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ABSTRACT 

Under the framework of the differential evolution algorithm, 
we develop a creative algorithm by extrapolating the thinking 
of the garbage can model.  The developed algorithm is hence 
named in the study as a creative differential evolution algo-
rithm (CDE). 

To verify the performance of the CDE, we selected seven 
well-known benchmark functions; three of them are uni-modal 
and four multi-modal.  In conducting the numerical experi-
ment, we adopted two different numbers of dimensions for 
each test function, which is 50 and 100.  The results show that 
CDE can find the global optimum robustly, demonstrate that 
CDE significantly improves the DE’s performance. 

I. INTRODUCTION 

The mathematical model for an optimization problem is  

 1 2( ) ( , , , )nMinimize f X f x x x= …  (1) 

where x1, x2, …, xn are design variables, and n is the dimen-
sionality.  Using the mathematical programming method of 
differential derivatives, the local optimum to the problem can 
efficiently be found.  If the differential derivative of the prob-
lem cannot be easily obtained, a direct search approach may be 
used without requiring the calculation of the derivatives, e.g., 
Nelder and Mead’s Simplex method [15].  It is hard to find the 
global optimum of multi-modal problems by mathematical 
programming methods because it is difficult to determine 
whether the obtained solution is the global optimum. 

Since the 70 s, the use of biological concepts such as ge-
netics, survival of the fittest, and group behavior have been 
popular in the study of optimization methods.  Holland [10] 
first proposed the Genetic Algorithm (GA) in 1975 to imitate 
Darwin’s biological evolution model of natural selection and 
survival of the fittest.  Dorigo [7] proposed the Ant Colony 
Optimization (ACO) in 1991, which imitated an ant colony 
foraging.  The ant colony could distinguish the shortest path  
to the food by the intensity of the pheromone left on the path.  
This idea can be applied to solve many combinatorial opti-
mization problems.  Kennedy and Eberhart [12] proposed the 
Particle Swarm Optimization (PSO) algorithm in 1995 by 
mimicking the migration of birds.  Storn and Price [22] pro-
posed the Differential Evolution Algorithms (DEs) in 1997. 

Storn and Price [22] stated, “DE borrows the idea from 
Nelder and Mead’s Simplex method of employing information 
from within the vector population to alter the search space.  
DE’s self-organizing scheme takes the difference vector of the 
randomly chosen population vectors to perturb an existing 
vector.  The perturbation is done for every population vector.” 
Later, Feokitistov and Janaqi [8] compared DEs and GAs; 
although both use a population search to find the optimum,  
the major difference between the two is in the mutations.  In 
GAs, a small perturbation is applied to individual genes, 
whereas in DEs, arithmetic combinations are employed be-
tween individuals.  The main components of DE are similar to 
those of GA, such as population system, selection scheme, 
mutation operator, and crossover operator.  Storn and Price 
[22], in 1997, provided several mutation strategies for user’s 
need.  Currently, DE is considered one of the most reliable, 
accurate, robust, and quickly convergent optimization algo-
rithms available and is widely applied in numerous fields: 
Cheng et al. [4] in 2001 applied DE to cope with linear system 
models; in 2002, Abbass [1] used DE and the artificial neural 
networks approach for breast cancer diagnosis of medical 
science; Cheong et al. [5], in 2007, used DE to design a hier-
archical fuzzy logic controller for controlling a cart-pole with 
four state variables.  However, DE’s parameters are problem- 
dependent and it is costly to find the best parameters.  Fur-
thermore, DE’s performance is quite sensitive to the values of 
these parameters [31]. 

Paper submitted 08/16/11; revised 04/10/12; accepted 09/17/12.  Author for 
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Up to now, many strategies on improving the DE’s per-
formance have been developed since introduced, and herein 
some of them are briefed as follows: 

Ali et al. [2] in 2004  proposed a rule for calculating the 
control parameter F; Qin et al. [18], in 2005, proposed a 
strategy of self-adapting population size NP, mutation pa-
rameter F, and  crossover rate CR for reducing the sensitivity of 
control parameters.  Teo [25] in 2005 and Nobakhti et al. [16] 
in 2008 proposed a self-adapting mechanism and a suitable 
learning strategy to control the parameters F and CR.  Sun et al. 
in 2005 [23] proposed a hybrid approach combining DE and 
EDA (Estimation of Distribution Algorithms) for global con-
tinuous optimization problems.  DE/EDA combines global in- 
formation (i.e., distance and direction information) extracted 
by EDA with differential information obtained by DE to create 
promising solutions.  Xua et al. [28] in 2007 proposed a hybrid 
of DE and Particle Swarm Optimization (DEPSO) in training 
recurrent neural networks (RNNs).  Kaelo et al. [11] in 2006 
suggested modifications in mutation and localization in ac-
ceptance rule to the differential evolution algorithm for global 
optimization.  Chen et al. in 2008 [3] proposed a refreshing 
distribution operation into solution search process, i.e., a 
number of excellent individuals are preserved, and the rest 
individuals will be initialized randomly to maintain the popu-
lation diversity.  Yang et al. [29] in 2008 introduced a sharing 
function method into DE to solve a power system planning 
problem.  Wang et al. [26] in 2007 introduced a dynamic 
clustering technique into DE to improve the performance of 
DE when applied to global optimization problems.  The modi-
fied DE algorithm, during the search process, gradually 
changes from exploring promising areas at the early stages to 
exploiting solution with high precision at the later stages. 

