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ABSTRACT 

Coastal areas are the first marine systems being impacted  
by anthropogenic pollution and eutrophication.  Organic matter 
poses a particularly negative impact on the environment  
due to its oxygen depleting and eutrophying effects.  Shenzhen 
Bay mudflat contains rich organic matter.  Here, we compare 
changes of polychaete assemblage parameters on seasonal 
data obtained from a Shenzhen Bay mudflat in a three-year 
study.  The results based on the seasonal and spatial variations 
of polychaete species number, density and biomass, Shannon- 
Wiener diversity index, evenness index and richness index 
confirmed that high organic matter content impacted their 
distribution.  A significant negative correlation between the 
density and biomass of Dendronereis pinnaticirris and Ne-
anthes glandicincta and organic matter content is explained  
by their limited tolerance to high organic matter exposition.  A 
significant positive correlation between the density and bio-
mass of Namalycastis abiuma and Capitella capitata and 
organic matter content is explained by their preference for 
organically enriched environments. 

I. INTRODUCTION 

The net carbon status and carbon dynamics of different 
coastal systems received increased attention recently [7, 8, 
12-14, 25, 37].  The coastal mudflats ecosystem functioning is 
largely mediated by deposit-feeders that process material and 

energy connecting the main oceanic realms, as well as benthic 
and pelagic systems [27, 28, 31, 53].  Macrofauna are key 
components in the functioning of soft bottom coastal marine 
systems [38].  Macrofauna in marine sediments play an im-
portant role in ecosystem processes such as burial and disper-
sion off secondary production, nutrient cycling in general, and 
the metabolism of pollutants.  They also change physical and 
chemical parameters of sediments, particularly those close  
to the sediment-water-column interface.  They, in turn, show  
a close relationship to organic content, food availability in 
general, and grain size [20].  Deposit-feeders inhabiting the 
sediment are dependent on settled organic matter that may 
originate from primary producers but increasingly also from 
anthropogenic input [22, 32-35, 45].  Other important sedi-
ment parameters are grain size, organic content and food 
availability [23].  In turn provide deposit-feeding macrofauna 
an important trophic link back to the pelagic realm when 
predated, e.g. by fish and birds [12, 38].  Bioturbation by sedi- 
mentary fauna either leads to enhanced mineralization [9, 29, 
51, 56] or burial of organic matter [16, 17, 57]. 

Among the macrofauna, polychaetes provide several sed-
entary deposit feeders [41, 48] and are generally suitable 
candidates for research into the impacts of anthropogenic 
disturbances of marine bottoms because they occupy a di- 
verse array of ecological niches and thus reflect the diversity 
of habitat, feeding, and reproductive adaptations of other 
macrofauna [18, 23, 24, 50].  Polychaetes are used meanwhile 
in biomonitoring programs worldwide as organic pollution 
indicators to survey the health status of the coastal environ-
ment [19].  Of all the invertebrate groups studied in mangrove 
environments, polychaetes are suggested as key indicators of 
anthropogenic disturbances [20, 46]. 

Polychaetes were often connected in the past to the con-
cept of opportunistic species being able to proliferate after  
an increase in organic matter.  This made them suitable in-
dicators for anthropogenic organic impact on soft-bottoms 
[19, 47].  Increasing experiences with this group, suggests 
that not only opportunistic species but also rather special- 
ized species can provide suitable indicators [23].  The  
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Fig. 1.  Sampling stations of macrofauna in a Shenzhen Bay mudflat, China. 

 
 

polychaetes Dendronereis pinnaticirris Grube 1878, Neanthes 
glandicincta Southern 1921 and Namalycastis abiuma Müller 
1871 are important components of the endobenthos and con-
stitute an important food resource for migrating waterfowl in 
the Futian intertidal mangrove and mudflat in Shenzhen Bay 
[1-5, 21, 26].  Some polychaetes are used primarily to ingest 
sediment deposits, but it is also capable of grazing some plant 
material and of facultative capture of small invertebrates [11]. 

The benthic biomass of the mudflat under study was 
dominated by nereid polychaetes of the genera Dendronereis 
and Neanthes and sabellid polychaetes of the genus Potamilla 
[1, 65].  These animals, therefore, are important structural  
and functional components of their respective environments, 
and provide food for shore birds.  At the same time there is 
evidence that these populations may be under considerable 
stress due to man-made disturbances [4]. 

