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ABSTRACT 

In this paper, the robust stabilization problem for a class of 
time-delayed multi-input systems with matched and un-
matched uncertainties is considered.  Here, all the matched 
uncertainties, unmatched uncertainties and the delay term may 
be time-varying.  Variable structure control (VSC) is sug-
gested to design stabilizing controllers for these uncertain 
time-delayed multi-input systems.  The proposed controllers 
guarantee the global reaching condition of the sliding mode in 
these uncertain time-delayed multi-input systems.  Further, 
they ensure that the system trajectories asymptotically con-
verge to the sliding mode.  In the sliding mode, the investi-
gated time-delayed systems with matched and unmatched 
uncertainties still possess the insensitivity to the uncertainties 
and external disturbances, which is the same as the linear 
systems do.  And the proposed controllers can work effec-
tively for systems either with matched or unmatched uncer-
tainties.  However, the above desirable properties cannot be 
guaranteed by the traditional VSC design for the systems 
without time delays or with matched uncertainties.  Finally, an 
illustrative example is included to demonstrate the effective-
ness of the proposed variable structure controller. 

I. INTRODUCTION 

Time delay is frequently found in various physical systems, 
for example, in long transmission lines, in hydraulic or 
pneumatic systems, electrical networks, chemical process, and 
so on.  The stabilization problem of uncertain control systems 
with time delay in the state has become an important issue in 
recent years.  It is in anticipation of the poor system per-
formance or even instability may arise from the existence of 

time delay, and the existence of time delay renders the control 
problem much more complex and difficult.  Using the different 
methods, the problem of the stabilization for uncertain time- 
delay systems has been studied in [4, 5, 7-9, 11-13, 15].   
For example, the problem of the global delay-dependent ro-
bust stability in the mean square for uncertain stochastic 
neural networks with time-varying delay is investigated by  
Lu et al. [9].  A a global robust stability analysis of a par- 
ticular class of hybrid bidirectional associative memory time- 
varying delayed neural network with norm-bounded time 
varying parameter uncertainties is studied in [8].  In [15], the 
problem of adaptive robust control for uncertain linear sys-
tems with delay occurring in the state variables is studied.   
Hua et al. [5] studied a state feedback control problem for a 
class of nonlinear time-delayed via the backstepping method.  
In [11], Shyu, Liu and Hsu developed a new robust control  
law to stabilize an uncertain large-scale time delayed system 
with a dead-zone input.  Hsu [4] discussed the time delayed 
problem for some uncertain systems and large-scale systems 
with nonlinear input.  In [12], some new separated H∞ and H2 
performance criteria are derived for a class of time-delay 
systems.  Liu [7] studied the observer design for nonlinear 
uncertain time-varying delay systems with unmatched uncer-
tainties.  And the equivalence and efficiency of certain stabil-
ity criteria for time-delay systems are discussed in [13].  In the 
above literatures, for the uncertainty part, the matching con-
dition is required for some of them, for the time delay part, 
some of them needed time delay is constant or the derivative 
of the time-varying delay is known or even the derivative of 
the delay has to be less than one.  However, in practice, the 
uncertainties of the systems may be unmatched and the delay 
of systems may be time varying and the derivative of the delay 
may not be less than one. 

In this paper, VSC is suggested to design stabilizing con-
trollers for the time-delayed multi-input systems with matched 
and unmatched uncertainties, here, all the matched uncertain-
ties, unmatched uncertainties and the delay term may be 
time-varying.  For robust control system, VSC is habitually 
adopted due to its congenital advantages [6, 14], that is, order 
reduction and robustness with respect to matched parameters 
and/or external disturbances.  The famous invariant property 
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of VSC says that if the uncertainties of the system satisfy the 
matching condition, then the system behavior in the sliding 
mode is insensitive to the matched uncertainties and the sys-
tem is governed by the predetermined switching surface.  
However, if the matching condition is not satisfied, that is, the 
unmatched uncertainties exist in the developed system, then 
the system behavior in the sliding mode can not be governed 
by the predetermined switching surface.  Motivated by the 
existence of time delay and unmatched uncertainties, in this 
paper, a new VSC law is proposed to deal with the time- 
delayed system with matched and unmatched uncertainties. 

