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ABSTRACT 

We studied the prey consumption rates in Apocyclops royi 
on neonate and adult rotifers, Brachionus rotundiformis and 
ciliate, Euplotes sp. in the presence and absence of algae, the 
smaller Isochrysis galbana and the larger Tetraselmis chui.  
Both males and females of A. royi were able to successfully 
ingest neonate and adult rotifers and ciliate.  The prey con- 
sumption rates were significantly lower in males than in 
females of A. royi.  Regardless of sex and reproductive state 
of the copepod, prey consumption rates were higher on 
neonates rotifer than on adults.  However, the prey con-
sumption rates were significantly lower on ciliate than rotifer 
in the female copepods.  Further, the prey ingestion rates did 
not differ statistically between ovigerous and non-ovigerous 
adults of A. royi females.  The ovigerous rotifer was ingested 
at lower rates than either non-ovigerous or neonates rotifer 
by both males and females of A. royi.  The presence of algae 
(no matter I. galbana or T. chui) negatively influenced the 
rotifer and ciliate consumption rates.  The present study 
provides first information on predatory efficiency of A. royi, 
and attests its omnivory feeding habit.  Our results suggest 
that A. royi can utilize heterotrophic food efficiently and can 
derive nutrients during periods of low primary production.  
The present study points to the role of A. royi in forming a 
link between the microbial loop and classical food chain, 
which expedites the flow of bacterial carbon to higher tro-
phic levels in estuarine ecosystems. 

I. INTRODUCTION 

Pelagic copepods are mainly omnivorous [28] and highly 
diverse [23, 43].  They feed on a wide range of food size, 

such as ciliates, rotifers and crustaceans, as well as algae and 
transfer this carbon to higher trophic level, i.e. fish, in the 
estuarine and marine food webs [37, 40, 42].  The feeding 
efficiency of copepods on microplankton, i.e. rotifers and 
ciliates, is very well documented by field and empirical 
works [1, 2, 5, 6, 10, 12, 13, 31, 32, 49].  Copepods show 
tendency to switch from phytoplankton diet to heterotrophic 
diet, when primary producers are dominated by picophyto-
plankton, whereas, their propensity of feeding switches to 
phytoplankton diet when primary producers are dominated 
by medium to larger size phytoplankton [15-17, 45].  There- 
fore, switching of feeding modes in copepods depends on 
phytoplankton size composition [15].  In general, copepods 
are selective feeders and their feeding modes have important 
implications in shaping the pelagic food web structure [20, 
21, 27, 44]. 

Apocyclops royi (Lindberg, 1940) is a euryhaline copepod 
and the only cyclopoid species being cultured commercially 
as live feed in aquaculture industry in Taiwan [3, 47].  This 
species inhibits a wide range of salinity and temperature, i.e. 
aquaculture ponds, estuaries, brackish ecosystems and ma-
rine caves etc. [8].  A. royi has a short generation time (2-5 
days) that makes this species prefect model for mass culture 
for aquaculture [46].  Apocyclops species have been evalu-
ated to feed on microalgae and cultured at very high densities 
to feed many fish larvae and early stages of juvenile in 
aquaculture [34]. 

The feeding mechanism of copepods is strongly influenced 
by the availability of various food sources [29-31] and by the 
swimming speed, density, size, age, reproductive stage, and 
abundance of prey [12, 24-26, 35, 38, 48].  Other factors are 
hunger level, satiation, age, and sex of the copepods [4, 12-14, 
22, 29-31, 38, 41].  In addition, hydrodynamic conditions, 
such as turbulence considerably affected the prey predator 
interaction in aquatic food webs [18, 19, 33, 36].  In nature, 
microplankton coexists with A. royi, and may be preferred 
food source for copepods when primary production is limited.  
However, no information is available about A. royi feeding on 
heterotrophic diet.  Therefore, we attempted to answer the 
following questions through this study: (a) Can A. royi utilize 
microplankton as a food source? (b) To what extent does the  
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Table 1.  Experimental organisms, their body sizes and culture conditions. 

