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ABSTRACT 

In this study, the least squares Trefftz method (LSTM) is 
adopted for analyzing the eigenfrequencies problems governed 
by homogeneous Helmholtz equations.  The Trefftz method, 
one kind of boundary-type meshless collocation methods, does 
not need mesh generation and numerical quadrature.  Since  
the system of linear algebraic equations obtained by Trefftz 
method is highly ill-conditioned, the least squares method is 
adopted to stabilize the numerical scheme in this study.  In  
the eigenproblem, the response amplitudes from an external 
source are used to determine the resonant frequencies.  By 
adding an external source, the homogeneous boundary condi-
tion becomes inhomogeneous.  Then we can employ the LSTM 
to easily solve this problem.  In this paper, the LSTM and the 
method of external source are used to solve this eigenfre-
quencies problems governed by Helmholtz equations.  Several 
numerical examples are provided to verify the accuracy and 
the simplicity of the proposed numerical scheme. 

I. INTRODUCTION 

Waveguide is a thin-tube device and is used to transfer and 
guide electromagnetic waves.  Since it can transfer electromag- 
netic wave, it is very useful in many electronic applications 
and is also an important device in optics.  The determination of 
eigenfrequencies of the waveguide is important when the 
electromagnetic waves of specific frequency have to propa-
gate in the designed direction.  In order to resolve the eigen-
frequencies problems, many researchers developed numerical 
methods for acquiring the eigenfrequencies of waveguides in 

the past, such as Chen et al. [5], Dong et al. [7], Fan et al. [13], 
Kuttler [16], Lin et al. [18], Reutskiy [22], Tsai et al. [26], 
Young et al. [29] etc. 

With the rapid developments of computer equipments, there 
are many numerical schemes, which are proposed to solve en-
gineering problems and can be classified as the mesh-dependent 
and the meshless methods.  The meshless numerical methods do 
not need mesh generation and numerical quadrature, so they 
will cost less computational resources, such as the method of 
fundamental solutions (MFS) [4, 11, 14, 27, 28] the radial 
basis functions collocation method (RBFCM) [6, 8, 15, 21,  
30], the meshless Galerkin method [2], the Trefftz method  
[1, 3, 9, 10, 12, 17, 19, 20] etc. Jiang et al. [15] used the 
RBFCM, one of the popular meshless methods, to analyze  
the eigenproblems of elliptic waveguides.  The boundary nodes 
and interior nodes are all required during the computation; 
hence the requirement of huge number of nodes in the simu-
lation will limit the applications of the RBFCM.  Young  
et al. [29] adopted the MFS with the singular value decom-
position (SVD) technique to solve the eigenproblems of 
waveguides.  The homogeneous partial differential equations 
and homogeneous boundary conditions are both important in 
eigenproblems.  Reutskiy [22, 23, 24, 25] recently proposed a 
novel numerical scheme by utilizing the method of external 
source (MES).  The time-consuming SVD or direct determi-
nant search method (DDSM) for dealing with the eigenfre-
quencies problems is no longer required in the MES.  Fol-
lowing the lead of Reutskiy, Fan et al. [13] used the MFS and 
the MES to determine the eigenfrequencies of waveguides. 

The boundary-type meshless methods only need the bound- 
ary information rather than the mesh of the computational 
domain, so these methods are simple and easy to be imple-
mented.  The Trefftz method is one kind of boundary-type 
meshless methods and is more suitable for the eigenproblems.  
The numerical solutions of the Trefftz method can be ex-
pressed as the linear combinations of T-complete functions 
such that we only need to require the satisfactions of the 
boundary conditions on the collocated boundary points.  Since 
the governing equations in the eigenfrequencies problems is 
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the Helmholtz equation, the characteristic length in modified 
collocation Trefftz method [19, 20] is incapable of reducing 
the ill-conditioned problem.  So, we used the least squares 
method to ease the ill-conditioned problem in the Trefftz 
method. 

In this study, we used the least squares method and the 
Trefftz method to form and resolve the system of linear alge-
braic equations.  This proposed method, marked here as the 
LSTM, is used in this study to analyze the eigenfrequencies 
for different waveguides.  Since the Trefftz method with ex-
ternal source can transfer the eigenproblem from a homoge-
neous problem into a series of inhomogeneous problems,  
the eigenfrequencies can be determined by solving a series of 
direct problems.  We will describe the governing equations 
and the LSTM in the following sections.  Then the numerical 
results and comparisons of square, elliptic, concentric annular 
and eccentric annular waveguides are provided in the section 
of numerical results to validate the accuracy of the proposed 
method. 