The rest of the paper is organized as follows.  System and 
assumption statements are introduced in Section II.  The sys-
tem dynamics analysis on the sliding surface is presented in 
Section III.  Section IV elaborates the new variable structure 
control law.  Illustrate example and concluding remarks are 
given in Sections V and VI, respectively.  Without loss of 
generality, throughout the remainder of this paper, (*)T denotes 
the transpose of (*),  ||(*)|| denotes the Euclidean norm when 
(*) is a vector, or the Frobenius norm when (*) is a matrix. 

II. SYSTEM DESCRIPTION 

Consider a class of multi-input systems with time-varying 
matched uncertainty, unmatched uncertainty and time-varying 
delay, which are described by the following equations  

( ) ( ( )) ( ) ( ( )) ( ) ( ).dx t A A t x t A x t d t Bu t f t= + ∆ + − + + ∆�  

( ) ( ), for ( ) 0.x t t d t tθ= − ≤ <  (1) 

where x(t) ∈ Rn and u(t) ∈ Rm are the vectors of the state  
variables and control inputs of the uncertain time-delayed 
system, respectively.  ∆f(t) ∈ Rn is a vector of the external 
nonlinear disturbances of the system, d(t) stands for a positive 
nonzero time-varying delay.  θ(t) represents a continuous 
vector-valued initial function.  A ∈ Rn×n, Ad ∈ Rn×n and B ∈ 
Rn×m are the nominal state matrix, state-delay term matrix  
and the input matrix of the uncertain system, respectively.  The 
matrix ∆A(t) is the unknown time-varying system parameter 
uncertainty which is considered to be unmatched in this paper.  
Before deriving our proposed approach, the following as-
sumptions are introduced for system (1). 

 
Assumption 1. The matrix pair (A, B) is controllable, i.e., 
there exists a matrix K, such that A = A – BK is stable. 

 
Assumption 2. There exists a vector f(t) ∈ Rm and known 
non-negative constant βf , such that 

 ( ) ( ) with ( ) .ff t Bf t f t β∆ = ≤  (2)  

Assumption 3. The uncertain time-varying state matrix ∆A(t) 
is not matched, i.e., it is the unmatched uncertainty with the 
form 

 ( ) ( ) .A t EF t G∆ =  (3) 

Here, E and G are known constant matrices with appropri-
ate dimension and F(t) is unknown uncertain matrix, but  
satisfies FT(t)F(t) ≤ I and I is an identity matrix with appro-
priate dimension. 

III. SYSTEM’S DYNAMICS ON THE  
SLIDING SURFACE 

According to the two VSC standard design steps, in this 
section, a proper switching surface will be chosen as a func-
tion of the system states, such that the equivalent system 
during sliding mode exhibits desired dynamic behavior.  And 
in the next section, a new VSC law will be designed to force 
the system state trajectory to the sliding surface and hold it 
here for all subsequent time. 

The associated switching surfaces of system (1) are speci-
fied as follows 

 S(t) = Cx(t). (4) 

where S = [s1 s2 … sm]T is a vector of switching surfaces, and  
C = [c1 c2 … cm]T is a specified constant m by n matrix. 

Note that the system dynamics on the sliding surfaces have 
the desired responses if C is selected appropriately, and the 
system dynamics satisfy the equations given below 

 ( ) 0 and ( ) 0.S t S t= =�  (5) 

Substituting (1) into (5), one gets 

 ( ) [( ( )) ( ) ( ) ( )] 0.d dS t C A A t x t A x Bu t f t= + ∆ + + + ∆ =�  (6) 

where xd denotes x(t – d(t)). 
The matrix product CB is chosen to be nonsingular to de-

rive the equivalent control ueq(t), that is 

 1( ) ( ) [( ( )) ( ) ( )].eq d du t CB C A A t x t A x f t−= − + ∆ + + ∆  (7) 

Hence, using (2), (3) and (7), the developed system (1) re-
stricted to the sliding surfaces are in the form of 

 1[ ( ) ][( ( ) ) ].d dx I B CB C A EF t G x A x−= − + +�  (8) 

Remark 1. From the last equation, one can find the fact that 
the system dynamics can not be dominated by the sliding 
mode, and the traditional VSC just required the uncertainties 
satisfy the matching condition will limit the application of the 
VSC approach.  In other words, the well-known invariance 
condition of VSC is not held for the time-delayed systems with 
unmatched time-varying uncertainties. 
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In order to overcome the fact stated in Remark 1, fortu-
nately, the so-called sliding coefficient matching (SCM) con-
dition proposed in [1] could be used to make the invariant 
property also hold for the time-delayed systems with un-
matched time-varying uncertainties, and the following Defi-
nition is made for the SCM condition. 