Ecological group Taxonomic group Species Body size (µm) Culture condition 

Predator Copepoda A. royi ♀ 
 

950 ± 76 Mixture of autoclaved sea water and tap water
with algae, rotifers and ciliates as food 

Predator Copepoda A. royi ♂ 710 ± 75 Mixture of autoclaved sea water and tap water 
with algae, rotifers and ciliates as food 

Prey Rotifera B. rotundiformis 

(adult) 

168 ± 22 [12] Mixture of autoclaved sea water and tap water 
with I. galbana 

Prey Rotifera B. rotundiformis 

(neonate) 

48 ± 12 [12] Mixture of autoclaved sea water and tap water 
with I. galbana 

Prey Ciliophora Euplotes sp. 46 ± 8 [13] Mixture of autoclaved sea water and tap water 
with I. galbana 

Prey Chromalveolata I. galbana 4.16 ± 0.65 [13] Walne’s medium [50] 

Prey Chlorophyta T. chui 17.35 ± 1.98 [13] Walne’s medium [50] 

 
 

presence of autotrophic protists in its environment affect 
predation on heterotrophic diet? 

II. MATERIAL AND METHODS 

1. Experimental Organisms 

1) Copepod Culture 

Details of the experimental organisms are shown in Table 1.  
The culture of adult A. royi was isolated from zooplankton 
samples collected from a coastal brackish water pond of  
Taiwan.  A monoculture was developed in a mixture of filtered 
seawater and autoclaved tap water, and inoculated into a 5-L 
aquarium that contained 4-L of medium.  A mixture of the 
microalgae Isochrysis galbana and Tetraselmis chui, rotifer 
Brachionus rotundiformis, and ciliate Euplotes sp. was used as 
food for the copepods.  The culture was maintained at 28°C 
and salinity 20 under a photoperiod of 12 h of light and 12 h of 
dark.  The copepod culture was maintained in the laboratory 
for ≥3 months prior to the experiment.  Moreover, ≥200 ovi- 
gerous females of A. royi were collected to obtain freshly 
hatched nauplii to perform the experiment.  All experiments 
were conducted with A. royi of a known age (12 to 14 days).  
The culture was continuously mildly aerated to keep the food 
uniformly distributed in the culture tank.  The culture medium 
was renewed twice a week. 

2) Rotifer and Ciliate Culture 

The culture of rotifer B. rotundiformis was isolated from 
zooplankton samples collected from a coastal brackish water 
pond of Taiwan.  Monoculture of rotifer was started from the 
single ovigerous rotifer of B. rotundiformis.  The culture was 
maintained in 2000 ml beaker with 1800 ml water medium at 
salinity 22 ± 1 and temperature 26 ± 2°C.  The microalgae  
I. galbana was provided as a food.  The culture was mildly 
aerated continuously for keeping the food uniformly distrib-
uted in the culture beaker. 

Ciliates of the genus Euplotes were originally isolated from 
the rotifer culture beaker.  They were propagated and main-
tained in a 2-L beaker at salinity 20 and fed to the unicellular 
alga I. galbana (Table 1).  The culture medium was changed 
on alternate days with a mixture of filtered autoclaved sea-
water and autoclaved tap water (salinity 20 ± 1 and tempera-
ture 26 ± 2°C). 

3) Algal Culture 

Mass cultures of both algal species (I. galbana and T. chui) 
were established in the laboratory.  Algal culture media were 
prepared by enriching sterile filtered seawater with macronu-
trients and micronutrients (Walne medium; Walne 1970) in a 
2-L borosilicate glass flask (Table 1).  The algal culture was 
maintained at 27 ± 2°C and salinity 30 in 12 h light: 12 h dark 
photoperiodic condition.  The algae were harvested in their 
exponential growth phase of the nutrient-replenished condi-
tion to prevent mineral nutrient limitation. 

