) or (23)).  From the  
last equations concerned one may see that the identification 
number for each element of the foregoing coefficient matrices 
is shown on the top side and right side of each matrix.  There- 
fore using the numerical assembly technique, one may obtain a 
matrix equation for all the integration constants of the entire 
hybrid beam 

 [ ]{ } 0B C =  (24) 

Non-trivial solution of Eq. (24) requires that its coefficient 
determinant is equal to zero, i.e.,  

 0B =  (25) 

which is the frequency equation for the present problem. 
In this paper, the incremental search method is used to find 

the natural frequencies of the vibrating system, ω v (v = 1, 
2, …).  With respect to each natural frequency ω v, one may 
obtain the corresponding integration constants from Eq. (24).  
Substituting the last integration constants into displacement 
functions of the associated elastic beam segments and re-
placing the space occupied by each rigid-body by a straight 
line, one determines the corresponding mode shape of the 
entire hybrid beam, Y (v)(ξ). 

III. NUMERICAL RESULTS AND  
DISCUSSIONS 

Before the free vibration analysis of a hybrid beam com- 
posed of multiple elastic beam segments and multiple elas-
tic-supported rigid bodies is performed, the reliability of the 
theory and the computer program developed for this paper are  
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Table 1. The lowest three natural frequency parameters  
of a hybrid beam composed of two elastic beam 
segments and one rigid body as shown in Fig. 2. 

( )4
1 1 1 1v A L E Iω ρ  Boundary 

conditions 
Methods 

v = 1 v = 2 v = 3 
Present 8.1278 35.0234 88.9239 

P-P 
Ref. [2] 8.1278 35.023 88.924 
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Fig. 2. A hybrid beam composed of two “elastic beam segments” and one 

“rigid body” in the pinned-pinned (support) conditions.  
 
 

confirmed by comparing the present results with those ob-
tained from the existing literature. 

1. Reliability of Presented Theory and Developed  
Computer Program 

The first example studied is a hybrid beam composed of 
two elastic beam segments and one rigid body in the pinned- 
pinned (support) condition as shown in Fig. 2.  The non- 
dimensional lengths of the two elastic beam segments with the 

same material and cross section are *
1 1 0.3L L L= = and 

*
2 2 0.65,L L L= = respectively.  The non-dimensional length, 

mass and rotary inertia of the rigid body are *
1 1u u L= =� �  

0.05, *
1 0J = and *

1 1 1 1 2 2( ) 0.5,M M m L m L= × + × = respec- 

tively.  The non-dimensional distance between center of grav- 

ity (c.g.) of the rigid body and its left joint is *
mu� = *

1(1 2) u� .  

The lowest three natural frequency parameters for the hybrid 
beam are shown in Table 1.  From Table 1 one sees that the 
results of the present paper are in excellent agreement with 
those of Ref. [2]. 

2. Free Vibration Analysis of a Hybrid Beam Composed  
of Four “Elastic Beam Segments” and Three  
“Elastic-Supported Rigid Bodies” in the Pinned-Pinned 
(Support) Conditions 

Fig. 3 shows the example studied in this paper, it is a hybrid 
beam composed of four “elastic beam segments” and three 
“elastic-supported rigid bodies” in the pinned-pinned (support) 
conditions.  The total length of entire hybrid beam is L = 2 m , 
the cross-sections of all elastic beam segments are circular, but  

x

y

�m1

x2l = 1.0 m 

L = 2.0 m

�m2

x1l = 0.4 m 

x3l = 1.4 m 

�m3

kR2

kT2 kT3
kT1

kR3kR1

x1r = 0.54 m

x2r = 1.16 m 

x3r = 1.58 m 

�t3
�t1 �t2

 
Fig. 3. A hybrid beam composed of four “elastic beam segments” and 

three “elastic-supported rigid bodies” in the pinned-pinned con- 
ditions. 