 
Definition. The uncertainty ∆A(t) = EF(t)G is said to satisfy 
the SCM condition, if there exists a matrix H with appropriate 
dimension, and the matrix G satisfies  

 G = HC. (9) 

Remark 2. The poor system performance or even insta- 
bility may arise from the presence of uncertainties and/or 
disturbances.  Fortunately, they may be overcome if they 
satisfy the traditional matching (TM) condition, that is, the 
uncertainties and/or disturbances are within the range space 
of the input matrix B.  Unfortunately, the system cannot  
be forced to the sliding mode if the uncertainties and/or 
disturbances are NOT within the range space of the input 
matrix B, that is, they don’t satisfy the TM condition (see  
Fig. 2).  However, the SCM condition says that we can deal 
with such unmatched uncertainties by selecting matrix C 
appropriately.  Although SCM condition looks like TM con- 
dition, the SCM condition is more flexible than the TM 
condition. 

 
Using (2), one can easily derive the system restricted to the 

sliding surfaces as shown in (8) 

 1[ ( ) ][( ( ) ) ].d dx I B CB C A EF t G x A x−= − + +�  (10) 

The SCM condition shown in (9) could be used to conquer 
the unmatched time-varying matrix ∆A(t).  Then, 

 ( ) ( ) ( ) .A t EF t G EF t HC∆ = =  (11) 

Hence, when the developed system is on the sliding surface, 
one gets 

 1[ ( ) ]( ).d dx I B CB C Ax A x−= − +�  (12) 

From the above equation, one can see that the system 
dynamics are not affected by the unmatched part.  Never-
theless, the stabilization problem of such a time-delayed 
system has been solved by a good existing paper, which is 
proposed by Richard [10].  Thus, in the sliding mode, the 
investigated time-delayed systems still possess the insensi-
tivity to the matched external disturbances and/or unmatched 
time-varying system parameter uncertainties.  Furthermore, a 
new VSC law will be designed in next section, so that the 
system dynamics (12) will be driven to the sliding surface 
and stayed thereafter. 

IV. VARIABLE STRUCTURE CONTROL  
LAW DESIGN 

According to the second VSC standard design phase, a  
new VSC law will be designed in this section, so that the 
system states are forced to the sliding surface and stayed here 
for all subsequent time.  The following lemmas are needed to 
achieve a new VSC law to drive the unmatched uncertain 
time-delayed system trajectories into the sliding mode. 

 
Lemma 1. If the following condition is held, then the motion 
of the sliding mode (4) is asymptotically stable 

 ( ) ( ) 0, 0.TS t S t t< ∀ ≥�  (13) 

Proof . Let the Lyapunov function candidate of the system (1) 
be chosen as  

 T1
( ) ( ) ( ).

2
V t S t S t=  (14) 

Then condition (13) ensures that  

 T( ) ( ) ( ) 0.V t S t S t= <��  (15) 

Hence, the system trajectories are toward the switching sur-
faces and the sliding mode (5) is asymptotically stable. * 

 
Lemma 2 [1].  If FT(t) F(t) ≤ I, then 

 T T T2 ( ) , , .na F t b a a b b a b R≤ + ∀ ∈  (16) 

In order to meet the condition (13), the new appropriate 
VSC law is proposed as follows 

T T
1 T T T

T T

1
( ) ( , ) ( ) [ ],

2

B C S
u t R x t CB CEE C S H HS

B C S
−−= − +  (17) 

where 

11( , ) {( ) },( )( ) fd
R x t r xCB CACB CAη β−−= + +  

with 1and 1.rη > >   (18) 

Now, we are in a position to establish the Theorem of this 
paper, which shows that the developed time-delayed systems 
with unmatched time-varying uncertainties can be forced on 
the sliding surface (4) by applying the proposed VSC laws 
(17). 