II. GOVERNING EQUATIONS AND  
BOUNDARY CONDITIONS 

1. Governing Equation 

Maxwell’s equations system is an important system of par-
tial differential equations used to describe the electromag- 
netic phenomena.  The Maxwell’s equations are depicted as 
follows: 

 0,B∇ ⋅ =
��

 (1) 

 ,D ρ∇ ⋅ =
���

 (2) 

 ,
B

E
t

∂∇× = −
∂

��

��

 (3) 

 ,
D

H J
t

∂∇× = +
∂

���

��� ��
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where B
��

 and D
���

 are magnetic flux density and electric flux 
density.  E

��

 and H
���

 denote the electric field intensity and 
magnetic field intensity.  ρ is the electric charge density and  
J
��

 is the electric current density.  By following some assump- 
tions and mathematical derivations [13, 29], the governing 
equations of electromagnetic wave in frequency domain can 
be derived and be shown as: 

 2 2 0,E k E∇ + =
�� ��

 (5) 

 2 2 0,H k H∇ + =
��� ���

 (6) 

where 
2

k
c

ω π
λ

= =  is the wavenumber.  ω is the angular  

u = 0  or          = 0
∂u
∂n

Ω

Γ

ρ(θ )

θ

(∇2 + k 2)u(x, y) = 0
 

Fig. 1.  The schematic diagram for the two-dimensional eigenproblem. 

 
 

frequency.  c is the wave velocity.  λ is the wavelength.  Eqs. (5) 
and (6) are governing equations for electric field and magnetic 
field in frequency domain. 

2. Boundary Conditions 

In this waveguide problem, the governing equation is the 
homogeneous Helmholtz equation, 

 2 2( ) ( , ) 0, ( , ) .k u x y x y∇ + = ∈Ω  (7) 

The electromagnetic wave can be divided into two kinds of 
basic waves.  When u(x, y) = EZ, it describes the transverse 
magnetic (TM) wave.  u(x, y) = HZ represents the transverse 
electric (TE) wave. 

The boundary condition in the TM wave is the homoge-
neous Dirichlet boundary condition, 

 0.zE =  (8) 

For the TE wave, the homogeneous Neumann boundary 
condition is imposed  

 0.zH

n

∂ =
∂

 (9) 

The eigenfrequencies problem of waveguide is to deter-
mine the resonant wavenumbers and the numerical solutions 
for the homogeneous governing equation and homogeneous 
boundary condition.  The schematic diagram for the eigen-
frequencies problem is demonstrated in Fig. 1. 

III. NUMERICAL METHOD 

1. Trefftz Method and Method of External Source 

In this study, the Trefftz method is used to solve the 
Helmholtz equation.  The T-complete functions for two- 
dimensional Helmholtz equation for the simple-connected  
and the doubly-connected domains are depicted in Eq. (10) 
and Eq. (11), 
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{ }0 ( ), ( )cos( ), ( )sin( ), 1, 2, 3, ... ,j jJ kr J kr j J kr j jθ θ =  (10) 

0

0

( ), ( )cos( ), ( )sin( ),
,

( ), ( )cos( ), ( )sin( ), 1, 2, 3, ...
j j

j j

J kr J kr j J kr j

Y kr Y kr j Y kr j j

θ θ
θ θ

  
 =  
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where Jj ( ) and Yj( ) are the Bessel functions of the first kind 
and the second kind. 

For problems in simply- and doubly-connected domains, 
the numerical solutions can be expressed by the linear com-
binations of the T-complete functions listed in Eq. (10) and  
Eq. (11).  The corresponding outer boundary of the com- 
putational domain, Ω, in the polar coordinates is given by 

{ }0 ( , ) ( ), 0 2r rθ ρ θ θ πΓ = = ≤ ≤  and the corresponding in-

ner boundary is given by { }1 ( , ) ( ), 0 2r rθ η θ θ πΓ = = ≤ ≤ .  

The numerical solutions of the Helmholtz equation for simply- 
and doubly-connected domains in the Trefftz method can  
be expressed by the linear combinations of the T-complete 
functions. 