 
 

the diameters of the 1st, 2nd and 4th elastic beam segments are 
equal to 0.05 m, i.e., di = 0.05 m (i = 1, 2, 4), and that of the 3rd 
elastic beam segment is 0.06 m, i.e., d3 = 0.06 m.  The material 
for 1st, 2nd and 4th elastic beam segments is steel with Young’s 
modulus Ei = 2.068 × 1011 N/m2, mass density ρi = 7850 kg/m3 
(i =1, 2, 4).  Three cases with different kinds of material for  
the 3rd elastic beam segment are studied: For the first case, the 
material of the 3rd elastic beam segment is steel with E3 = 
2.068 × 1011 N/m2 and ρ3 = 7850 kg/m3.  For the second case, 
the material of the 3rd elastic beam segment is copper with E3 = 
1.05 × 1011 N/m2 and ρ3 = 8970 kg/m3.  For the third case, the 
material of the 3rd beam segment is aluminum with E3 = 0.72 × 
1011 N/m2 and ρ3 = 2790 kg/m3. 

For convenience, based on the first elastic beam segment, 
four reference parameters are introduced: reference mass 

( ) 2
1 1 1

ˆ 4M m L d Lρ π= = kg, reference rotary inertia 3
1Ĵ m L=  

kg ⋅ m2, reference stiffness for translational spring ˆ
Tk = 

( )3 4 3
1 1 1 164E I L E d Lπ= N/m and reference stiffness for 

rotational spring ˆ
Rk = 1 1E I L  N ⋅ m/rad.  With respect to the 

last four reference parameters, four non-dimensional pa-

rameters are also are introduced: * ˆ ,M M M= * ˆ ,J J J=  
* ˆ
R R Rk k k=  and * ˆ .T T Tk k k=  

Furthermore, the non-dimensional parameters for the three 
“rigid bodies” are as follows: positions 1 1 0.2,l lx Lξ = =  2lξ = 

0.5 and 3lξ  = 0.7; lengths *
1 1 0.07,L= =� �

*
2� = 0.08 and 

*
3� = 0.09; masses *

1 0.2,M =  *
2 0.3M =  and *

3 0.4;M = rotary 

inertias *
1J = 0.02, *

2J = 0.03 and *
3J = 0.04; translational 

springs *
1Tk = 20, *

2Tk = 30, *
3Tk = 40; rotational springs *

1Rk = 10, 
*

2Rk  = 8, *
3Rk = 8; The distances between left joint and center 

of gravity for each of the rigid bodies are ( )* *
1 12 3 ,m =� �  *

2m� =  
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Table 2. The lowest four natural frequencies of a hybrid beam composed of four “elastic beam segments” and three 
“elastic-supported rigid bodies” in the pinned-pinned (support) conditions as shown in Fig. 3. 

Natural frequencies, ω v  (rad/sec) 
Cases 

Materials for 3rd  
beam segment ω 1  ω 2  ω 3  ω 4  

1 Steel 238.3129 660.15542 1282.34191 1804.72916 

2 Copper 228.3144 624.60176 1234.40876 1635.87796 

3 Aluminum 237.2785 620.59035 1223.22105 1597.74993 
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Fig. 4. The lowest four mode shapes for the hybrid beam composed of four elastic beam segments and three elastic-supported rigid bodies in the 

pinned-pinned (support) conditions as shown in Fig. 3: (a) 1st, (b) 2nd, (c) 3rd and (d) 4th mode shapes. −•−•−•−•−•−•−  case 1 (material of the 3rd 
elastic beam segment being steel), ----------------------  case 2 (material being copper) and +++++++ case 3 (material being aluminum). 

 
 

*
2(2 3)�  and * *

3 3(1 2)m =� � ; the distances between left joint for 
each of the rigid bodies and attaching point for each of  
the supporting translational springs are * *

1 1 0.07,t = =� �
*

2t =�  
*
2 0.08=�  and * *

3 3 0.09t = =� � . 
The lowest four natural frequencies of the hybrid beam with 

three kinds of material for the 3rd
 elastic beam segment  

are shown in Table 2.  From Table 2 one sees that the values of 
ω v (v = 1 to 4) obtained from case 1 shown in 1st row (with 
material of the 3rd elastic beam segment to be steel) are higher 
than the corresponding ones obtained from case 2 shown in  
2nd row (with material of the 3rd elastic beam segment to be 

copper), this is reasonable because the copper beam segment 
has lower stiffness (Young’s modulus ) and higher mass den-
sity.  Furthermore, from Table 2 one also sees that the values  
of ω v (v = 1 to 4) obtained from case 1 shown in 1st row  
(with material of the 3rd elastic beam segment to be steel) 
 are also higher than the corresponding ones obtained from 
case 3 shown in 3rd row (with material of the 3rd elastic beam 
segment to be aluminum), this is due to the stiffness effect of 
the aluminum beam segment to be greater than its inertia effect 
for the current hybrid beam, although the mass density ρ  
and Young’s modulus E of aluminum are approximately equal 
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to one third (1/3) of the corresponding ones of steel, respec-
tively. 