The Shenzhen Bay (Deep Bay) receives a rich supply of 
organic matter from the Pearl River and nearby streams [61].  
Organically enriched sediments provide an abundant supply  
of food to the benthic infauna [42, 43, 62, 65].  Accumulation 
of high levels of organic matter in the sediments below fish 
farms has created environmental problems in coastal regions 
around the world, which not only results in the deterioration of 
habitats neighboring fish cultures, but also causes the ambient 
coastal zone to suffer from organic pollution [49, 59, 63].  
Causal relationships have been shown between pollutants and 
benthic fauna, such as crabs [39, 40, 52]. 

Our research followed the assumption that populations  
and communities of benthic macrofauna and particularly of 
infaunal polychaetes would respond in their temporal succes-
sion as well as in developing a spatial gradient on mudflats 

that were differently enriched with organic material.  The 
specific aim of this study was to test whether and how as-
semblage parameters of the four most dominant polychaete 
species responded to a high organic matter content based on a 
three-year continuous record of macrofaunal data. 

II. MATERIAL AND METHODS 

1. Study Area 

Shenzhen Bay (Deep Bay) is located at 113°53′-114°05′E 
and 22°30′-22°39′N with an area of 75 km2 [60].  It covers  
a shallow area of 115 km2 of less than 6 m depth, with an 
average depth of 2.9 m, and a tidal range of 2.8 m.  The inter-
tidal mudflat of Shenzhen Bay covers an area of 27 km2 at  
low tide.  The upper margins of the mudflat are dominated by 
mangroves.  The area is an important staging post for winter-
ing waterfowl and migrant shorebirds.  Since the 1980s, the 
industry of the Shenzhen Economic Zone was developing fast 
along the Shenzhen River and Deep Bay disturbing the area by 
pollution from various industries, aquaculture and municipal 
wastes [64]. 

A longitudinal transect including three sampling stations 
(A2, A3 and A4) and a horizontal transect including three 
sampling stations (A3, H3 and F1) was sampled seasonally 
from 2005 to 2007.  Along the longitudinal transect taken near 
an Ecological Park, sampling station A2 was on an open 
mudflat, station A3 was between a mangrove and an open 
mudflat, and station A4 was inside the mangrove (Fig. 1).  
Sampling station H3 and F1 were near the Fengtang River 
outfall and the Shenzhen River estuary, respectively.  Both of 
them were in the region between mangrove and mudflat. 
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Fig. 2.  Spatial and temporal fluctuations of polychaete parameters in a Shenzhen Bay mudflat. 

 
 

2. Sampling and Data Analyses 

Five replicate plastic core samples (diameter 10 cm, length 
20 cm) were collected from each sampling station at low tide 
at each sampling time.  The samples were processed through a 
0.5 mm sieve.  The organisms retained on the sieve were 
preserved with formalin, stained with Rose Bengal, and taken 
to the laboratory for sorting again, identification, counted 
under a dissecting microscope, and weighed with an electronic 
balance (0.1 mg).  Polychaete individuals were counted ac- 
cording to the number of their heads. 

Three replicate plastic core samples (10 cm in diameter) 
were taken from the top 5 cm sediment layer at each sampling 
station for sediment analysis simultaneously with the bio-
logical samples.  Organic matter content of these samples was 
measured by ignition in an combustion oven over 16 h at 
375°C, after drying at 90°C to a constant weight according  
to [54]. 

During the present research, 60 data sets from five sampl- 
ing stations were selected during 4 seasons throughout three 
years, respectively (from 2005 to 2007).  Each data set included 
organic matter content, polychaete density, biomass, species 
diversity index, richness index, densities and biomass of D. 

pinnaticirris, N. glandicincta, N. abiuma and C. capitata.  Uni- 
variate two-way ANOVA was used to investigate differences 
between seasons (winter, spring, summer and autumn) and 
stations (A2, A3, A4, H3 and F1) for organic matter content, 
polychaete density, biomass, species diversity index, richness 
index, densities and biomass of the 4 polychaete species men-
tioned above with SPSS statistical software package.  Non- 
parametric correlations (Spearman) were performed between 
polychaete density and organic matter with SPSS software. 

III. RESULTS 

1. Seasonal and Spatial Variations of Polychaete  
Assemblages in a Shenzhen Bay Mudflat 

Twenty-five species of polychaetes in a Shenzhen Bay 
mudflat have been collected from 2005 to 2007.  The com- 
mon species were D. pinnaticirris, N. glandicincta, Potamilla 
acuminata, N. abiuma, C. capitata, Chaetozone setosa, Nephtys 
oligobranchia.  The mean density percentage of D. pinnaticir- 
ris, N. glandicincta, N. abiuma, C. capitata during our three- 
year study were 2.18, 12.32, 2.41 and 16.50, respectively.  The 
mean biomass percentages of D. pinnaticirris, N. glandicincta,  
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Fig. 3.  Spatial and temporal fluctuations in four polychaete densities and biomass in a Shenzhen Bay mudflat. 

