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ABSTRACT 

The southern bluefin tuna (Thunnus maccoyii) is a long- 
lived, large, and highly migratory marine fish in the Indian 
Ocean.  They can live up to 40 years and migrate to the Great 
Australian Bight in the summer when 1-4 years old.  The Great 
Australian Bight is characterized as the most productive 
coastal upwelling zone in southern Australia and is the largest 
area of cool-water carbonate sedimentation in the world.  The 
barium (Ba) level is poor in the open ocean but rich in the 
upwelling area.  This study used otolith Ba/Ca ratios as a 
natural tag to confirm that southern bluefin tuna seasonally 
occupy the upwelling area.  Southern bluefin tuna were col-
lected from the central Indian Ocean and the spawning ground 
between the island of Java, Indonesia and northwestern Aus-
tralia.  The temporal variation of trace elements in otoliths of 
the specimen was measured by laser ablation inductively 
coupled plasma mass spectrometry.  Otolith Ba/Ca ratios were 
significantly elevated in the summer growth zone, which 
corresponds to the upwelling season when juvenile tuna enter 
the Great Australian Bight at the age of 1-4 years old.  Al-
though almost all of the mature southern bluefin tuna collected 
in the spawning ground had previously migrated to the Great 
Australian Bight upwelling area as juveniles, some fish col-

lected from the Central Indian Ocean didn’t migrate to the 
Great Australian Bight upwelling area, perhaps because they 
are a vagrant population and may contribute less to the 
spawning stock. 

I. INTRODUCTION 

The southern bluefin tuna (SBT, Thunnus maccoyii) is a 
long-lived, large, and highly migratory marine fish.  They can 
live for up to 40 years and grow up to 2 m in length and over 
200 kg in weight [18].  The tuna is mainly distributed between 
30°-50°S latitude throughout three Oceans in the southern 
hemisphere [8].  Its only spawning ground is located around 
7°-20°S latitude and 100-125°E longitude between the island 
of Java, Indonesia and northwestern Australia [8].  The SBT 
spawns during the austral summer between September and 
March [43].  After hatching, the post-larval fishes disperse 
southwards along the western coast of Australia with the 
tropical Leeuwin Current to the inshore waters between  
Perth and Esperance [8].  The SBT arrives in waters of south-
western Australia during their juvenile stage, and they migrate 
east along the southern coast towards nursery grounds in  
the Great Australian Bight (GAB).  The migration of juvenile 
SBT in the GAB was confirmed by tracking with archival  
tags [21].  They migrate to the east or west of Australia within 
the latitudes of 30-50°S during autumn, and return to the GAB 
in the spring before 4 years old [19].  The GAB, the largest 
area of cool-water carbonate sedimentation in the world, is 
characterized as the most productive coastal upwelling zone  
in southern Australia [26].  In addition, the GAB plays an 
important role in primary production for Australian fisheries.  
After 5 years old, almost all SBT have recruited to the adult 
stock in the open ocean.  They then circumglobally disperse  
to temperate feeding grounds between 30°S and 50°S [8].  
After maturation at 8-12 years old, the tuna only migrates 
between their tropical spawning ground in the tropical zone 
and feeding grounds in the temperate zone [20]. 

Otoliths function for the hearing and balance of the fish.  
They are mainly composed of calcium carbonate with a minor  
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Table 1. Mean (± SD) and range of fork length, body weight, and age of southern bluefin tuna used for otolith trace 
element analysis, which were collected from the central Indian Ocean (CIO) and the spawning ground South of 
Java (SPAWN).  n: sample size. 

Sampling sites Sampling Date n Fork length (cm) Body weight (kg) Age (yrs) 

CIO 
(31-33°S, 71-77°E) 

14 July - 3 August 2004 14 122.7 (± 22.9) 
91 - 170 

34.1 (± 21.4) 
12 - 79 

10.1 (± 7.7) 
4 - 27 

SPAWN 
(10-20°S, 110-120°E) 

1 Jan & 3 Feb 2005 15 172.9 (± 8.6) 
160 - 189 

98.9 (± 20.6) 
75 - 137 

16.3(± 3.2) 
13 - 25 
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Fig. 1. Sampling sites of southern bluefin tuna in the central Indian 

Ocean (CIO, 31-33°S, 71-77°E) and the spawning ground south of 
Java (SPAWN, 10-20°S, 110-120°E) [8]. 