0 0
1

( , ) ( ) ( )cos( ) ( )sin( ),
N

j j j j
j

u x y a J kr a J kr j b J kr jθ θ
=

= + +∑  

  (12) 

0 0 0 0( , ) ( ) ( )u x y a J kr c Y kr= +  

1

( )cos( ) ( )sin( )
N

j j j j
j

a J kr j b J kr jθ θ
=

+ +∑  

( )cos( ) ( )sin( ),j j j jc Y kr j d Y kr jθ θ+ +  (13) 

where 0{ }N
j ja = , 1{ }N

j jb = , 0{ }N
j jc =  and 1{ }N

j jd =  are the unknown 

coefficients that will be retrieved by enforcing the satisfac-
tions of boundary conditions on the boundary collocation 
points.  In Eq. (12) and Eq. (13), terms up to the N -th order 
are used to replace the infinite series in the original expres-
sions.  Once the unknown coefficients are obtained, the  
numerical solutions and its derivatives at any positions inside 
the computational domain can be found from Eq. (12) and  
Eq. (13). 

If we directly solve this eigenfrequencies problem by 
Trefftz method, the boundary condition is homogeneous  
along the whole boundary.  So, it is non-trivial to solve the 

unknown coefficients 0{ }N
j ja = , 1{ }N

j jb = , 0{ }N
j jc =  and 1{ }N

j jd =  by 

direct collocation.  In a study by Reutskiy [22], she pro- 
posed the MES to transfer the eigenproblem.  By adding an 
external source, the eigenfrequencies problem will be con-
verted to a homogeneous Helmholtz equation with inhomo-
geneous boundary condition.  The external source can be 
located at any place other than the computational domain  
[13].  The position of the external source is denoted by 

( , )ext ext extX x y=
���

.  The inhomogeneous governing equation  

is in the following form 

 ( ) ( ) ( )2 2 ,extuk x Xx δ=∇ + −
� ����

 (14) 

where δ is the Dirac delta function.  Thus, the numerical  
solution can be divided into the homogeneous solution and  
the particular solution: 

 ( ) ( ) ( ) ,h pu u ux x x= +
� � �

 (15) 

where ( )hu x
�

 is the homogeneous solution and ( )pu x
�

 is the 

particular solution.  The particular solution is also the funda-
mental solution of the Helmholtz equation and can be obtained 
by using the Fourier transform theory: 

 ( ) ( )(2)
0 ,

4 extp

i
u H k x Xx = −

� ����

 (16) 

where (2)
0 ( )H  is the Hankel function of the second kind of 

zero order. 
Then, we use the Trefftz method to solve the homoge- 

neous solution with inhomogeneous boundary condition.   
The inhomogeneous boundary condition is derived from the 
particular solution.  The particular solution satisfies the in-
homogeneous equation in Eq. (14) without boundary con- 
dition.  Now the eigenproblem is converted to a Helmholtz 
equation with inhomogeneous boundary conditions and it  
can be shown as: 

 ( ) ( )2 2 0,h hu k ux x∇ + =
� �

 (17) 

 ( ) ( ). . . . ,B C h B C pG u G ux x   = −   
� �

 (18) 

where GB.C.[ ] is the partial differential operator for boundary 
condition.  So, it is easy to solve the solution of the above 
system by using the LSTM instead of the original eigenfre-
quencies problem. 

For a study range of wavenumber, we resolve the Helm-
holtz problems from Eq. (17) and Eq. (18) by using different 
wavenumbers.  Then, the resonant responses of the numerical 
solutions by adopting different wavenumbers are recorded.  
The resonant responses is calculated by the following equa-
tion: 

 ( ) 2

1

1
( ) ,

tN

h j
jt

F k u x
N =

= ∑
���

 (19) 

 
0

( )
( ) ,

( )d

F k
F k

F k
=  (20) 
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where Fd(k) is a dimensionless value.  k0 is a reference 
wavenumber which is set as unit in our study.  Nt is the 
number of measurement points randomly distributed inside 
the domain.  When the peak appears in the resonant curve, 
the eigenfrequency can be obtained.  Following the same 
procedure, a series of eigenfrequencies can be acquired for  
a waveguide. 

2. Least Squares Method 

The least squares method is a standard approach to ap-
proximate solution of over-determined or under-determined 
systems.  In the beginning of simulation, M boundary nodes 
will be distributed along the whole boundary, so a system of  
M linear algebraic equations will be formed by enforcing the 
satisfactions of boundary conditions (Ax = b).  On the other 
hand, there are 2N + 1 unknowns in the solution expression  
for simply-connected domain.  In all of the numerical tests,  
the number of equations is greater than the number of un-
knowns, which will form an over-determined system. 