The DE performance-enhancing strategies proposed by the 
above literatures are found with three main directions.  The 
first focuses on adjusting the control parameters NP, F, and  
CR; the next combines DE with other algorithms to form a 
hybrid model of DE; and the last introduces a search strategy 
to improve the solution precision.  Noticeably, the shape of a 
problem’s contour lines around its exact solution is found 
closely associated with the improvement of DE. 

The improvement is more obvious for a sphere than a rotated 
ellipse.  For example, the Rosenbrock problem, a well-known 
benchmark test function, possesses long and narrow band con-
tour, which makes securing a solution close enough to the 
function’s exact solution much more challenging using varied 
strategies.  Especially for problems with high dimensions, get-
ting a reliable solution using DE becomes nearly impossible. 

In regard to multi-modal problems which possess many 
local extremities, in the evolution process individuals locating 
at the regions of the local extremities are easy to be trapped 
within and then have troubles to escape from the regions in the 
upcoming evolution.  Many versions of DE have been studied 
to enhance the individual’s exploration ability for these multi- 
modal problems.  However, the improvement is more obvious 
for a problem with a noticeable difference of values between 

local and global extremities than the other with extremities 
having almost the same values, such as the Generalized 
Schwefel’s Problem 2.26 [30].  Besides, as the number of the 
dimensions of a problem, uni-modal or multi-modal, is in-
creasing, the difficulty in getting the closest solution to the 
exact one is becoming harder and harder, even out of the 
question to achieve it. 

The poor improvement of these variants of DEs for the 
scenarios described above is probably attributed to their only 
considering the interactions among the individuals but ignor-
ing individuals’ evolution experiences.  However, this paper 
shows that the population evolution experiences, if collected 
and systematically analyzed, will provide helpful information 
on finding better solutions with less effort. 

In the 1980s, Maynard Smith proposed evolutionary game 
theory based on the classic game theory [21].  Liu et al. [14] 
applied it to a particle swarm optimization algorithm.   
Wiegand et al. [27] used the model to analyze the dynamics of 
co-evolutionary algorithms.  In 1960, Simon [19] proposed 
Intelligence, Design and Choice, a three-stage repetitive de-
cision process.  In 1972, Cohen et al. [6] proposed the Gar- 
bage Can Model, a decision model for organized anarchies.  
The characteristics of the problematic preference and unclear 
technology described in the Garbage Can Model are found and 
existed in an organized anarchy. 

In the work, we named the to-be-developed variant of the 
differential evolution algorithm, inspired by the Garbage Can 
Model, as the creative differential evolution algorithm (CDE).  
The search procedure of the CDE will be presented in the next 
paragraph. 

To verify the performance of the CDE, we applied it in  
the study to seven benchmark functions, three of which are 
uni-modal, and four multi-modal.  The number of dimensions 
of each test function is made as high as a value of 100, and the 
results obtained are to be compared with those by other studies 
and discussed. 

II. DIFFERENTIAL EVOLUTION  
ALGORITHM (DE) 

In 1997, Storn and Price [22] proposed a population-based 
evolutionary algorithm that operated competitions among in- 
dividuals of different generations.  This algorithm adopts the 
search frame and the gene mutation and crossover operators of 
the classical GA.  The important step for the mutation opera-
tion of DE is a new scheme different from GA in generating 
trial vectors.  DE generates new trial vectors by adding the 
weighted difference vector between two population individu-
als to a third individual. 