 
 
organic matrix and a few trace elements.  The otoliths are 
deposited in a daily and annual schedule that is synchronized 
with the photoperiod and seasonal temperature variation.  As 
such, it yields recognized growth checks, which are daily 
growth increments or annuli in the otolith.  This allows fish 
age determination at daily or annual cycles.  At least 31 ele-
ments have been found to be deposited in the otolith during  
the growth of fish [7].  Otolith growth increments are metab-
olically inert once deposited and become a permanent record 
of fish life history.  The otolith trace element such as barium 
(Ba) is taken up from the ambient water and is positively 
correlated to ambient water concentrations [3].  The barium in 
estuaries and bays mostly originates from freshwater but both 
coastal and oceanic upwelling areas are rich with barium.  An 
increased barium concentration in fish otoliths might be a 
signature of oceanic upwelling [3, 9].  Thus, it should be pos-
sible to determine whether fish have encountered an upwell- 
ing area by examining the temporal change of the barium 
concentration in their otoliths. 

The archival tag has been used to track the population 
structure and migration of juvenile SBT in the GAB [21] and 
northern bluefin tunas in the Atlantic and Pacific Oceans [4, 
25].  The population structure, migratory environmental his-
tory and physiology of the SBT has also been studied by 
analyzing the otolith elemental composition by EPMA (elec-
tron probe microanalyzer) [35] and by laser-ablation induc-

tively coupled plasma mass spectrometry (LA-ICPMS) [44].  
However, knowledge of the migratory behavior and habitat 
use of the SBT in association with its environment remains 
fragmented.  And few studies have explored the otolith ele-
mental signature of the tuna in relation to oceanic upwelling 
[39]. 

This study tested whether the Ba in otoliths is a reliable 
natural tag to explore the migration of the SBT to upwelling 
areas.  Laboratory and field studies of otolith Ba/Ca ratios  
in marine fish in relation to fish migration to an upwelling  
area have shown a positive relationship between the Ba/Ca 
concentration in the ambient water and otolith.  Thus, we 
analyzed the temporal change of Ba/Ca ratios in the otolith  
of SBT by LA-ICPMS, and examined the life history rela-
tionship between the migration behavior of SBT and the 
variation in otolith microchemistry. 

II. MATERIAL AND METHODS 

1. Specimen Collection 

The SBT was collected from two different habitats - their 
feeding ground in the central Indian Ocean (CIO) and their 
spawning ground in the waters between southern Java and 
northwestern Australia (SPAWN).  Otolith trace elements 
were analyzed by ICPMS for 14 SBT from the CIO and for 15 
SBT from the SPAWN (Fig. 1).  The mean length, weight, and 
age of the specimens are shown in Table 1.  Otoliths of SBT 
from the CIO were removed immediately after capture in the 
fishing boat by the observer with a battery powered hole-saw 
drill, while those from the SPAWN were removed in the fish 
market 1 to 7 days after capture.  After collection, the otolith 
specimens were cleaned with de-ionized water, air-dried, and 
then stored in Eppendorf microcentrifuge tubes for age de-
termination and otolith microchemistry analysis. 

2. Otolith Preparation for Microchemistry Analyses by 
LA-ICPMS 

For the analysis of trace elements, each otolith was cleaned 
with 5% H2O2 to remove all remaining organic material from 
the otolith surface, ultrasonically cleaned with de-ionized 
water, oven-dried overnight at 60°C, and embedded in epofix 
resin and transversely sectioned with a low speed saw (Isomet, 
Buehler) into slices approximately 300 µm thick with the 
primordium in the middle.  The sectioned otolith was ground  
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Fig. 2. (upper) The LA-ICPMS measurement axis along the long arm of 

the otolith from the primordium to the otolith edge and (lower) 
the annuli in the otolith of a 17-year-old southern bluefin tuna 
(FL = 172 cm).  P: primordium, 1st and 2nd IPs: first and second 
inflection points, solid circles: annuli. 

