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ABSTRACT 

This study deals with numerical stability analysis for in-
dependent modal vibration suppression of a fluid-conveying 
pipe using a piezoelectric inertia actuator (PIA).  The stability 
issue of the approach as proposed by the pioneer developers  
is addressed.  The approach utilizes an infinite control weight 
for one component of the modal control input and results in a 
severe control spillover problem for the complex mode con-
trolled, easily leading to closed loop instability even for open 
loop stable systems.  The stability of the system depends on 
how the left eigenvector is normalized for transforming the 
original coupled equations to the decoupled ones in the modal 
space.  A novel approach by rotating the left eigenvector on the 
complex plane is systematically examined to define the region 
of stability in this work.  A feasible modal control design for 
systems possessing complex modes can thus be accomplished 
using the proposed approach. 

I. INTRODUCTION 

Smart actuators and intelligent structures receive a consid-
erable interest in the field of active vibration suppression of 
structural systems.  The associated stability issue for any vi-
bration control strategy is crucial and must be fully examined 
to ensure successful deployment of smart structural systems.  
When compared to the traditional coupled mode control, the 

independent modal space control (IMSC) has been notable for 
its attractive features, such as far less computation time and 
storage requirements, which can be vital for real time control 
of high dimensional structures [17].  The control technique  
has been shown to be robust to parameter variations and ver-
satile for selection of control approaches, including nonlinear 
control [15, 16, 18, 19].  Lin and Chu [9] reported a new de-
sign strategy for the independent modal space control of gen-
eral dynamic systems with complex modes.  The stability of 
the control system can be guaranteed under certain conditions.  
Lin, et al. [11] reported an optimal modal control approach  
for vibration suppression of a fluid-conveying pipe with a 
divergent mode.  For the first time in the literature, the severe 
control spillover problem in the complex mode controlled 
when using the approach proposed by the pioneer developers 
of IMSC has been demonstrated experimentally [3].  The 
micro-vibration control of a smart flexible beam mounted on 
an elastic base was used to serve as a test case. 

Research on dynamic analysis of pipes conveying fluid has 
been abundant [1, 5, 20, 21, 23].  The knowledge gained in this 
modeling paradigm is readily applicable to many areas in 
applied mechanics research [22]; However, literature on the 
associated vibration control is quite limited.  Liu, et al. [14] 
reported a feedforward control approach for active vibration 
suppression application.  A considerable amount of research 
work has been done on the application of piezoelectric mate-
rials [4, 7, 8, 25, 26] in smart structures.  Lin and Chu [10] 
examined the use of surface mounted piezoelectric actuator on 
flutter suppression of a cantilever tube conveying fluid.  The 
control strategy developed in [9] was applied.  The use of 
piezoelectric inertia actuators (PIA) for vibration control of 
smart structural systems was reported [6, 12, 13].  This study 
applies a piezoelectric inertia actuator for vibration suppres-
sion of a cantilever pipe by using an active control strategy.  
The mathematical model for the actuator dynamics is quite 
different from that of the surface mounted piezoelectric patch.  
The PIA has a distinct resonance frequency, at which its ex-
citation is most effective.  The resonance frequency can be 
adjusted according to the characteristics of the control system 
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by externally attaching an appropriate mass. 
The finite element method, with the Timoshenko beam 

theory being used, is applied to obtain the motion equations of 
a cantilever pipe and the attached piezoelectric inertia actuator.  
The optimal IMSC is applied for the design.  This study re-
veals, for the first time, the strategy to determine the applica-
ble instability regions for the approach proposed by the IMSC 
pioneer developers, which exhibits severe control spillover 
problems for systems with complex modes.  Stability of the 
system is dependent on how the left eigenvector is normalized.  
A systematic analysis will be performed by rotating the left 
eigenvector on the complex plane to define the instability 
region of the control system for the fluid-conveying pipe using 
a piezoelectric inertia actuator.  To the best knowledge of the 
authors, the stability manipulation of the approach proposed 
by the IMSC pioneer developers has not been revealed in the 
literature and warrants a detailed analysis to further explore 
the stability characteristics of the complex control system for 
structural systems. 

II. MODEL DEVELOPMENT 

Fig. 1 shows a fluid-conveying cantilever pipe with a pie-
zoelectric inertia actuator attached at the free end.  The finite 
element method, with the Timoshenko beam theory being 
applied, is employed to formulate the pipe and the fluid  
element matrices.  The equations of motion for the fluid- 
conveying cantilever pipe, including the actuator dynamics, 
can be shown as: 
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and u is the active control input; N    represents the shape 

functions of the pipe element; {xb} and xa are the displace-
ments of the beam elements describing the pipe/fluid system 
and the PIA, respectively.  ma, ca, and ka are, respectively, the 
mass, damping, and stiffness of the PIA; [M], [C], and [K], 
denote the structural mass, damping, and stiffness matrices of 
the pipe/fluid system, respectively.  The contributions of both 
the pipe and the flowing fluid are included to assemble the 
structural matrices.  A detailed description of how to formulate 
those structural matrices can be found in [2, 24].  Eq. (1) can 
be recast as: 
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Fig. 1. A fluid-conveying pipe with a piezoelectric inertia actuator at-

tached at the free end. 
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To facilitate the control formulation, the governing equa-
tions of motion are expressed in the state space form, as shown 
below: 