Corresponding to the four natural frequencies listed in  
Table 2, the lowest four mode shapes of the hybrid beam are 
shown in Figs. 4(a)-(d), respectively, where (a), (b), (c) and (d) 
refer to the 1st, 2nd, 3rd and 4th mode shapes of the hybrid beam, 
respectively.  Besides, the curves −•−•−•−•−•−•−, --------------------- 
and +++++++ denote the mode shapes of the hybrid beam with 
materials of its 3rd elastic beam segment to be steel, copper and 
aluminum, respectively.  It is noted that the space occupied by 
each rigid body is replaced by a straight line in each mode 
shape because the deformation of each rigid body is nil during 
vibrations. 

IV. CONCLUSIONS 

Based on the foregoing investigations, one obtains the fol- 
lowing conclusions: 

 
1. Since the literature regarding the “exact” natural frequen- 

cies and the associated mode shapes for a hybrid beam 
composed of more than two elastic beam segments and two 
rigid bodies is rare, the exact-solution method presented in 
this paper will be significant in this aspect. 

2. The numerical results of this paper reveal that the natural 
frequencies and associated mode shapes of a hybrid beam 
are significantly dependent on the materials of its elastic 
beam segments.  Therefore, compared with the conven- 
tional beam with single material and without composing of 
rigid bodies, a hybrid beam such as that studied in this pa-
per can provide a lager range of variations of natural fre-
quencies and mode shapes.  This should be useful for the 
practical applications. 

NOMENCLATURE 

di diameter of the ith beam segment 
Ei Young’s modulus of the ith beam segment  
i numbering for the ith beam segment 
Ii moment of inertia of cross-sectional area of the ith 

beam segment 

j 1−  
Ju rotary inertia of the uth rigid body 

*
uJ  non-dimensional rotary inertia of the uth rigid body 

*
3

1

u
u

J
J

m L
=  

kRu stiffness of rotational spring supporting the uth rigid 
body 

*
Ruk  non-dimensional stiffness of rotational spring sup- 

porting the uth rigid body *

1 1

Ru
Ru

k L
k

E I
=  

kTu stiffness of translational spring supporting the uth 
rigid body 

*
Tuk  non-dimensional stiffness of translational spring sup- 

porting the uth rigid body 
3

*

1 1

Tu
Tu

k L
k

E I
=  

L total length of the entire hybrid beam 
�u length of the uth rigid body 

*
u�  non-dimensional length of the uth rigid body * u

u L
= �

�  

�mu distance between center of gravity (c.g.) of the uth 
rigid body and its left joint 

*
mu�  non-dimensional distance between center of gravity 

(c.g.) of the uth rigid body and its left joint * mu
mu L

= �
�  

�tu distance between attaching point of the translational 
springs and the left joint of the supported uth rigid 
body 

*
tu�  non-dimensional distance between attaching point of 

the translational springs and the left joint of the 

supported uth rigid body * tu
tu L

= �
�  

im  mass per unit length of the ith beam segment 
Mu mass of the uth rigid body 

*
uM  non-dimensional mass of the uth rigid body 

*

1

u
u

M
M

m L
=   

n total number of (intermediate) rigid bodies 
q total number of equations for the integration con-

stants 
v the vth vibration mode  
xul coordinate for left joint of the uth rigid body  
yi (x, t) transverse displacement at position x and time t for 

the ith beam segment 
Yi(x) amplitude function of yi(x, t)  
βv,i dimensional frequency parameter for the ith beam 

segment corresponding to the vth vibration mode 
2

4
,

v i
v i

i i

m

E I

ωβ =  

εu ratio of moment of inertia of cross-sectional area of 
the right adjacent beam segment of the uth rigid body, 
Iu+1, to that of the left one, Iu, i.e., εu = Iu+1/Iu 

ξul non-dimensional coordinate for left joint of the uth 
rigid body (= xul/L) 

ξur non-dimensional coordinate for right joint of the uth 
rigid body (= xur/L) 