The main steps of the DE algorithm are given below: 
 
Initialization 
Evaluation 
Repeat 
Mutation 
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Crossover 
Evaluation 
Selection 
Until (termination criteria are met) 
 
In the evolution process, the increment of mutations, i.e., 

the search step, makes the populations explore and exploit, 
compete with each other, and then finally achieves the op-
timal solution.  This process shows that in the beginning of 
the evolution, the mutation operator guides the exploration  
of the population in the search space.  Subsequently, the 
mutation operator makes the population coalesce to the best 
individual and then exploits the population.  There are three 
basic steps to create a new generation: mutation, crossover, 
and selection: 

(1) Mutation 

Mutation is carried out by the trial vector.  Roughly speak-
ing, it is the target vector plus the product of the mutation 
factor F and the difference vector.  The difference vector is 
obtained by taking the difference of two or more random 

vectors.  The base vector is 1
G
rX  (as shown in Fig. 1) and the 

difference vector is the difference between 2
G
rX and 3

G
rX  

(subtraction).  The three vectors are all randomly selected 
individuals. 

The mutation operation for generating the trial vector VG+1 
is as follows: 

 1
1 2 3( ),G G G G

r r rV X F X X+ = + −  (2) 

where F is the mutation parameter between (0, 2), and r1, r2 
and r3 are different individuals randomly selected from the 
G-th generation.  Xbest is the best individual of the G-th gen-
eration. 

DE mutation strategies [22]: 

a. DE/best/1: 1 2( )best r rX F X X= −  (3) 

b. DE/rand/1: 1 2 3( )r r rX F X X+ −  (4) 

c. DE/rand-to-best/1: 1 1 2 3( ) ( )r best r r rX F X X F X X+ − + −  (5) 

d. DE/best/2: 1 2 3 4( )best r r r rX F X X X X+ + − −  (6) 

e. DE/rand/2: 5 1 2 3 4( )r r r r rX F X X X X+ + − −  (7) 

In the notation DE/a/m/z used above, a represents the in-
dividual being perturbed and m is the number of difference 
vectors to perturb a, z = bin, and is henceforth neglected in  
this paper. 

From the above list, the user should choose a single muta-
tion strategy that fits the problem to create mutation vectors.  

The individual i in the G-th generation is: 

X2

X1

XGi

F(XGr2 − XGr3)

optimum

V = XGr1 + F(XGr2 − XGr3)

XGr3 XGr2
XGr1

 
Fig. 1.  The generation of a trial vector in a mutation [22]. 

 

 1 2( , , , )G G G G
i i i niX x x x= …  (8) 

The trial vector is: 

 1 1 1 1
1 2( , , , )G G G G

nV v v v+ + += …  (9) 

(2) Crossover 

Crossovers are also carried out randomly. 
The child y created by crossover between mother genera-

tion G
iX and VG+1 is: 

 1 2( , , , )ny y y y= …  (10) 

 
1, if or

, if and

G
j j

j G
ji j

V r CR j l
y

X r CR j l

+ ≤ ==  > ≠
 (11) 

where j = 1, 2, 3, …, n; l is a random integer such that l ∈ {1, 
2, …, n}; and r is a random number such that rj ∈ U(0,1).   
The crossover rate (CR) must be satisfied the 0 ≤ CR ≤ 1. 

(3) Evaluation/Selection 

The individual G
iX  and the child y created by mutation and 

crossover compete with each other.  The good individual 
1G

iX +  is considered as the children in the next generation. 

 1( ) arg min{ ( ), ( )}G G
i iX F X F y+ =  (12) 

Then the best individual in the next generation is 

 1( ) arg nim{ ( )}, 1, ,G G
best iX F X i NP+ = = …  (13) 

where F(X) is the objective function (the fitness measure), NP 
is population size. 
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III. GARBAGE CAN DECISION-MAKING 
MODEL 

Decision making is an important task in an organization.  
There are three theories about the decision-making process: 

(1) Classical Model: 

This model, proposed by Taylor [24] in 1947, is an opti-
mistic strategy, assuming that decision-makers are fully ra-
tional and use the most promising method to achieve their 
goals.  Their results are perfect. 

(2) Administrative Model: 

Proposed by Simon [20] in 1974.  This model is a satis-
ficing strategy, assuming that it is impossible for decision- 
makers to make perfect decisions because they are limited by 
the existing knowledge, resources and information.  They can 
only try to achieve satisfactory results. 

(3) Incremental Model: 

Proposed by Lindblom [13] in 1959.  This model approxi-
mates a constant comparison strategy under a certain threshold. 
It assumes that because of the limitations of existing knowl-
edge, resources and information, decision-makers can make 
neither perfect nor satisfactory decisions.  They identify the 
feasible decision most suitable for the current situation only 
through constant comparison.  In this model, the decision- 
makers can be considered aware of their goals, but uncertain of 
the actions required to achieve them.  They assess the results 
after reaching an intermediate stage and adjust the direction in 
which they advance.  The model is very similar to the real 
decision making process in a human social organization. 