 
 

with 2000 grit sandpaper followed by 2400 grit carborundum 
until the primordium appeared.  Finally, the otolith sections 
were polished with 0.05 µm alumina paste to smooth the sur-
face. 

The elements in the otoliths were measured from the pri-
mordium to the edge of the long arm (Fig. 2) by a high reso-
lution LA-ICPMS (Finnigan MAT ELEMENT 2, Thermo 
Electron corp., Bremen, Germany) connected with a Mer-
chantek LUV 266TM Nd: YAG UV laser microprobe (New 
Wave Research, Inc).  The laser was pulsed at a repetition rate 
of 20 Hz, at a scan speed of 15 µm ⋅ sec-1 with an ablation 
transect diameter of approximately 150 µm.  The elements, 
23Na, 24Mg, 44Ca, 55Mn, 88Sr, and 138 Ba, were measured be-
cause they always remain at least 10 times higher than the 
background levels.  The setting took about 2.46 sec to pro- 
duce one data point, which represented approximately 37 µm 
on the otolith transect.  Standards (NIST 612) were collected 
before each series, with each series comprising 2-3 otoliths.  
At the start of each otolith analysis, background counts were 
collected for 30 seconds, and the average was then subtracted 
from the sample counts to correct for the background level.  
The ablation chamber was purged for 60 seconds after sam-
pling each otolith.  All measurement data were expressed as 
ratios of element to Ca concentrations (ppm ⋅ ppm-1) by esti-
mating the relative response factor of the instrument to the 
known concentration in the standard (NIST 612). 

3. Otolith Annulus and Microstructure Examination 

The annulus (opaque zone) on the polished otolith sections 
of SBT was identified from a photograph taken under trans-
mitted light with a compound microscope equipped with a 
digital camera.  The SBT otolith annulus consists of a dark 
opaque zone and a light translucent zone under transmitted 
light (Fig. 2).  The age of the tuna was determined by counting 
the number of annuli along the ventral arm, following the 

manual for age determination of southern bluefin tuna Thun-
nus maccoyii [1].  The terminology describing the otolith used 
in this study followed Rees et al. [38].  Respectively, the first 
and second inflection points in the otolith were identified to 
examine the temporal change in the otolith elemental signature 
during the early life stage of the fish and during maturation. 

4. Data Analyses 

The general spatio-temporal variation in otoliths of the six 
elements examined (Na, Mg, Ca, Mn, Sr, and Ba) was de-
scribed by Wang et al. [44].  The spatial variation of barium in 
otoliths has now been demonstrated for a variety of species [12, 
23].  A positive relationship exists for barium between the 
otolith and ambient water, where the water temperature and 
salinity do not vary greatly [31].  Ambient data for barium can 
be used to predict the spatial and temporal variation of barium 
in otoliths.  Likewise, barium concentrations in the otolith can 
potentially be used to reconstruct histories of the ambient 
water mass [22].  In this study, we focused on the timing of  
the peak Ba/Ca ratios in the otolith in relation to fish age and 
the relative position of the annulus to understand the timing of 
SBT recruitment to the upwelling area of the GAB.  The cri-
terion in the judgement of the otolith Ba/Ca ratio as a signal of 
upwelling for the tuna was determined from the average oto-
lith Ba/Ca ratio (3.7 × 10-6) of 14 marine spices reviewed by 
Campana [7] and that of other marine fish species (less than 
4.0 × 10-6) [16, 22, 41].  Otolith Ba/Ca ratios greater than 4.0 × 
10-6 were identified as a signal of upwelling.  The age and 
season when the tuna migrated to the upwelling area was 
determined from the position of the peak Ba/Ca ratio and the 
annulus of the otolith.  The patterns of migration to the up-
welling area were classified into 7 types according to the oc-
currence of peak Ba/Ca ratios, and the type frequency was  
also compared between CIO and SPAWN by life stage.  Life 
stage I refers to the larval stage (0 to 55 days old), stage II 
refers to the juvenile stage (55 days to 1 year old), stage III 
refers to the juvenile to sub-adult stage (1 to 4 years old), and 
stage IV refers to the sub-adult to adult stage (more than 4 
years old), see Table 2. 