For the linear algebraic equations that form is Ax = b, the 
residual error is defined as 

 ,= −R Ax b  (21) 

where R is the residual error matrix.  The sum of the squared 
residuals is defined as  

 ,= TS R R  (22) 

where S is the sum of the squared residuals.  The minimum  
of S is approximated by taking gradient  

 min( ) 0.
∂≅ =
∂
S

S
x

 (23) 

Then, Eq. (21) and Eq. (22) are substituted into Eq. (23), 

 min( ) 0.≅ − =T TS A Ax A b  (24)  

Finally, the system can be rewritten as 

 .=T TA Ax A b  (25) 

To solve Eq. (25) by any solvers for linear system can obtain 
the unknowns of the original system.  We will use the least 
squires method to solve the matrix system from the Trefftz 
method.  To use the least squares method will evidently reduce 
the ill-conditioned problem and stabilize the numerical scheme, 
which will be experimentally shown in the next section. 

IV. NUMERICAL RESULTS AND 
COMPARISONS 

The eigenfrequencies problem governed by the two- 
dimensional Helmholtz equation will be resolved by the  

1

(Δ + k 2)u = 0

(Δ + k 2)u = 0

(Δ + k 2)u = 0 (Δ + k 2)u = 0

Ω
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Fig. 2. The computational domain and corresponding boundary for (a) 

Example 1, (b) Example 2, (c) Example 3, and (d) Example 4. 
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Fig. 3.  Resonance curve for square waveguide. 

 
 
proposed algorithm, the LSTM and the MES.  In this paper, 
we will investigate the square, elliptic, concentric annular 
and eccentric annular waveguides shown in Fig. 2 to verify 
the accuracy and simplicity of the proposed numerical 
method.  For clarity, the following abbreviations are used in 
these examples: M denotes the number of boundary nodes 
along Γ, N denotes the order of Trefftz method, k is the 
wavenumber. 

1. Example 1 

In the first example, the square waveguide is the typical 
shape of eigenproblem and the corresponding resonance  
curve is demonstrated in Fig. 3.  The parameters are set to  
be M = 73, N = 30 and the external source is located at (10,10). 
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Table 1. Comparison of the present solutions with ana-
lytical and other numerical results in example 1. 

 
Analytical 
Solution 

MFS-ES 
(M = 24) 

[13] 

MFS-ES 
(M = 32) 

[13] 

GDQ method 
(M = 324) 

[7] 

LSTM 
(M = 73) 

1 4.4429 4.4429 4.4429 4.4429 4.4429 

2 7.0248 7.0248 7.0248 7.0248 7.0248 

3 8.8858 8.8857 8.8858 8.8857 8.8858 

4 9.9346 9.9349 9.9346 9.9469 9.9346 

5 11.3237 11.3267 11.3237 11.3448 11.3237 

 
 

0
X
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(c) k 3 = 8.8858 (d) k 4 = 9.9346  
Fig. 4.  The former four eigenmodes for square waveguide. 

 
 
We can easily find that there are five peaks appeared in the 

range from zero to twelve.  In other words, there are five ei-
genfrequencies in this studying range.  In Table 1, the nu-
merical solutions are compared well with analytical solution 
and other numerical results obtained by the generalized dif-
ferential quadrature (GDQ) method [7] and the MFS [13]. 

In Figs. 4(a)-(d), the former four eigenmodes for the TM 
wave of the square waveguide are shown respectively and they 
are very similar to the analytical solutions.  Therefore, the 
ability of using the LSTM to acquire the eigenfrequencies of 
square waveguide is verified and the numerical solutions are 
very stable and accurate. 

2. Example 2 

In the second example, we solved the eigenfrequencies 
problem of an elliptic waveguide which is defined by the  
parametric equation, 

0
K

0

1250

2500

F(
x)

(a) TM wave 

0

4

4

8

8

12

12
K

0

5000

10000

F(
x)

(b) TE wave  
Fig. 5. Resonance curves for elliptic waveguide for (a) TM wave and (b) 

TE wave. 

 

 { }( , ) cos , sin ,0 2 .x y x a y bθ θ θ πΓ = = = ≤ ≤  

The following parameters are used in example 2: eccentricity  

e = 0.9, major axis a = 1, minor axis 21b e= − , M = 120,  
N = 25, Xext = (10,10). 

In Fig. 5(a), the resonance curve of the TM wave evi- 
dently shows the former eleven peaks in the range from zero  
to twelve.  In Fig. 5(b), we can find many peaks in the reso-
nance curve of the TE wave.  The eigenfrequencies of the  
TM wave and the TE wave are compared well with other 
numerical solutions.  The former four eigenmodes of the  
TM wave are shown in Fig. 6 and the former six eigenmodes 
of the TE wave are depicted in Fig. 7.  The solutions of the 
eigenfrequencies are solved very well and accurately. 