Based on Simon’s bounded rationality theory [19], Cohen  
et al. argued that decision-makers, limited both by inadequate 
external information and by subjective human feelings that 
impair rational judgments, can never make the perfect decision.  
In 1972 [6], Cohen et al. proposed that the organization of an 
actual decision-making process is best modeled in an entirely 
different way: the Organized Anarchies Model is resembles 
the evolution model.  In this model, the decision-making 
process of an organization is like an evolving process.  This 
model has three characteristics: 

(1) Problematic Objective Preferences 

Decision-makers have inconsistent preferences concerning 
the problems and goals, and these preferences can only be 
discovered through actions.  Therefore, these preferences can- 
not be the basis for actions. 

(2) Unclear Technology 

Group members only know that something needs to be 
improved during decision-making, but they do not know what 
individuals should do to improve.  Therefore, they have to use 
trial and error methods based on their personal knowledge. 

(3) Fluid Participation 

If the issues are controversial and a lengthy investigation is 
required before any decision is made, it is quite probable that 
the final decision-making group will not be comprised of the 
same people as the initial group.  Decision-makers can also 
come from various perspectives, topics of interest and all 
walks of life. 

In such ambiguous situations, each decision-making proc-
ess is regarded as a receptacle or garbage can, in which deci-
sion-makers, issues, and solutions are represented by garbage.  
This decision-making model is called the Garbage Can Model 
(GCM). 

IV. CREATIVE DIFFERENTIAL  
EVOLUTION ALGORITHM (GDE) 

In employing the differential evolution algorithm, users 
have to make a decision of selecting one among the five mu-
tation strategies of the algorithm.  The fact that which one is 
suitable at the current generation for the problem of interest is 
actually uncertain is similar to the unclear technology as de-
picted in the garbage can model.  Further, in the evolution 
process each individual in the DE population standing a pos-
sible solution to the problem resembles to each member in an 
organization providing a feasible solution to an encountering 
problem.  Therefore, inspired by the decision policy process of 
the garbage can model, we attempted to apply the process with 
the DE algorithm for the purpose of improving the DE’s per-
formance. 

In the application of the original garbage can model, we 
redefined the significance of the three different kinds of the 
model’s features, problematic objective preferences, unclear 
technology and fluid participation, in order to formulate in the 
study a new algorithm, which is named as Creative Differen-
tial Evolution Algorithm (CDE).  The definitions of the three 
features are described as the following. 

(1) Open innovation: 

One must think outside the box and embrace creativity. 

(2) Integrate innovation: 

One must overcome disagreements with an integrated ob-
jective model. 

(3) Process innovation: 

One must increase the exchange of ideas and grasp any 
opportunity to solve the problem. 

After several evolution generations, the best individual is 
the most satisfactory decision that can be made by the par-
ticipants of the organization. 

In this paper a diverse selection model for mutation is 
proposed that several mutation strategies, being referred to  
as the “mutation-strategy can”, are included in the mutation 
operation.  The mutation strategy for each generation is then 
randomly selected from this can.  This application of the  
mutation-strategy-can to the differential evolution algorithm  
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Fig. 2.  CDE’s grouping search strategy. 

 
 

will be referred to as Creative Differential Evolution Algo-
rithm with Dynamic Mutation (CDEDM). 

When the population matures, the grouping search strategy 
is used to split the mother population into several child 
populations (several subpopulations) and integrate the search 
results of each child population.  In other words, when the 
population matures, the strategy identifies the promising space 
of each variable of each child population and then searches 
separately in each promising space.  For example, if the 
population contains 800 individuals, 400 of which are better 
ones, the promising space is defined by the intervals of each 
variable of these 400 individuals.  Therefore, after every few 
generations (called the evaluated generation number), the 
parent population is divided into three child populations and 
each child population is confined by a search space, as shown 
in Fig. 2. 

(1) The first child population: 

The search space U1 is the initial search space, 0
iU = 

0 0[ , ],i ix x  i = 1, 2, …, n.  0 ,ix 0
ix  are the lower and upper 

bounds, respectively. 

(2) The second child population: 

The search space U2 is the promising space, [ , ],p p p
i i iU x x=  

and then is broadened. 

(3) The third child population: 

The search space U3 is that the promising space is reduced 

by the roulette wheel selection model to [ , ]pr pr pr
i i iU x x= and 

subsequently broadened.  For example, each variable is parti-
tioned into five segments.  According to the probability model 
of a roulette wheel, the individuals from each segment with 
better average function values are assigned higher probabili-
ties of being selected.  Finally, one of the five segments is 
selected segment so that convergence takes place quickly.  