III. RESULTS 

1. Seasonal Occurrence of Otolith Annuli  

The first inflection point in the otoliths of SBT occurred 
between the primordium and first annulus and corresponds to 
the transition from larval to juvenile life stage (Fig. 2).  Otolith 
annual growth increments were smaller after the second in-
flection point, which corresponds with sexual maturation at 
ages 8-12, indicating a reduction in growth rate after matura-
tion (Fig. 2). 

The marginal increment in SBT otoliths from the last an-
nulus (opaque zone) to the otolith edge was different between 
CIO and SPAWN (Fig. 3).  A translucent zone was present in 
SBT collected from the spawning ground in February of the 
austral summer (Fig. 3(a)), but an opaque zone appeared just  
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Table 2. Migratory type of southern bluefin tuna based on 
the occurrence of peak otolith Ba/Ca ratios at 
different life stages.  A dot indicates the presence 
of a Ba: Ca peak, X indicates no peak during an 
otolith stage. 

 Occurrence types of upwelling signature in otolith  
by life stage 

Type I II III IV 
A ● ● ● ● 
B ● ● Χ ● 
C ● Χ ● ● 
D Χ ● ● ● 
E Χ ● ● Χ 
F Χ Χ ● ● 
G Χ Χ Χ Χ 

Stage I: larval stage (0-55 days old); Stage II: larval-juvenile stage 
(55 days-1 year old); Stage III: juvenile stage (1-4 years old); Stage 
IV: juvenile-adult stage (4-10 years old). 

 
 
(a) (b)
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1000 µm
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Fig. 3. Comparison between sampling seasons of the marginal increment 

from the last annulus (opaque zone) to the edge of southern 
bluefin tuna otoliths.  (a) Collected in southern Java in February 
2005 (austral summer), FL = 165 cm; (b) collected from the CIO 
in July 2004 (austral winter), FL = 151cm.  Solid circles: annuli 
(opaque zones).  (a) and (b) are magnified from (c) and (d). 

at the otolith edge for SBT collected from the CIO in July of 
the austral winter (Fig. 3(b)).  This indicated that an opaque 
zone was deposited in the austral winter and a translucent zone 
in the summer. 

2. Migratory Types of SBT and Occurrence Season of 
Upwelling Signal in Otolith 

The migratory patterns of SBT in the Great Australian 
Bight upwelling area as indicated by the upwelling signal of 
otolith peak Ba/Ca ratios were divided into 7 types (Table 2).  
Type A: peak Ba/Ca ratios appeared in all life stages I, II, III 
and IV (Figs. 4(a) and (h)), indicating that the fish encoun- 
tered barium-rich inshore, coastal waters or upwelling during 
the larval and juvenile stages.  The percentage of Type A was 
about 21.4% in the CIO and 6.7% in the SPAWN.  Fish of 
Types B and C showed an upwelling signal in stage I but not at 
stages II and III because no peak Ba/Ca ratios were found 
between the first inflection and first annulus (Stage II) or in  
the juvenile stage at 1-4 years old (Stage III) (Figs. 4(b), (c), 
and (i)).  Types B and C were about 14.2% in the CIO and 
13.3% in the SPAWN.  For types D, E, and F no upwelling 
signal occurred at stages I and II (Figs. 4(d), (e), (f), (j), (k), 
and (l)), indicating that they delayed migrating to the  
barium-rich areas until the juvenile stage.  Type E fish didn’t 
return to the barium-rich area again.  The percentage of Type 
D, E, and F was about 57.2% in the CIO and 80.0% in the 
SPAWN, respectively.  Type G fish had no upwelling signal in 
any life stage (Fig. 4(g)), indicating that after hatching they 
didn’t migrate to the barium-rich area until capture.  They only 
occurred in the CIO (7.1%). 