 
Theorem 1. For the multi-input uncertain time-delayed sys-
tem (1) with matched and unmatched uncertainties satisfying 
Assumptions 1~3.  The system trajectories will asymptotically 
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converge to the sliding surface (4), if the proposed VSC laws 
(17) applied to the developed system (1). 

 
Proof . 

Let the Lyapunov function of the system (1) be chosen as 
(14). 

Substituting (1) and (4) into (14), and taking the time de-
rivative of V, one gets 

T( ) ( ) ( )V t S t S t= ��  

T ( ) [( ( )) ( ) ( ) ( )].d dS t C A A t x t A x Bu t f t= + ∆ + + + ∆  (19) 

Using (2), (3), (9), (16) and the property PQ P Q≤ , 

one has 

T( ) ( ) [ ( ) ( )]d dV t S t C Ax t A x Bf t= + +�  

T T( ) ( ) ( ) ( ) ( )S t CEF t Gx t S t CBu t+ +  

11T [ ]( )( ) d fd
x xCB CACB CAS CB β−−≤ + +  

T T T T T1
[ ] ( ).

2
S CEE CS S H HS S CBu t+ + +  (20) 

Then, applying the proposed VSC laws (17), (18) and with 
the help of Razumikhin theorem [3], dx r x<  for r > 1, one 

obtains 

11T( ) [ ]( )( ) fd
V t x r xCB CACB CAS CB β−−< + +�  

11T [ ]( )( ) fd
x r xCB CACB CAS CBη β−−− + +  

11T(1 ) [ ]( )( ) fd
x r xCB CACB CAS CBη β−−< − + +  

  (21) 

Because η > 1, it is clear to derive 

 T( ) ( ) ( ) 0.V t S t S t= <��  (22)  

From (22), based on the Lyapunov stability theory, one can 
see that the system dynamics are asymptotically converged to 
the sliding surface (4). * 

V. ILLUSTRATIVE EXAMPLE [2] 

In this section, an illustrative example is selected from the 
literature on the subject to demonstrate the effectiveness of  
the proposed variable structure controller.  The following dy- 
namical system is adopted from [2] except the delay part. 

1 1 1

2 2 2

3 3 3

0 1 0 1 1 0 ( ( ))

0 1 1 1 1 0 ( ( ))

0 0 0 1 1 ( ( ))

x x x t d t

x x x t d t

x x x t d t

ζ

ζ

+ −        
        = − + − − −        
        − −        

�

�

�

 

1

2

1 0 0

1 0 0

0 1

u

u
ζ

   
    + − +    
       

.  (23) 

where ζ is a time-varying variable ranging in [−1 1], and the 
initial values are given as x(0) = [1 0 –1]T. 

Comparing (23) with system (1), we get the following pa-
rameters 

0 1 0 0 0 1 1 0

0 1 1 , ( ) 0 0 0 , 1 1 0 ,

0 0 0 0 0 0 1 1
dA A t A

ζ

ζ

     
     = − ∆ = = − −     
     −     

 

1 0 0

1 0 , and ( ) 0

0 1

B f t

ζ

   
   = − ∆ =   
      

. 

Further, based on (2) and (3), we can find the following data  

 

1
0

( ) , 0 , ( ) , and [0 1 0]

1

f t E F t Gζ
ζ

 
   = = = =   
   − 

 

and it is clear to see that ∆A(t) is the unmatched part of the 
system. 

Furthermore, from the above data and (18), we choose the 
following values for the computer simulation: ζ = sin(t), βf = 
1.2, η = 1.2 and r = 1.2. 

We know that the time delays of the system often change 
due to the variable environment, so we consider the case that 

( ) 2 sin( )d t t=  for system (23). 
The switching surfaces are selected as 

 
1 0 2

( ) ( ) ( ).
1 1 2

S t Cx t x t
 

= =  
 

 

For comparisons, we consider the following cases. 
 

Case 1: Applying the conventional VSC law to the system 
(23) with zero unmatched uncertainties and no time 
delay term, i.e., ζ = 0 and Ad = 0. 

Case 2: Applying the conventional VSC law to the system 
(23) with unmatched uncertainties and with time 
delay term, i.e., ζ ≠ 0 and Ad ≠ 0. 