 
 

N. abiuma, C. capitata in our three-year study were 6.16, 
13.30, 3.09 and 2.72. 

The seasonal variations of polychaete species number, 
biomass, species diversity index, evenness index and richness 
index were different, but all of them were low in summer (Fig. 
2).  At the longitudinal transect, the polychaete density, bio-
mass, species diversity index, evenness index and richness 
index were all highest at sampling station A3, second highest 
at sampling station A2 and lowest at sampling station A4.  At 
the horizontal transect, the polychaete density, biomass, spe-
cies diversity index, evenness index and richness index were 
all highest at sampling station A3, second highest at sampling 
station H3 and lowest at sampling station F1 (Fig. 2). 

Univariate tests on the distribution of polychaete density and 

biomass revealed that both of them were significantly influ-
enced by season, station and season × station.  Except for season 
and season × station, polychaete species number, species di-
versity index and evenness index were significantly affected by 
station.  Except for season × station, the richness index was 
significantly affected by season and station (Table 1). 

2. Seasonal and Spatial Variation of Four Polychaete  
Species in a Shenzhen Bay Mudflat 

Both the densities of D. pinnaticirris and N. glandicincta 
were highest in spring, second highest in winter, third highest 
in autumn and lowest in summer.  The density of N. abiuma 
was highest in summer but the density of C. capitata was 
highest in winter (Fig. 3). 
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Table 1.  Univariate Two-way ANOVA tests of polychaete parameters and organic matter content. 

Polychaete parameters and organic matter df F Significance 

Polychaete species number Season 3 0.770 0.518 
 Station 4 7.249 < 0.001c 
 Season × Station 12 1.147 0.352 
Polychaete density Season 3 4.570 0.008b 
 Station 4 20.137 < 0.001c 
 Season × Station 12 2.898 0.006b 
Polychaete biomass Season 3 10.740 < 0.001c 
 Station 4 23.869 < 0.001 c 
 Season × Station 12 2.104 0.039 a 
Species diversity index Season 3 0.389 0.762 
 Station 4 11.130 < 0.001c 
 Season × Station 12 0.884 0.569 
Evenness index Season 3 0.345 0.793 
 Station 4 6.743 < 0.001c 
 Season × Station 12 0.928 0.529 
Richness index Season 3 3.816 0.017a 
 Station 4 12.171 < 0.001c 
 Season × Station 12 0.499 0.903 
Density of D. pinnaticirris Season 3 52.958 < 0.001c 
 Station 4 51.902 < 0.001c 
 Season × Station 12 16.218 < 0.001c 
Density of N. glandicincta Season 3 8.299 < 0.001c 
 Station 4 21.576 < 0.001c 
 Season × Station 12 1.660 0.114 
Density of N. abiuma Season 3 0.691 0.563 
 Station 4 21.679 < 0.001c 
 Season × Station 12 0.567 0.855 
Density of C. capitata Season 3 8.522 < 0.001c 
 Station 4 14.479 < 0.001c 
 Season × Station 12 2.589 0.012 a 
Biomass of D. pinnaticirris Season 3 20.034 < 0.001c 
 Station 4 68.376 < 0.001c 
 Season × Station 12 7.590 < 0.001c 
Biomass of N. glandicincta Season 3 12.849 < 0.001c 
 Station 4 23.666 < 0.001c 
 Season × Station 12 2.240 0.018 a 
Biomass of N. abiuma Season 3 1.378 0.263 
 Station 4 24.105 < 0.001c 
 Season × Station 12 1.030 0.442 
Biomass of C. capitata Season 3 6.123 0.002 b 
 Station 4 11.814 < 0.001c 
 Season × Station 12 2.434 0.018 a 
TOM Season 3 5.894 0.020 a 
 Station 4 311.109 < 0.001c 
 Season × Station 12 0.691 0.750 
a: significant at the 0.05 level; b: significant at the 0.01 level; c: significant at the 0.001 level. 

 
 
Both the densities and biomass of D. pinnaticirris and N. 

glandicincta at our horizontal transect were highest at sam-
pling station A3, second highest at station H3 and lowest at 
station F1, but both the densities and biomass of N. abiuma 
and C. capitata were reverse (Fig. 3). 