By applying the grouping search strategy in CDEDM, in 
this paper, another new version of DE, which is called the 
Creative Differential Evolution algorithm (CDE), is proposed.  
Its flowchart is shown in Fig. 3. 

Generation of initial
population

Evaluation of all
individuals 

Mutation

Crossover

Evaluation

Selection

START

Termination 
criteria met?

Is Gens. 
% NE = 0?

Grouping search
strategy 

Final solution

END

YES

NO
NO

YES

 
Fig. 3.  Flow chart of CDE. 

 
 
In order to simulate the decision-making behavior of human 

society, four parameters are set: the evaluated generation 
number, the number of better individuals, the broaden ratio, 
and the number of partitioned segments.  In this paper, the 
number of partitioned segments is set to 5.  The other para- 
meters are described below: 

 
(1) Evaluated generation numbers, NE: After the passing of 

every NE generations, the grouping search strategy is ap-
plied to the evolution process of population to simulate 
regular group meeting. 

(2) Number of better individuals, NB: In the population, the 
individuals with better function values are selected.  Their 
lower and upper bounds are used to confine the promising 
space, simulating the choices made in a meeting. 

(3) Broaden ratio, Br: Once the promising space is determined, 
it is broadened, simulating flexible decisions in order to 
improve the population’s optimization performance. 

V. EXPERIMENTAL RESULTS AND 
DISCUSSION 

1. Benchmark Functions 

In order to test the search performance of CDEDM and 
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CDE, the 3 uni-modal and 4 multi-modal benchmark functions 
from [31, 26] are examined. 

 
Uni-modal functions: 
(1) f1: Sphere function 

 2
1

1

( )
n

i

F X x
=

=∑  (14) 

where the global optimum solution is to be X * = 0 and the 
global optimum objective function is F(X *) = 0 for -100 ≤ xi ≤ 
100.  The sphere function is continuous, differentiable, sepa-
rable, scalable, uni-modal, and symmetric. 
 
(2) f2: Rotated hyper-ellipsoid function 

 2

1 1

( ) ( )
n i

j
i j

F X x
= =

=∑ ∑  (15) 

where X * = 0 and F(X *) = 0 for -100 ≤ xi ≤ 100.  It is con-
tinuous, differentiable, non-separable, scalable, uni-modal, and 
asymmetric.  The effect of symmetry and rotation can be in-
vestigated through it. 
 
(3) f3: Rosenbrock function 

 
1

2 2 2
1

1

( ) [100( ) ( 1) ]
n

i i i
i

F X x x x
−

+
=

= − + −∑  (16) 

where X * = {1, 1, …, 1} and F(X *) = 0 for -30 ≤ xi ≤ 30.  The 
Rosenbrock function is continuous, differentiable, non- 
separable, scalable, uni-modal, and asymmetric. 

 
Multi-modal functions: 
(1) f4: Ackley’s function 

2

1 1

1 1
( ) 20exp 0.2 exp cos(2 ) 20

n n

i i
i i

F X x x e
n n

π
= =

   
= − − − + +       

∑ ∑  

  (17) 

where X * = 0 and F(X *) = 0 for -32 ≤ xi ≤ 32.  The Ackley 
function is continuous, differentiable, non-separable, scalable, 
multi-modal, and symmetric.  The Ackley function has a nar-
row region of global optimum, with many unremarkable local 
optima nearby.  It is suitable for investigating the effect of 
modality and separability. 

 
(2) f5: Griewank function 

 2

1 1

1
( ) cos( ) 1

4000

nn
i

i
i i

x
F X x

i= =

= − +∑ ∏  (18) 

where X * = 0 and F(X *) = 0 for -600 ≤ xi ≤ 600.  The Griewank 
function is continuous, differentiable, non-separable, scalable, 
multi-modal, and asymmetric.  It is difficult to optimize.  It is a 
good problem for studying the effect of modality, separability 
and symmetry. 

 
(3) f6: Rastrigin function 

 2

1

( ) ( 10cos(2 ) 10)
n

i i
i

F X x xπ
=

= − +∑  (19) 

where X * = 0 and F(X *) = 0 for -5.12 ≤ xi ≤ 5.12.  The Rastrigin 
function is continuous, differentiable, separable, scalable, multi- 
modal, and symmetric.  The effect of modality can be studied 
through it. 