The peak otolith Ba/Ca ratios of all 29 SBT appeared in the 
translucent zone of the otolith, indicating that they encoun-
tered a barium-rich area in the summer (Fig. 4). 

3. Comparison of Migratory Patterns between the CIO 
and the SPAWN by Age Group 

Type D was dominant among the 7 types of migratory pat-
terns, reaching 60.0% for the SPAWN and 28.6% for the CIO 
(Table 3).  This implied that most SBT (90%) migrate to the 
upwelling area after their juvenile stage (ages 1-4).  The fre-
quency of the occurrence of peak SBT otolith Ba/Ca ratios  
was not consistent between CIO and SPAWN (X 2 = 6.040,  
p < 0.05) (Fig. 5), indicating the migratory pattern was dif-
ferent for the SBT between sampling location.  Although only 
a low percentage of larval stage (before the first inflection) 
tuna migrated to the upwelling area for both CIO and SPAWN 
(20-40%), the percentage was higher in SPAWN (60%) than  
in CIO (30%) for age groups 2-3 and 3-4 (X2 = 4.441 and 
4.209, p < 0.05). 

IV. DISCUSSION 

1. Linkage between the Peak of Otolith Ba/Ca Ratio and 
Upwelling Events 

Juvenile SBT enter southern Australian waters and aggre- 
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Fig. 4. Temporal changes in otolith Ba/Ca ratios of southern bluefin tunas collected from the central Indian Ocean (CIO, Types A-G) and from the 

spawning ground south of Java (SPAWN, Types A and C-F).  The Types A-G are described in Table 2.  The locations of annuli with numerals 
and of peak Ba/Ca ratios greater than 4.0 × 10-6 (the criterion as upwelling signal, red band) are indicated by black and grey arrows, respectively.  
Age is indicated with the sampling site of each fish.  The 1st inflection is shown in Fig. 2. 
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Table 3. Comparison of the occurrence frequency of the 
type of upwelling signature in otolith of southern 
bluefin tuna between Central Indian Ocean (CIO, 
n = 14) and spawning area (SPAWN, n = 15).  
Total sample size = 29.  Types A-G are described 
in Table 2. 

 Occurrence frequency (%) of the type of upwelling  
signature in otolith  

Type CIO SPAWN Total 

A 21.4 6.7 13.8 

B 7.1 0 3.4 

C 7.1 13.3 10.3 

D 28.6 60.0 44.8 

E 14.3 6.7 10.3 

F 14.3 13.3 13.8 

G 7.1 0 3.4 

Total 100 100 100 
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Fig. 5. Comparison of the frequency of occurrence of peak Ba/Ca ratios 

in southern bluefin tuna otoliths, by age group, for the central 
Indian Ocean (CIO) and the spawning ground south of Java 
(SPAWN). 

 
 
gate in the Great Australian Bight (GAB) during the austral 
summer, then disperse to the east or west of Australia within 
latitudes 30-50°S during the autumn and return to the GAB in 
the spring [19].  The GAB is characterized as the most pro-
ductive coastal upwelling zone in southern Australia and is  
the largest area of cool-water carbonate sedimentation in the 
world [26].  The otolith Ba/Ca ratio of SBT peaked during  
the austral summer, mostly at the ages of 1-4 years old, which 
corresponds to the age and the season of SBT appearing in the 
GAB.  This suggests that the otolith Ba/Ca ratio is a reliable 
natural tag for recording the migratory environmental history 
of SBT to the upwelling area (GAB). 