3. Example 3 

In the third example, a concentric annular waveguide is 
considered.  The radii of the outer and inner boundaries of  
the concentric annular waveguide are 2 and 0.5 respectively.  
The centers of the outer and inner boundaries are all (0,0).   
The following parameters are used in example 3: M = 60,  
N = 10, Xext = (10,10). 

The corresponding resonance curve for TM wave is  
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Fig. 6.  The former four eigenmodes for elliptic waveguide (TM wave). 
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Fig. 7.  The former six eigenmodes for elliptic waveguide (TE wave). 
 
 

demonstrated in Fig. 8.  It is obvious that there are many  
peaks in the curve and the former four eigenmodes are dis-
played in Figs. 9(a)-(d), respectively.  Table 2 lists the former 
five eigenfrequencies which are compared very well with 
analytical solution and other numerical solutions obtained by 
finite element method (FEM) [5], boundary element method 
(BEM) [5], and MFS-DDSM [26]. 

4. Example 4 

For the fourth example, we solved the eigenfrequencies 
problem for an eccentric annular waveguide which is a doubly- 
connected domain.  The shape of the waveguide is the same as 

Table 2. Comparison of the former five eigenfrequencies 
for concentric annular waveguide in example 3. 

 Analytical  
Solution 

FEM 
[5] 

BEM 
[5] 

MFS-DDSM 
[26] 

LSTM 
(M = 60) 

1 2.05 2.03 2.06 2.05 2.05 

2 2.23 2.20 2.23 2.22 2.22 

3 2.66 2.62 2.67 2.66 2.66 

4 3.21 3.15 3.22 3.21 3.21 

5 3.80 3.71 3.81 3.80 3.80 
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Fig. 8.  Resonance curves for concentric annular waveguide.  (TM wave). 
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Fig. 9.  The former four eigenmodes for concentric annular waveguide. 

 
 

that in Ref. [16, 18].  The following parameters are used in 
example 4: M = 64, N = 10, Xext = (10,10). 
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Fig. 10.  Resonance curves for eccentric annular waveguide.  (TM wave) 

 
 

-1
X

-1

Y   0

1

-1
X

-1

1

Y   0

(a) k1 = 4.8106 (b) k2 = 5.5113

-1
X

-1

Y   0

1

-1

0 0

0 0

1 1

1 1
X

-1

1

Y   0

 (c) k3 = 6.1722 (d) k4 = 6.7991  
Fig. 11.  The former four eigenmodes for eccentric annular waveguide. 

 
 
In Fig. 10, the resonance curve of the TM wave shows  

the former four peaks in the range from zero to eight.  The 
former four eigenmodes in the TM wave are demonstrated in 
Figs. 11(a)-(d).  The solutions of the eigenfrequencies are 
obtained stably and accurately.  In Table 3 the comparisons of 
the eccentric annular waveguide with other researches, such as 
Kuttler [16], Lin et al. [18] and Fan et al. [13], are tabulated.  
In this test, the number of collocation points is less than 100 
points and it still can quickly achieve good results. 

V. CONCLUSIONS 

In this paper, we used the combination of the meshless 
numerical method and the least squares method to acquire  
the eigenfrequencies in four different waveguides.  The LSTM  

Table 3. Comparison of the former five eigenfrequencies 
for eccentric annular waveguide in example 4. 

 
Lin et al.  

[18] 
Kuttler 

[16] 

MFS-MES 
(M = 100) 

[13] 

MFS-MES 
(M = 140) 

[13] 

LSTM 
(M = 64) 

1 4.8129 4.8119 4.8106 4.8106 4.8106 

2 5.5252 5.5125 5.5114 5.5114 5.5113 

3 6.2099 6.1735 6.1724 6.1724 6.1722 

4 6.8375 6.8002 6.7991 6.7991 6.7991 

5 7.4619 7.3957 7.3945 7.3945 7.3942 

 
 

and the MES are used to solve this eigenfrequencies prob- 
lems governed by two-dimensional Helmholtz equation.  By 
adding an external source, the homogeneous boundary con- 
dition becomes inhomogeneous and we can simply employ  
the meshless Trefftz method to solve this system. 

There are four examples: square, elliptic, concentric annu-
lar and eccentric annular waveguides.  The numerical re- 
sults are provided to validate the simplicity of the proposed 
LSTM.  The resonant eigenfrequencies can be obtained from 
response figures.  In comparing with other numerical results, 
the acquired eigenfrequencies are highly accurate and the 
numerical scheme is very stable.  The numerical results for 
simply-connected domain and doubly-connected domain are 
all extremely accurate by using very few nodes.  Finally, it is 
numerically verified that the proposed method is very stable 
and simple for solving the eigenfrequencies of waveguides. 
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