 
(4) f7: Generalized Schwefel’s problem 2.26 

 
1

( ) sin( )
n

i i
i

F X x x
=

=∑  (20) 

where X * = {-420.9687, …, -420.9687} and F(X*) =  
-418.983*n for -500 ≤ xi ≤ 500.  The Schwefel’s problem 2.26 
is continuous, non-differentiable, separable, scalable, multi-
modal, and symmetric.  The global optimum of the General-
ized Schwefel’s problem 2.26 falls at the bottom left corner of 
the search space, whereas a comparable local optimum falls at 
the top right corner.  The effect of differentiability and mo-
dality can be examined by using it. 

2. Parameter Settings for the DE, CDEDM, and CDE 

Parameters of DE, CDEDM and CDE for the 50- and 100- 
dimensional benchmark functions are follows. 

The mutation strategies are: 
In each generation, CDEDM and CDE randomly choose 

strategy from the strategy can including (1) DE/best/1, (2) DE/ 
rand-to-best/1, (3) DE/rand/2; DE uses the mutation strategy 
DE/best/1. 

The parameters are: 
A. Dimension n: 50, 100 
B. Population size NP: 400  for n = 50; 800 for n = 100  [17] 
C. Maximal number of generations MaxGen: 4000 for n = 50; 

6000 for n = 100 
D. Mutation parameter F = 0.5~0.6 
E. Crossover rate CR = 0.3 [9] 

F. Convergence condition ε = 1.E-05 1 6

7

~

- 418.983*n

f f

f





 

 
The additional parameters for CDE are: 

A. Evaluated number of generations: 20 for n = 50; 200 for n = 
100 

B. Number of better individuals: 0.5 NP 
C. Broaden ratio: 10 



 H.-C. Kuo et al.: A Creative DE Algorithm for Global Optimization 557 

 

Table 1.  Results of DE, CDEDM and CDE for 50-dimensional benchmark problems. 

CDE CDEDM DE 

fb fb fb 
Method 

 
Function 

fav 
fw 

σf fav 
fw 

σf fav 
fw 

σf 

7.19E-06 6.81E-06 8.42E-06 
f1: Sphere 9.03E-06 

9.96E-06 
5.95E-07 9.10E-06 

9.98E-06 
5.99E-07 9.41E-06 

1.00E-05 
6.22E-07 

8.27E-06 8.66E-06 5.96E-06 
f2: Ellipsoid 9.34E-06 

9.95E-06 
4.80E-07 9.35E-06 

9.99E-06 
4.50E-07 1.08E-05 

3.12E-05 
5.63E-06 

3.99E-06 4.99E-06 8.01E-06 
f3: Rosenbrock 9.00E-06 

9.94E-06 
1.31E-06 1.99E-01 

3.98E-00 
8.68E-01 9.35E-06 

9.97E-06 
5.66E-07 

8.80E-06 9.20E-06 8.93E-06 
f4: Ackley 9.55E-06 

9.90E-06 
2.72E-07 9.65E-06 

9.97E-06 
2.00E-07 9.71E-06 

9.96E-06 
2.54E-07 

7.94E-06 7.48E-06 8.78E-06 
f5: Griewank 9.33E-06 

9.98E-06 
5.62E-07 1.28E-03 

9.86E-03 
2.97E-03 6.08E-03 

7.39E-02 
1.60E-02 

7.85E-06 8.22E-06 8.84E-06 
f6: Rastrigin 9.21E-06 

9.90E-06 
5.53E-07 9.27E-06 

9.94E-06 
4.09E-07 9.47E-06 

9.94E-06 
4.29E-07 

-20949.14 -20795.39 -20801.77 
f7: Schwefel -20718.37 

-20446.32 
157.50 -20426.20 

-20139.80 
205.61 -20291.54 

-19764.76 
320.16 

 
 

Table 2.  Results of DE, CDEDM and CDE for 100-dimensional benchmark problems. 