2. Occurrence Season of the Peak Ba/Ca Ratios in Otolith 

Studies of the gut contents suggest that SBT migrated to the 
GAB to forage [29, 45].  The primary food items of juvenile 
SBT during the summer in the GAB are pilchards (Sardinops 

sagax) and anchovy (Engraulis australis).  These forage fish 
spawn in the upwelling area during the austral summer and 
autumn [45], which might attract SBT to migrate to the GAB 
during the austral summer.  This supports the idea that the  
peak SBT otolith Ba/Ca ratios were deposited during their 
foraging migration to the GAB during the summer season.  
The variation in the magnitude of peak otolith Ba between 
years might be due to the inter-annual change in the strength  
of the upwelling. 

The otolith Ba/Ca ratios of other fish are weakly affected  
by temperature, which might influence the estimation of the 
upwelling effect on the peak otolith Ba/Ca ratios, and subse-
quently the migratory environmental history of the fish [3, 22, 
30].  Salinity may also influence the incorporation of barium 
into the otolith, particularly in diadromous or freshwater fishes 
[11, 22].  The SBT lives in the open ocean which has a com-
paratively constant environment relative to that of diadro- 
mous or freshwater fishes in the estuary or freshwater.  Thus, 
salinity might not greatly influence the otolith Ba/Ca ratios  
of tunas in the open ocean.  Barium concentration varies posi- 
tively with the environmental water chemistry [13, 30].  We 
have no data to verify whether the summer peak in SBT otolith 
Ba/Ca ratios was influenced by seasonal changes in water 
temperature.  If the effect of the temperature on the barium 
uptake of the fish was significant, then another peak otolith 
Ba/Ca ratio would be expected when the SBT migrated be-
tween the tropical spawning area south of Java after matura-
tion at the age of 8-12 years [20].  However, no such seasonal 
peak Ba/Ca ratio was found for most SBT, suggesting a neg-
ligible temperature effect on otolith Ba/Ca ratios. 

3. Individual Variation in Peak Otolith Ba/Ca Ratios 

The peak of SBT otolith Ba/Ca ratios occurred mostly at  
the age of 1-4 years old, which corresponds to the age of the 
SBT migration to the upwelling area of the GAB.  However, 
the age of the occurrence of peak otolith Ba/Ca ratios varies 
among individuals, which might indicate that the timing at 
recruitment to the upwelling area of GAB differs among in-
dividuals.  Fish of Types A-C had peak otolith Ba/Ca ratios 
before the first inflection at approximately 45–55 days old 
which corresponds to the life-stage transition from larva to 
juvenile and a habitat shift away from the inshore nursery  
area in northwestern Australia.  Two types of upwelling  
occur in the Indian Ocean, wind-driven coastal upwelling and 
current-induced oceanic upwelling.  Both types of upwelling 
may have a different influence on T. maccoyii.  Larvae < 
45–55 days old (or before the first inflection point) are usually 
distributed between southern Java and north-western Austra-
lian but otolith Ba:Ca concentration ratios were low at this  
age, suggesting that no upwelling happened in this location  
as found by Wyrtki (1962) [47].  This indicated that SBT 
might encounter Ba-rich waters in the spawning area at the  
larval-juvenile stage transition.  The only known SBT spawning 
ground is located between southern Java and northwestern 
Australia (about 7°-20°S and 100-125°E) where several cur-
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rents occur, including the Indonesian through flow (ITF), 
South Java current (SJC), South Equatorial current (SEC), 
Eastern Gyral current (EGC) and the Leeuwin current (LC).  
The mixing of these currents might produce an upwelling of 
the Ba-rich deep water to the surface and enable a high Ba 
uptake by some larval SBT.  There is an upwelling along Java 
and Sumatra near the spawning area [5, 36].  However, the 
appearance of the upwelling signature was controlled by the 
annual monsoon and remotely by ENSO (El Niño-Southern 
Oscillation) [42].  This can explain the elevated Ba/Ca ratios 
in the otolith of SBT at the juvenile stage.  The larval SBT  
is usually transported from the spawning ground by the 
southward-flowing Leeuwin Current to the Great Australian 
Bight along the west Australian coast where no upwelling 
occurs [47].  The productivity in the coastal waters of western 
Australian is low because of downwelling and the poleward- 
flowing Leeuwin Current [14, 24].  The southward Leeuwin 
Current is characterized by warm and low salinity waters  
that seasonally change with maximum flows in autumn and 
winter [34].  Sardine eggs and larvae are abundant along the 
southwestern coasts of Australia from June to August and 
from December to February, which is linked to the coastal 
upwelling [15, 17, 33].  The occurrence of some SBT with 
peak otolith Ba/Ca ratios before age-1 might be the result of 
coastal upwelling along the southwestern Australia coast.  A 
higher barium upwelling signature helped distinguish the dif- 
ferent nursery grounds of the northern bluefin tuna (Thunnus 
orientalis) [39]. 