Case 3: Applying the modified proposed VSC law to the 
system (23) with zero unmatched uncertainties and 
no time delay term, i.e., ζ = 0 and Ad = 0. 
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Fig. 1. Applying (26) to the system (23) with ζ = 0 and Ad = 0: States x1, x2, 

x3 versus time. 
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Fig. 2. Applying (26) to the system (23) with ζ ≠ 0 and Ad ≠ 0: States x1, x2, 

x3 versus time.  
 
 

Case 4: Applying the modified proposed VSC law to the 
system (23) with unmatched uncertainties and with 
time delay term, i.e., ζ ≠ 0 and Ad ≠ 0. 

 
For Case 1, ξ = 0 and Ad = 0, the system (23) can be re-

written as  

 
1 1

1
2 2

2
3 3

0 1 0 1 0

0 1 1 1 0

0 0 0 0 1

x x
u

x x
u

x x

      
       = − + −        
             

�

�

�

 (24) 

Following the conventional VSC design procedure for this 
case, we have the following conventional VSC law for (24)  

 
T T

1
con T T

( ) { ( ) }, 1
B C S

u t CB CA x
B C S

η η−= − >  (25) 
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Fig. 3. Applying (27) to the system (23) with ζ = 0 and Ad = 0: States x1, x2, 

x3 versus time. 
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Fig. 4. Applying (27) to the system (23) with ζ ≠ 0 and Ad ≠ 0: States x1, x2, 

x3 versus time.  
 
 
In order to eliminate the control chattering, the boundary 

layer condition is commonly used, and the last law is modified 
as follow  

 
T T

1
con T T

( ) { }, 1( )
B C S

u t xCB CA
B C S

η η
ε

−= − >
+

 (26) 

where ε = 0.001. 
Applying the modified conventional law (26) to the system 

(24), one gets the well state trajectory performances shown in 
Fig. 1.  However, for Case 2, when the modified conventional 
law (26) is applied to system (23) with ζ ≠ 0 and Ad ≠ 0, it does 
not ensure the stability of the time-delayed system with the 
unmatched uncertainties and the poor performances are shown 
in Fig. 2. 

Also, under the boundary layer condition, the proposed VSC 
law (17) is modified as follow to eliminate the control chattering. 
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Fig. 5.  Time response of the conventional VSC law (26): (a) u1 and (b) u2. 

 

 
T T

1 T T T

T T

1
( ) ( , ) ( ) [ ]

2

B C S
u t R x t CB CEE C S H HS

B C S ε
−−= − +

+
 

  (27) 

where ε = 0.001. 
Based on the SCM condition, the matrix H can be cast as  

H = [−1 1].  Now, for Case 3 and Case 4, the modified pro-
posed VSC law (27) is applied to both (23) and (24) and the 
state trajectories are shown in Fig. 3 and Fig. 4, respectively.  
From these results, one can see that the proposed VSC law can 
work effectively for a class of time-delayed system no matter 
it is with or without unmatched uncertainties.  However, the 
conventional VSC law is not applicable to the time-delayed 
system with the unmatched uncertainties.  Furthermore, Fig. 5 
shows the time responses of the conventional VSC law (26) 
under the boundary layer condition and the time responses of 
the proposed VSC law (27) under the boundary layer condi-
tion are shown in Fig. 6.  From Fig. 5 and Fig. 6, one can 
clearly see that the control chattering phenomenon has been 
eliminated. 

VI. CONCLUSIONS  

In this paper, a new robust control law is proposed for a 
class of time-delayed multi-input systems with matched  
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Fig. 6.  Time response of the proposed VSC law (27):  (a) u1 and (b) u2. 

 
 

and unmatched uncertainties through variable structure control 
theory.  We summarize this paper with the following results:  
 
(a) The proposed VSC controllers can drive the trajectories of 

the investigated systems onto the sliding mode. 
(b) The investigated time-delayed multi-input system still 

bears the insensitivity to the unmatched uncertainties  
and disturbances, which is the same as the systems with 
matched uncertainties do. 

(c) For the time delay part, it needed no more time delay is 
constant and/or the derivative of the time-varying delay 
has to be less than one. 

(d) The proposed controllers can be successfully applied to 
uncertain time-delayed systems either with matched un-
certainties or with unmatched uncertainties.  However, 
this cannot be guaranteed by the conventional variable 
structure control, which is designed for the systems with 
matched uncertainties. 
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