ρi mass density of the ith beam segment 
σu ratio of Young’s modulus of the right adjacent beam 

segment of the uth rigid body, Eu+1, to that of the left 
one, Eu, i.e., σu = Eu+1/Eu 

ωv the vth natural frequency 
Ωv,i non-dimensional frequency parameter for the ith 

beam segment corresponding to the vth vibration 
mode 
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APPENDIX A 

The coefficient matrix ][ uB  for Eq. (9) is given by 

                     4 -3                     4 -2                      4 -1                             4                           4 1                  4 2                      4 3               u u u u u u u+ + +
* * * *

, , , ,

, , , , , 1 , 1 , 1 , 1

    4 4 

s c c s sh ch ch sh s c sh ch

c s ch sh c s ch sh

s c

ul v u u ul ul v u u ul ul v u u ul ul v u u ul ur ur ur ur

v u ul v u ul v u ul v u ul v u ur v u ur v u ur v u ur
u

ua ul ua u

u

B

θ θ θ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ

α θ η θ
+ + + +

+

+ Ω − Ω + Ω + Ω − − − −
Ω −Ω Ω Ω −Ω Ω −Ω −Ω

=   −

� � � �

c s sh ch ch sh - c s s c ch sh sh ch

s c c s sh ch ch sh c s ch sh
l ua ul ua ul ub ul ub ul ub ul ub ul u ur u ur u ur u ur u ur u ur u ur u ur

u ul ua ul u ul ua ul u ul ub ul u ul ub ul u ur u ur u ur u ur

α θ η θ α θ η θ α θ η θ λ θ τ θ λ θ τ θ λ θ τ θ λ θ τ θ
δ θ κ θ δ θ κ θ δ θ κ θ δ θ κ θ φ θ φ θ φ θ φ θ





+ − − + + − −
+ − + + − − −

4 1

4     

4 1

4 2

u

u

u

u

 −



  +
 

+ 

 

 (A1) 

where 

3
* * * * * * * 1 1

3
1 1 1 1 11

, , , , , , , ,u u Ru Tu u mu tu u u
u u Ru Tu u mu tu u u

u u

M J k L k L E I
m J k k

m L E I E I L L L E Im L
σ ε+ += = = = = = = = =� � �

� � �  (A2a-i) 

( ) ( )2 * * * 2 * * *1 1 1 1
, ,,ua v u Tu tu mu ub v u Tu tu mu

u u u u

E I E I
k k

E I E I
α α

   
= −Ω + − = Ω + −   

   
� � � �  (A3a,b) 

( )2* 5 * * * * * 31 1 1 1 1
, , , ,ua u v u Ru v u Tu tu mu v u mu v u

u u u u u

m E I E I
J k k

m E I E I
η

     
= Ω − Ω − − Ω + Ω     

     
� � �  (A4a) 

( )2* 5 * * * * * 31 1 1 1 1
, , , ,ub u v u Ru v u Tu tu mu v u mu v u

u u u u u

m E I E I
J k k

m E I E I
η

     
= Ω − Ω − − Ω − Ω     

     
� � �  (A4b) 

( ) ( )* * 5 * * * 3 * * 5 * * * 31 1 1 1 1 1
, , , , , ,,ua u mu v u Tu tu mu v u v u ub u mu v u Tu tu mu v u v u

u u u u u u

m E I m E I
M k M k

m E I m E I
κ κ

       
= Ω − − Ω − Ω = Ω − − Ω + Ω       

       
� � � � � �  (A5a,b) 

( )4 * * * 3 2 31 1 1
, , 1 , 1 , 1, , ,u u v u Tu u u u u mu v u u u u v u u u u v u

u u u

m E I
M k

m E I
δ λ σ ε τ σ ε φ σ ε∗

+ + +

   
= Ω − = − Ω = Ω = Ω   

   
� �  (A6a-d) 

, , , ,s sin , c cos , sh sinh , ch coshul v u ul ul v u ul ul v u ul ul v u ulθ ξ θ ξ θ ξ θ ξ= Ω = Ω = Ω = Ω  (A7a-d) 

, 1 , 1 , 1 , 1s sin , c cos , sh sinh , ch coshur v u ur ur v u ur ur v u ur ur v u urθ ξ θ ξ θ ξ θ ξ+ + + += Ω = Ω = Ω = Ω  (A8a-d) 
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