In addition, stable isotopes of oxygen in the otolith have 
been validated for reconstructing the temperature histories of 
fish [40].  The δ18O values in otoliths were negatively corre-
lated with the ambient temperatures experienced by the fish.  
After spawning the larval SBT migrated to the southern tem-
perate zone from the tropics.  Shiao et al. (2009) used the 
composition of both O and C isotopes to reconstruct the mi-
gratory temperature history of SBT and show a correlation 
between otolith δ18O values and the ambient temperature for 
SBT less than one-year-old [40].  The otolith δ18O values 
increased gradually as the temperature decreased when fish 
migrated from the spawning ground to the nursery ground.  
After age one, the thermal conservation ability of the fish 
developed gradually, however, the seasonal change of δ18O 
values in otolith was still obvious (see Fig. 4 in Shiao et al. 
2009) [40].  The δ18O values between two annual otolith in-
crements in the summer zone were higher than those in the 
winter zone at ages less than 4 years.  This indicated the fish 
migrated to a low temperature upwelling area during the  
high temperature summer season.  The GAB is the largest 
cool-water carbonate upwelling area in the world.  The match 
between the temperature history of the SBT as revealed from 
both otolith oxygen isotopes and Ba/Ca ratios indicates that 
the otolith Ba/Ca of SBT can be used to examine fish habitat 
residency in areas of oceanic upwelling. 

The Ba concentration in the surface waters of the Southern 
Ocean ranges between 4.2-5.5 µg ⋅ L-1, which is similar to that 

in the GAB upwelling area (5-6 µg ⋅ L-1) [22, 27].  Thus, the 
peak Ba/Ca ratios in otolith of SBT older than 5 years might  
be due to fish migrating to the southern ocean or polar front.  
Between age 5 and maturation at the age of 8–12 years, SBT 
migrate from the Great Australian Bight eastward and west-
ward to the circumglobal feeding grounds between 30 and  
50°S in the open ocean.  The area 30–50°S is located at  
the boundary between subarctic and central Indian Ocean 
waters, which is a divergence zone where Ba-rich deep water 
may upwell to the surface layer of the ocean.  Thus, a peak 
otolith Ba:Ca ratio may occur annually, but not regularly, in  
T. maccoyii after maturation.  The difference in amplitude  
of the Ba:Ca ratios might indicate annual changes in the 
strength of the upwelling.  The SBT from the CIO where no 
peak otolith Ba/Ca occurred between the ages of 1-4 years 
might indicate that some larvae entered the central Indian 
Ocean directly via the South Equatorial current without en-
tering the GAB after hatching.  The higher percentage of  
SBT with peak otolith Ba/Ca ratios from the SPAWN than 
from the CIO might indicate that inhabiting areas of upwell- 
ing during the juvenile stage might contribute to improved 
spawning stock recruitment. 

V. CONCLUSION 

We conclude that otolith Ba/Ca ratios and associated age 
determinations can be used as a biological tracer to identify  
the age and season of SBT migrating to an upwelling area.  
Seasonal movements in the GAB might be linked to food 
availability, which is influenced by the upwelling.  The higher 
percentage of SBT on the spawning ground with peak otolith 
Ba/Ca ratios indicates that inhabiting areas of upwelling may 
improve spawning stock recruitment. 
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