CDE CDEDM DE 

fb fb fb 
Method 

 
Function 

fav 
fw 

σf fav 
fw 

σf fav 
fw 

σf 

7.41E-06 7.41E-06 8.33E-06 
f1: Sphere 9.33E-06 

9.89E-06 
4.65E-07 9.54E-06 

9.88E-06 
5.30E-07 9.59E-06 

9.99E-06 
4.66E-07 

7.92E-06 8.42E-06 1.13E-04 
f2: Ellipsoid 9.13E-06 

9.95E-06 
3.88E-07 9.23E-06 

9.96E-06 
6.65E-07 5.89E-04 

1.36E-03 
3.05E-04 

6.81E-06 8.10E-06 8.11E-06 
f3: Rosenbrock 9.01E-06 

9.87E-06 
8.53E-07 2.57E-01 

4.01E-00 
8.78E-01 1.99E-01 

3.99E+00 
8.69E-01 

7.90E-06 8.53E-06 8.94E-06 
f4: Ackley 9.31E-06 

9.95E-06 
3.99E-07 9.36E-06 

9.90E-06 
4.11E-07 9.55E-06 

9.98E-06 
3.80E-07 

6.56E-06 7.36E-06 8.45E-06 
f5: Griewank 8.96E-06 

9.95E-06 
5.85E-07 9.10E-06 

9.95E-06 
1.06E-06 9.56E-04 

8.40E-03 
2.69E-03 

6.83E-06 6.84E-06 8.13E-06 
f6: Rastrigin 9.20E-06 

9.99E-06 
6.00E-07 9.33E-06 

9.98E-06 
6.68E-07 9.43E-06 

9.98E-06 
7.26E-07 

-40951.78 -40822.13 -39726.06 
f7: Schwefel -40493.87 

-39726.91 
441.63 -39531.39 

-38360.67 
647.32 -38869.76 

-37535.81 
708.83 

 
 
The three algorithms are tested on the seven benchmark 

functions.  Each function is independently tested 30 times.   
fav is the average objective function value, fb is the best value, 
fw is the worst value, and σf  is the standard deviation. 

3. Experimental Results and Analysis 

The DE, CDEDM, and CDE algorithms are tested on the 
seven benchmark functions of 50 and 100 dimensions.  The 
results are listed in Tables 1 and 2. 

It is clear from the Table 1 that for the 50-dimensional 
functions f1~f6, CDE can robustly find the global optimum, 

while CDEDM has a chance of finding only the global  
optimum of function f3 and is unstable overall.  For the 
50-dimensional function f7, CDE achieves fb = -20949.14, 
which is close to the global optimum.  The fav of CDE is in 
general better than that of CDEDM.  These results show that 
compared with the other two algorithms, CDE’s performance 
is more robust and efficient in finding the global optimum 
solution of the 50-dimensional benchmark functions.  With 
regard to the search performance of CDEDM and DE, 
CDEDM is more robust than DE for the uni-modal func- 
tions f1 and f2, as well as for the multi-modal functions f4  
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and f6, and achieves acceptable results.  For the multi-modal 
functions f7, CDEDM’s fav is slightly better than that of DE  
by about -134.66.  For the function f5, CDEDM is no clear 
improvement. CDEDM performs worse than DE for the func-
tion f3. 

As shown in Table 2, for the 100-dimensional functions  
f1-f6, CDE’s performance is also very reliable and efficient 
compared to DE and CDEDM.  CDEDM’s performance on 
function f3 does not better than DE’s.  This is probably because 
diverse mutation strategies make the population converge 
slowly.  For the 100-dimensional function f7, CDE achieves  
fb = -40951.78, better than both DE and CDEDM.  The stan-
dard deviation of CDE, which is also the smallest, shows that 
CDE is superior to the other two algorithms in diversity and 
intensity. 

4. Analysis of the Population Shift of the DE, CDEDM and 
CDE in 100-Dimensional Benchmark Functions 

In the process of searching and shifting a population, two 
distance indexes are used to analyze the dynamics of the 
population shift.  One is the distance between all individuals of 
the population and the optimum, the other is the distance be-
tween all individuals and the analytic solution.  These two 
average distances are denoted by dpg(%) and dpa(%), respec-
tively. 

The average distance dpg(%) is defined as follows: 

 (%) 100%pg
pg

d
d

L
= ×  (21) 

where 1

pN
gbest

i
i

pg
p

X X
d

N
=

−
=
∑

is the average distance between 

the population and the best individual solution Xgbest and L = 

( )2

1

n

i i
i

x x
=

−∑ , where ix  and ix  are the  lower and the upper 

bound of the i-th dimension respectively.  Np is the population 
size. 

The average distance dpa(%)
 
is defined as follows: 

 (%) 100%pa
pa

d
d

L
= ×  (22) 

where 

*

1

pN

i
i

pa
p

X X
d

N
=

−
=
∑

 is the average distance between the 

population and the global optimum solution X*. 
The mutation strategies are: 
In each generation, CDEDM and CDE randomly choose 

strategy from the strategy can including (1) DE/best/1, (2) DE/ 
rand-to-best/1, (3) DE/rand/2; DE uses the mutation strategy 
DE/best/1. 
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Fig. 4.  Convergence process of the objective function value of f1. 
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Fig. 5.  The dpg history of function f1. 
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Fig. 6.  The dpa history of function f1. 