2. Experimental Protocol 

Predation rates on ciliate (Euplotes sp.) and rotifer (neo-
nates, nonovigerous adults and ovigerous adults) by males and 
ovigerous and nonovigerous females of P. annandalei were 
examined in the presence and absence of an algal diet.  The 
experimental protocol included the following: (a) prey (either 
rotifer or ciliate) alone, (b) prey (either rotifer or ciliate) with  
I. galbana and (c) prey (either rotifer or ciliate) with T. chui.  
Known-age individuals of A. royi were collected from stock 
culture and transferred to a bowl containing 40-mL of medium 
3-h prior to the experiment.  A. royi was deprived of food for 
3-h prior to the experiment.  Subsequently, 40 cells of Euplotes 
sp., neonate rotifer and adult rotifer were introduced into each 
respective bowl, and five bowls were used for each treatment.  
The number of prey consumed was recorded after 60-min.  A. 
royi was removed from the experimental bowl at the end of the 
test, and all remaining live prey from each bowl were carefully 
counted under a stereo zoom microscope (Olympus SXZ 16)  
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Fig. 1. Prey consumption rates (mean ± SE) of ovigerous and non- 
ovigerous ♀s and ♂s A. royi preying on the rotifer B. rotundi-
formis (neonates, non-ovigerous and ovigerous) and ciliate 
Euplotes sp. The superscripts with different letters denote sig-
nificant difference within each gender.  NR = neonate rotifer, 
ANR = adult nonovigerous rotifer, OR = ovigerous rotifer. 

 
 

to obtain an estimate of the number consumed.  All experi-
ments were conducted at salinity 19 ± 0.5 and at a fixed tem-
perature (28°C) in a BOD incubator.  The same sized of roti-
fers, ciliate and algal prey were used for the experiment that 
was used in our previous published studies [12, 13]. 

3. Statistical Analysis 

Data were analyzed by one-way and two-way analysis of 
variance (ANOVA).  When significant differences were found 
among treatments, Turkey’s post hoc test was used to test 
specific differences among treatments.  SPSS (Statistical 
Program for Social Sciences) software version 17 was used for 
all statistical analysis. 

III. RESULTS 

1. Prey Consumption Rate 

Prey consumption rates in A. royi have been shown in Fig. 1.  
The prey consumption rates in A. royi were significantly lower 
in males than those in females for both rotifer (neonate and 
adults) and ciliates (p < 0.001, two-way ANOVA).  Within 
ovigerous and nonovigerous females, the prey consumption  
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Fig. 2. Prey consumption rates (mean ± SE) of (A) ovigerous, (B) non- 
ovigerous ♀s and (C) ♂s of A. royi preying on the rotifer B. ro-
tundiformis (neonates, non-ovigerous and ovigerous) and ciliate 
Euplotes sp., in the presence of algae, I. galbana. The superscripts 
with different letters denote significant difference within each 
gender.  NR = neonate rotifer, ANR = adult nonovigerous rotifer, 
OR = ovigerous rotifer.  

 
 

rates were non-significant regardless of prey size and type in 
the environment (p > 0.178, Fig. 1).  Furthermore, the rotifer 
ingestion rates were significantly higher on neonates than 
adults of B. rotundiformis (p < 0.01, two-way ANOVA) and 
Euplotes cells in female copepods. 

The prey ingestion rates were significantly different in fe-
male regardless of type and size of prey (p < 0.0001).  The 
highest and lowest consumption rate was recorded for neonate 
and ovigerous rotifer respectively in female copepods com-
pared to nonovigerous rotifer and ciliate (p < 0.001, one-way 
ANOVA).  However, the consumption rate did not differ sta-
tistically between ciliate and nonovigerous rotifer (p > 0.974).  
In contrast, the ingestion rates did not differ statistically 
among all tested prey in male A. royi (p > 0.421). 

2. Effect of Larger and Smaller Algae on Prey  
Consumption Rates 

The presence of algae in the environment of A. royi elicit 
significant effect on rotifer and ciliate consumption rates (p < 
0.009, Two-way ANOVA, Fig. 2 and Fig. 3) except the con-
sumption rates of ciliate and ovigerous rotifer in nonovigerous 
female (p > 0.33, one way ANOVA) and neonate consumption  
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Fig. 3. Prey consumption rates (mean ± SE) of (A) ovigerous, (B) non- 
ovigerous ♀s and (C) ♂s of A. royi preying on the rotifer B. ro-
tundiformis (neonates, non-ovigerous and ovigerous) and ciliate 
Euplotes sp., in the presence of algae, T. chui.  The superscripts 
with different letters denote significant difference within each 
gender.  NR = neonate rotifer, ANR = adult nonovigerous rotifer, 
OR = ovigerous rotifer. 