 ,x Ax BF= +�  (6) 
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Eq. (6) represents a dynamical system possessing complex 
modes due to the gyroscopic effect from the fluid motion and 
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the concentrated damper of the PIA.  They can be decoupled 
by using the bi-orthogonality of the left and right eigenvectors.  
The system can thus be described in the modal space: 

 ,       = 1, 2, ..., ,
ss s s uq q Q s n= Λ +�  (8) 

where n is the number of modes of the system and 

 ,s s
s

s s
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ω σ
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 (9) 

and 

 2 1 2[   ] , .
s

T T
s s s uq q q Q L BF−= =  (10) 

in which σs and ωs denote the real and imaginary parts, re-
spectively, of the open loop eigenvalue of the s-th mode.  The 
modal control input, 

suQ , is related to the physical control 

input, F , through a linear transformation using the left modal 
matrix, L, which is constructed using the left eigenvectors 
obtained by solving the adjoint eigenvalue problem.  Note that 
there are infinite ways to normalize the left and right eigen-
vectors, and thus the elements within the left modal matrix are 
not unique.  We consider optimal control in the modal space 
for the system examined.  The modal control cost function for 
the steady state system response is defined as: 

0
( ( ) ( ) ( ) ( )) ,    = 1, 2, ..., ,

s s

T T
s s s u s uJ q t q t Q t E Q t dt s  k

∞
= +∫  (11) 

where k is the number of modes controlled and Es denotes the 
weighting matrix for the modal control input.  The designer 
can make the selection of the weighting matrix based on the 
control requirement and available hardware.  The optimal 
modal control input can be obtained as: 

 1 ( ) ( ), 1, 2, ....,
su s s s s sQ E S q t K q t s k−= − = − =  (12) 

where Ks is the feedback gain matrix and Ss is the Riccati 
Matrix as obtained by solving the following nonlinear matrix 
equation: 
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For the control of one complex mode using one actuator,  
the pioneer developers of the IMSC technique proposed the 
use of an infinite cost weight factor for 

2 1suQ
−

such that it can 

be set to zero in the optimization process due to its infinite cost.  
By doing so, the weighting matrix can be shown as: 
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Note that initially one element of 
suQ is forced to zero, but 

because of the control spillover, the original zero element will 
become non-zero.  For each complex mode controlled, two 
modal states are used as feedback to synthesize the modal 
control input, which in turn is used to formulate the physical 
control input, u, through the left modal matrix.  Control spill-
over exists in the process and has been taken into account in 
the analysis.  The relation between the modal control input and 
the physical control input can be shown as: 
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where ( )f t is the physical control input; η2s−1 and η2s are not 
unique due to the non-unique normalization process of the  
left and right eigenvectors.  By substituting Eq. (14) into Eq. 
(13), we have successfully solved the resulting nonlinear 
Riccati matrix equation and the closed form solution can be 
written as: 
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The exact solution as given above alleviates the need to 
solve the notoriously stiff nonlinear Riccati equations, which 
are well known for the frequently encountered numerical 
difficulties and expensive computation. 

III. NUMERICAL RESULTS 

A total of eight finite elements is used to model the fluid- 
conveying pipe.  An initial disturbance is given by applying a 
unit impact on the mid span of the pipe.  The numerical data 
used for the simulation can be found in Table 1.  The damping 
within the PIA is assumed negligible.  The open loop poles of 
the second mode to be controlled are -0.026 ± 57.173i.  The 
corresponding gyroscopic damping due to the moving fluid 
results in 0.045% modal damping for the second mode of the 
fluid-conveying pipe, indicating a lightly damped open loop  
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Table 1.  Numerical data of the fluid-conveying pipe. 

Young’s modulus E = 68.9(109) Pa 

Length of pipe L = 3 m 

Mass per unit length of the pipe mp = 0.3420 kg/m 

Mass per unit length of the fluid mf = 0.0855 kg/m 

Outside diameter of the pipe do = 0.0254 m 

Thickness of the pipe wall t = 0.00165 m 

Mass of the PIA ma = 0.0513 kg 

Stiffness of the PIA  ka = 165.0288 N/m 
 
 

stable system.  As is well known, further increase of the fluid 
speed will result in negative damping, leading to flutter in-
stability in the second mode. 