 Univariate tests on the density and biomass of D. pinnati-

cirris and C. capitata revealed that all of them were signifi-
cantly influenced by season, station and season × station.  
Except for season × station, the density of N. glandicincta was 
significantly influenced by station and season.  Except for 
season and season × station, the density and biomass of N. 
abiuma were significantly influenced by station (Table 1). 
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Table 2.  Correlation coefficients between polychaete parameters and organic matter content (n = 60). 

Polychaete parameters Organic matter Polychaete parameters Organic matter 
Polychaete species number -0.339** Density of N. glandicincta -0.603** 
Polychaete density -0.611** Density of N. abiuma 0.667** 
Polychaete biomass -0.585** Density of C. capitata 0.307* 
Diversity index (H’) -0.307* Biomass of D. pinnaticirris -0.711** 
Evenness index (J) -0.160 Biomass of N. glandicincta -0.584** 
Richness index (d) -0.353** Biomass of N. abiuma 0.701** 
Density of D. pinnaticirris -0.588** Biomass of C. capitata 0.309* 
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Fig. 4.  Spatial and temporal fluctuation of organic matter content in a Shenzhen Bay mudflat. 

 
 

3. Seasonal and Spatial Variation of Organic Matter in a 
Shenzhen Bay Mudflat 

The organic matter content was highest in summer (2.846%), 
second highest in autumn (2.736%), third highest in winter 
(2.703%) and lowest in spring (2.679%).  The mean organic 
matter content was highest at sampling station A4, second 
highest at station F1, third highest at station H3, fourth highest 
at station A3 and lowest at station A2 (Fig. 4). 

Univariate tests on the spatial and seasonal distributions of 
organic matter content revealed that it was significantly in-
fluenced by season and station (Table 1). 

4. Relationships between Sediment Organic Matter and 
Polychaetes 

Correlation analysis showed a significant negative correla- 
tion between nine polychaete parameters and organic matter 
(Table 2).  Nine polychaete parameters included polychaete 
species number, density, biomass, Shannon-Wiener diversity 
index, richness index, density and biomass of D. pinnaticirris 
and N. glandicincta.  There was no significant correlation be- 
tween evenness index and organic matter.  Correlation analysis 
showed a significant positive correlation between the density 
and biomass of N. abiuma and C. capitata and organic matter 
content (Table 2). 

There was a trend that polychaete species number, density, 
biomass, species diversity index, evenness index and richness 

index decreased with increasing organic matter content (Fig. 
5).  Higher density of D. pinnaticirris was found where the 
organic matter content was between 1.5% and 2.8% and a 
lower density was found where the organic matter content was 
between 2.8% and 3.8%.  A higher density of N. glandicincta 
was found where the organic matter content was between 
1.8% and 3.0% and a lower density was found where the or-
ganic matter content was between 3.0% and 3.8%.  A higher 
density of N. abiuma was found where the organic matter 
content was between 3.0% and 3.8% and a lower density was 
found where the organic matter content was between 1.8% and 
3.0%.  Higher density of C. capitata was found where the 
organic matter content was between 2.5% and 3.8% (Fig. 6). 

A higher biomass of four polychaete species was found  
at the same organic matter range as their densities (Fig. 7). 

IV. DISCUSSION 

Our correlation analysis showed a significant negative 
correlation between most polychaete parameters and organic 
matter on a Shenzhen Bay mudflat.  The correlation could be 
confirmed by the seasonal and spatial variations of most 
polychaete parameters.  The mean densities of D. pinnaticirris 
and N. glandicincta were both lowest in summer whereas the 
organic matter was highest in summer.  Density and biomass 
of D. pinnaticirris were low in July [2, 3] and macrofaunal 
density in Shenzhen Bay intertidal zone was also low in  
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Fig. 5.  The relationship between organic matter and polychaete parameters in a Shenzhen Bay mudflat. 
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Fig. 6.  The relationship between organic matter and the densities of four polychaete species in a Shenzhen Bay mudflat. 
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Fig. 7.  The relationship between organic matter and the biomass of four polychaete species in a Shenzhen Bay mudflat. 

 
 
summer and autumn [6].  Polychaete density, biomass, 
Shannon-Wiener diversity index, richness index, evenness 
index, density and biomass of N. glandicincta were all highest 
at sampling station A3, second highest at sampling station H3 
and lowest at sampling station F1 with a converse trend of 
increasing organic matter content. 