 
 

rate in male copepods (p > 0.25).  We observed almost similar 
ingestion rates on ciliate and rotifer (neonate and reproductive 
states) by A. royi (gender and reproductive states) in the 
presence of smaller, as well as larger sized algae except the 
cases of ciliate and ovigerous rotifer by nonovigerous female 
copepod in the presence of T. chui (p > 0.05, one way 
ANOVA).  In the presence of larger algae T. chui, the higher 
number of ciliates were ingested than ovigerous rotifer by 
nonovigerous A. royi females (p < 0.037, one way ANOVA). 

IV. DISCUSSION 

A. royi actively ingested 1.5 to 9.6 number of the rotifer and 
2.8 to 5.4 number of the ciliate.  Although, the presence of 
algal diets in the medium resulted in 14-56% reduction of the 
rotifer ingestion and 51% reduction in the ciliate ingestion in 
the males and females of A. royi.  In consequence, our results 
clearly indicate that A. royi is omnivorous and microplankton 
can be the essential part of the diet of this species, when the 
autotrophic food production is limited in its habitat.  The ro-
tifer and ciliate genus used in this study are widely distributed 

(cosmopolitan) such as several other microzooplankton.  In 
nature, microplankton coexists with copepods and constitutes 
an important link in the food chain.  They are the preferred 
prey of many copepods [7, 12, 13, 29, 39, 49].  Dhanker et al. 
[12, 13] investigated that Pseudodiaptomus annandalei fed 
efficiently on the rotifer B. rotundiformis and ciliate Euplotes 
sp. even in the presence of alternate algal food. 

The hunger level, satiation, age, and gender of the copepods 
have been investigated to influence predatory behavior of 
copepods [4, 12, 13, 29, 30, 31, 41].  In our previous studies, 
male copepods have been noted as less-efficient predator 
compared to their female counterparts [12, 13].  Longer 
searching and handling times, and lower ingestion and higher 
rejection rates of prey were recorded for male P. annandalei in 
comparison to female [12, 13].  Similarly, 21-50% and 34- 
49% higher consumption of rotifer and ciliate were observed 
in females of A. royi respectively in comparison to males in the 
present study. 

Other factors that influence predation interactions between 
copepods and their prey are the density, swimming speed, size, 
age, reproductive stage, and abundance of prey [4, 12, 13, 29, 
30, 31, 38, 41].  In the present study, we found that A. royi 
ingested the lower number of ciliate than rotifer.  Prey size and 
mobility may attribute different feeding modes in the cope-
pods [13]. 

In nature, phytoplankton food is not adequate to support 
normal growth and to realize actual reproductive performance 
in some copepod species [11, 25].  In such cases, microplank- 
ton may be more beneficial food compared to phytoplankton 
due to their higher dietary value [9].  Copepods can produce 
more eggs on a mixed diet of microplankton and algae than 
algal diet alone.  Acartia tonsa produced 25% more eggs when 
fed ciliates and rotifers than when this was fed only with algal 
diet [45].  However, the influence of the experimental prey on 
reproductive performance of A. royi has not been discussed in 
our study. 

In conclusion, the perennial abundance in natural habitats 
and efficiency of utilizing autotrophic and heterotrophic foods, 
suggest that feeding habits of A. royi are highly adaptive and it 
can derive nutrients during periods of low primary production.  
The present study points to the role of A. royi in forming a link 
between the microbial loop and classical food chain, which 
expedites the flow of bacterial carbon to higher trophic levels 
in estuarine ecosystems.  Laboratory experiments such as 
those in this study are important for estimating ingestion rates 
at specific prey concentrations and determining what factors 
influence those rates.  However, better estimates of natural 
microplankton concentrations, size and permanence of patches 
are necessary before such studies can be used to quantitatively 
measure mortality from predation in nature. 
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