 
 
The Parameters are: 
 

A. Dimension n: 100 
B. Number of populations Np: 800 (Np = 5~10 × n) [17] 
C. Maximal number of generations MaxGen: 6000 
D. Mutation factor F = 0.5~0.6 
E. Crossover rate CR = 0.3 [9] 

 
The parameters of CDE are: 
 

A. Evaluated number of generations: 200 
B. Number of better individuals: 400 
C. Broaden ratio of the promising space: 10 

 
The results of the above seven 100-dimensional benchmark 

functions are shown in Figs 4-24.  Comparisons of the popu-
lation convergence and the performance of dpg and dpa among 
the three algorithms are conducted for the uni-modal and the 
multi-modal functions separately. 

(1) Uni-modal problems: 

Although CDE performs worse than DE and CDEDM do in 
the beginning, CDEDM quickly converges to a better solution 
later in the search process.  As shown in Figs. 10-12, although  
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Fig. 7.  Convergence process of the objective function value of f2. 
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Fig. 8.  The dpg history of function f2. 
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Fig. 9.  The dpa history of function f2.  
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Fig. 10.  Convergence process of the objective function value of f3. 
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Fig. 11.  The dpg history of function f3.  

 
all the three algorithms take a long time to search for better 
solution in the narrow region of function f3, CDE is the 
quickest.  Therefore, the mutation-garbage can strategy of 
CDE creates diversified searches from the beginning.  With 
the grouping search strategy, it can also quickly lead the  
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Fig. 12.  The  dpa history of function f3. 
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Fig. 13.  Convergence process of the objective function value of f4. 
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Fig. 14.  The dpg history of function f4. 
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Fig. 15.  The dpa history of function f4. 
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Fig. 16.  Convergence process of the objective function value of f5. 

 
 

population to a better solution. 

(2) Multi-modal problems: 

As shown in Figs. 13-24, after incorporating the random se-
lection strategy, CDEDM cannot lead population to the  



560 Journal of Marine Science and Technology, Vol. 21, No. 5 (2013) 

 

40
35
30
25
20
15
10
5
0

d p
g (

%
)

0
Generation

1000500 1500

DE
CDEDM
CDE

 
Fig. 17.  The dpg history of function f5. 
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Fig. 18.  The dpa history of function f5. 
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Fig. 19.  Convergence process of the objective function value of f6. 
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Fig. 20.  The dpg history of function f6. 

 
 

better solution, even though it has a diversified search capa-
bility.  In contrast, CDE has both the sufficient diversity ca-
pacity of CDEDM and a better orientation for population.  
CDE can detect good solution in the search space in the be-
ginning of the search and has the potential to find the global 
optimum.  On functions f4 and f5, DE has similar convergence 
with CDE and can lead the population to move to good fitness 
spaces.  As for functions f6 and f7, CDE has the best conver-
gence performance, followed by DE.  The population shift 
history diagrams of dpg and dpa show that the CDE’s per-
formance is the most prominent.  CDE quickly leads the 
population to the vicinity of the global optimum.  Finally, on 
function f7, the population shift history of dpg in Fig. 23 shows 
that the population’s diversity of CDEDM is strong, but it 
cannot find the best solution further.  DE and CDE have  
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Fig. 21.  The dpa history of function f6. 
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Fig. 22.  Convergence process of the objective function value of f7. 
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Fig. 23.  The dpg history of function f7. 
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Fig. 24.  The dpa history of function f7. 

 
 

similar search trends in Figs. 23-24.  The history diagrams of 
dpg and dpa indicate that CDE has the high diversity of popu-
lation at the onset of searching, the intensification increasing 
over generations, and a better convergence achieved than the 
other two. 

The experimental results of the above seven benchmark 
functions show that CDE’s performance in exploration and 
exploitation is the best among three variants of DE and also 
validate that this paper has improved the performance of DE 
by introducing the garbage can decision model with group 
meeting into its search process. 
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VI. CONCLUSION 

A new variant of differential evolution algorithm is devel-
oped by extending the thinking of the garbage can model with 
grouping meeting strategy, namely creative differential evo-
lution algorithm (CDE).  In the evolutionary process of this 
new variant DE, we propose mutation strategy can with sev-
eral mutation strategies in the mutation step, mimicking open 
innovation decision model, and subpopulations search strategy 
mimicking integrate innovation decision model in process 
innovation decision model. 

The experimental results on the seven benchmark functions 
with 50 and 100 dimensions have shown that CDE performs 
much better than DE and CDEDM in searching for the global 
optimum.  The results of convergence process of objective 
function, dpg and dpa histories indicate that both good diversity 
and fast evolution speed can be obtained in CDE.  Meanwhile, 
CDE saves the time spent on picking the suitable parameters 
and mutation strategy for optimization problems.  The results 
show that CDE, which introduces the garbage can model with 
group meeting into DE, will not only enhance its search per-
formance but also increase its ease of use. 
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