A significant positive correlation between the density and 
biomass of N. abiuma and C. capitata and organic matter were 
attributed to their spatial distribution patterns.  Higher density 
and biomass of N. abiuma were found inside mangrove 
sediments and a lower density and biomass were found in  
the non-mangrove area in a Shenzhen Bay mudflat [21].  N. 
abiuma was one of seven species that appeared to be re- 
stricted to the mangroves of Darwin Harbor, in the Northern 
Territories of Australia, which was subsequently reported 
from other mangrove areas in northern Australia and from  
the Indo-West Pacific.  It is also a characteristic member of  
the Indo-West Pacific mangrove fauna [46]. 

A significant positive correlation between the density and 
biomass of C. capitata and organic matter content may be 
attributed to its being an opportunistic species and tolerant to  
a high organic matter content.  C. capitata was an opportun-
istic species tolerant to stressful conditions, and was often 
found in polluted waters where it out-competed less tolerant 
species [44].  The content of standing organic matter on a 
Shenzhen Bay mudflat was more than 1.75%.  Larvae of the 
genus Capitella did not consistently choose the substrate  
with the highest organic content, and often metamorphosed 
sooner in response to substrates with insufficient organic ma-
terial for optimal growth and reproductive success [10].  Types 
of sediment organic matter may play a more important role  
in the larval habitat selection process of the genus Capitella 

than the concentration of organic matter alone [55].  At the 
Besòs site, the constant and high enrichment of sediments 
produced high densities of C. capitata individuals that are 
characterized by smaller size ranges and a high biomass re-
corded here responded to the absolute values of the standing 
organic matter content [44]. 

The density of N. glandicincta in a Shenzhen Bay mudflat 
varied with season and sampling station.  Similarly, recruit- 
ment by the nereid polychaete Nereis diversicolor was highly 
variable between years in a study by Volkenborn and Reise 
[58].  The impact of the same species N. diversicolor on the 
degradation of aged and fresh macroalgal detritus in coastal 
sediments was studied by Kristensen and Mikkelsen [36]. 

According to this study it occurred either irrespective of 
experimental treatments, or the responses were inconsistent.  
Our results along with Huang et al. [26] confirmed that a 
higher density of N. glandicincta was found in non-mangrove 
areas and a lower density was found inside mangrove sedi- 
ments on a Shenzhen Bay mudflat.  Imgraben and Dittmann 
[30] indicated that N. vaalii could not consume mangrove 
litter. 

When tolerance levels to organic matter content were com- 
pared among the 4 polychaete species, higher density and 
biomass of D. pinnaticirris was found where the organic mat- 
ter content was between 1.8% and 2.5%, for N. glandicincta, 
between 1.8% and 3.0%, for N. abiuma between 3.0% and 
3.5%, and for C. capitata between 2.5% and 3.5%.  If organic 
matter content was higher than 2.5%, we assume that the 
density of D. pinnaticirris would decrease or D. pinnaticirris 
would disappear.  If the organic matter content was higher  
than 3.0%, the density of N. glandicincta would decrease or  
N. glandicincta would disappear.  C. capitata could be found 
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at an organic matter content of about 3.0% and, therefore, 
endures a higher organic matter content.  N. abiuma was also 
found predominantly in mangrove wetlands and could endure 
an organic matter content as high as 3.5%. 

V. CONCLUSION 

Our findings suggest that in anthropogenically disturbed 
depository systems, the complex interactions between chang- 
ing environmental conditions are likely associated with popu- 
lation and assemblage changes of polychaetes.  Effects were 
strongly species-specific, demonstrating the importance of 
individual species preferences and tolerances.  We also found 
that data should be seen in the context of the overall benthic 
environmental conditions under study.  Our findings also sug- 
gest that in an anthropogenetically disturbed depository sys-
tem, high organic matter content has an impact on polychaete 
assemblages in several respects.  There was a trend that poly- 
chaete species number, density, biomass, species diversity 
index, evenness index and richness index decreased with in-
creasing organic matter content on a Shenzhen Bay mudflat.  
We explain a significant negative correlation between the 
density and biomass of D. pinnaticirris and N. glandicincta 
and organic matter content by their limited tolerance to a high 
organic matter content.  We explain a significant positive 
correlation between the density and biomass of N. abiuma and 
C. capitata and organic matter content by their preference for 
organic enrichment.  Common diversity estimates such as 
species evenness and diversity are appropriate tools to ex- 
amine either temporal successional changes or spatial transect 
transitions of macrobenthic polychaete assemblages in re-
sponse to environmental gradients such as organic matter.  
This holds particularly for a longterm monitoring survey 
presented here rather than a short-term monitoring survey. 
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