We first consider the case with a fixed control weight 1
22sE− = 

10.  For the system examined in this work, the second mode  
is dominant, and hence this mode is targeted to be controlled.  
Note that because of the severe control spillover, η2s−1/η2s, 
which is determined by how the complex left and right ei-
genvectors are normalized, will greatly affect the stability of 
the closed loop system.  Consider the relation T

s tl r = Rst, where 

ls and rt denote the left and right eigenvectors, respectively, 
and Rst is in general a complex number.  To obtain Eq. (8), ls 
and rt can be normalized by both multiplying a factor of 

2 / stR .  However, there are infinite ways to realize the nor- 

malization.  The same normalization can be accomplished  
by using a complex number, zeiθ, to multiply ls and to divide  
rt simultaneously.  Note that the magnitude 'z ' has no effect on 
the outcome and it is the rotation angle 'θ ' that solely makes 
the difference.  The physical consequence of this operation can 
be considered as a rotation of the left eigenvector on the 
complex plane.  For the independent modal space control of 
the fluid-conveying pipe with the pioneers’ approach being 
applied, the following range of 'θ ' is found to have resulted  
in an unstable closed loop system, including divergence and 
flutter instabilities: 

 0.717 0.813 , 0,1, 2, ...n n nπ θ π± < < ± =  (17) 

Note that the open loop system is stable in this analysis case, 
with the second mode eigenvalue being -0.026 ± 57.173i.   
Fig. 2 illustrates the tip response of the fluid-conveying pipe. 

As can be seen, the closed loop instability can be either of 
the flutter type or of the divergence type, depending on how 
the left eigenvector is normalized.  The angle of rotation, 'θ ', 
of the left eigenvector on the complex plane plays a crucial 
role on the stability of the smart system.  For θ = 0.73, the 
closed loop poles are (23.267, -29.073), showing a divergence 
instability, whereas for θ = 0.81, the closed loop poles are 
0.412 ± 137.640i, representing a flutter instability.  Fig. 3 
illustrates the variation of the second closed loop pole as the 
angle of rotation, 'θ ', changes. 
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Fig. 2. Tip responses for different rotation angles of the left eigenvector 

with −1
22sE  being fixed.  ……: θ = 0.81, ____ : uncontrolled, – – –:  

θ = 0.73. 
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Fig. 3. The second mode root loci in the vicinity of the divergence insta-

bility as the rotation angle, θ, of the left eigenvector changes while 

the modal control weight 1
22sE −  remains fixed. 

 
 
The critical angle of rotation for divergence can be clearly 

seen when the root passes the origin of complex plane.  Simi-
larly, in Fig. 4, the second closed loop pole can be seen to 
come across the imaginary axis as the angle of rotation  
reaches 0.813. 

The effect of the control weight 1
22sE−  on the stability of the 

system is also examined with the ratio η2s−1/η2s being fixed.  
The eigenvectors ls and rt are both multiplied by the baseline 
complex number, 2 / stR , to satisfy the normalization re-

quirement.  The following range of the control weight can be 
shown to render the system unstable with divergence insta- 
bility:  

 1 6
224512.080 9.861(10 )sE−< <  (18) 
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Fig. 4. The second mode root loci in the vicinity of the flutter instability 

as the rotation angle, θ, of the left eigenvector changes while the 

modal control weight 1
22sE −  remains fixed. 
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Fig. 5. The controlled and uncontrolled tip responses with a fixed base-

line left eigenvector, illustrating divergence instability.  -----: 
1
22sE − = 10000, ___: uncontrolled. 

 
 
Fig. 5 shows the tip response of the fluid-conveying pipe 

with 1
22sE−  = 10000.  It can be seen the instability is of the 

divergence type.  Figs. 6 and 7 depict the trace of the second 

mode as the control weight 1
22sE−  changes. 

IV. CONCLUSIONS 

In this study, stability analysis of the approach proposed by 
the pioneer developers of the IMSC technique has been pre-
sented and illustrated by a numerical example concerning 
active vibration control of a fluid-conveying pipe using a 
piezoelectric inertia actuator.  The approach can easily lead to 
an unstable system due to severe control spillover within the  
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Fig. 6. The second mode root loci in the vicinity of the lower bound 

divergence instability as the modal control weight 1
22sE −  changes 

while the left eigenvector remains fixed. 
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Fig. 7. The second mode root loci in the vicinity of the upper bound 

divergence instability as the modal control weight 1
22sE −  changes 

while the left eigenvector remains fixed. 

 
 
complex mode controlled.  The analyst has no prior knowl-
edge of the closed loop stability of the system because there 
are infinite ways to satisfy the requirement of the eigenvector 
normalization.  For the first time in the literature, we have 
revealed the interesting stability characteristics of the control 
system with the IMSC technique used by rotating the left 
eigenvector in the complex plane while realizing the nor-
malization requirement.  The catastrophic instability design, 
even for open loop stable systems, can thus be circumvented. 
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