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ABSTRACT 

This study presents a support vector machine (SVM)-based 
approach for predicting earthquake liquefaction.  The SVM 
model database includes five indexes: earthquake magnitude, 
total overburden pressure, effective overburden pressure, qc 
values from cone penetration tests (CPT), and peak ground 
acceleration.  The proposed model was trained and tested on  
a dataset comprising 466 field liquefaction performance re-
cords and CPT measurements.  A grid search method with 
k-fold cross-validation was also used to verify the feasibility.  
Compared with an artificial neural network (ANN)–based 
method, the SVM-based method has the advantage of in-
creased accuracy and simpler operation.  Experimental results 
show that the proposed SVM approach can increase the clas-
sification accuracy rate to a standard of 98.71%. 

I. INTRODUCTION 

Liquefaction is one of the most destructive phenomena 
caused by earthquakes, and often occurs in loose, saturated 
soil deposits.  Examples of liquefaction include the earth-
quakes in Niigata, 1964; Alaska, 1964; Tangshan, 1979; Loma 
Prieta, 1989; Kobe, 1995; Turkey, 1998; Chi-Chi, Taiwan, 
1999; and Honshu, Japan, 2011.  In view of the serious dam-
age caused by earthquake-induced liquefaction, geotechnical 
engineers are actively engaged in the study of the soil lique-
faction caused by earthquakes, and have developed many 
assessment methods for evaluating soil liquefaction.  How- 
ever, the high uncertainty in earthquake environments and  
soil characteristics makes it difficult to choose a suitable em-
pirical equation for regression analysis.  Therefore, many 
scholars and experts have attempted to develop scientifically 

derived analytical models that are simpler, easier to imple- 
ment, and more accurate than traditional empirical equations 
for soil liquefaction analysis. 

Many of the existing assessment methods were developed 
from observations of the behavior of sites during earth- 
quakes.  Geotechnical engineers have often used the simple 
liquefaction analytical model developed by SPT-N, because  
of its computational speed and analytical ability.  Based on 
recent improvements in data processing and analytical ability, 
the cone penetration test (CPT) offers the advantage of fast, 
continuous, and accurate soil parameter measurements.  Re-
lated testing data has also continued to accumulate.  There- 
fore, the potential of applying CPT to liquefaction research  
has grown significantly. 

This study presents a relatively new soft computing method 
known as a support vector machine (SVM) [1, 5].  SVMs  
have been widely used in recent years in areas such as  
image identification and facial recognition.  An identification 
model that adopts SVM analysis is an effective method for 
accurately predicting liquefaction, and can be used in practi- 
cal applications. 

Previous studies have shown that the SVM method is a 
powerful and effective tool for dealing with liquefaction 
problems, and is more accurate and reliable than conventional 
methods [8, 10]. 

II. OVER VIEW OF SVM 

This section presents the basic SVM concepts for typical 
binary classification problems. 

1. Linear SVM 

A support vector machine, as presented by Vapnik [12], is  
a machine learning algorithm based on the statistical learn- 
ing theory.  The diagram in Fig. 1 shows the basic concepts of 
this approach.  The circles and the diamonds in this figure 
represent two samples, and H is a labeling line separating the 
two samples.  The H1 and H2 dashed lines pass through the 
nearest samples to the labeling line.  The nearest data points 
used to define the margin are called support vectors (SV), and 
the distance between H1 and H2 is called the margin.  The  
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Fig. 1.  Optimal hyperplane for a linear SVM. 

 
 

separating hyperplane H that has the maximum distance be-
tween the nearest data (i.e., the maximum margin) is called the 
optimal separating hyperplane. 

As Fig. 1 shows, the data patterns can be shown as {xi, yi},  
i = 1, 2, ……, k, where xi ∈ RN is an N-dimensional data  
vector with each sample belonging to either of the two classes 
labeled as  yi ∈ {-1, +1}, and the decision function (hyperplane) 
can be expressed as 

 0Tw x b+ =  (1) 

where x is an input vector, w is an adaptive weight vector, b  
is a bias, and wTx is an inner product of w and x.  For the  
linearly separable class, a separating hyperplane for the two 
classes can be defined as 

 1, 1T
i iw x b y+ ≥ ∀ = +  (2) 

 1, 1T
i iw x b y+ ≤ − ∀ = −  (3) 

Eqs. (2) and (3) can be combined into 

 ( ) 1 0T
i iy w x b+ − ≥  (4) 

The goal of the SVM is to find w and b for the optimal 
separating hyperplane to maximize the margin 2 w  (Fig. 1).  

Hence, the hyperplane that optimally separates the data is the 
one that minimizes w .  The optimal separating hyperplane 

can be obtained by solving the following convex quadratic 
optimization problem [12]: 

Minimize 
21 1

2 2
Tw w w=  (5) 

subject to ( ) 1 ,T
i iy w x b i+ ≥ ∀  (6) 

The above equation can be transformed into the equivalent 
Lagrangian dual problem as 

1

1
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where αi ≥ 0 (i = 1, 2, …, N) are the Lagrangian multipliers.  
The goal here is to find w and b which minimizes, and the α 
which maximizes Eq. (7).  This can be done by differentiating 
Lp with respect to w and b and setting the derivatives to zero 
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Based on Eq. (9), the third term on the right hand side of Eq. 
(7) is zero.  Multiplying Eq. (8) by wT leads to 

 
1 1 1

N N N
T T T

i i i i j i j i j
i i j

w w y w x y y x xα α α
= = −

= =∑ ∑∑  (10) 

Eq. (7) can then be reformulated as 
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 (2) 0,i iα ≥ ∀   (12) 

The problem is now re-cast as finding the optimum La-
grangian multipliers that maximize the objective function Eq. 
(11) subject to Eq. (12).  This is a convex quadratic optimiza-
tion problem, and requires a quadratic program (QP) solver 
that returns αι . The solution αι  for the dual optimization 
problem determines the parameter w* and b* of the optimal 
hyperplane.  Thus, the optimal hyperplane decision function 
can be written as 

 * * * *

1

( ) ( ) i
i

N
T T

i i j
i

f x sign w x b sign y x x bα
=

 
= + = + 

 
∑  (13) 

where sign is the signum function.  If the result is positive, 
then it is classified x as class 1, and classified as class 2 other- 
wise. 

2. Linearly Inseparable SVM 

The soft margin method, which introduces an additional 
cost function associated with misclassification, is an appro- 



320 Journal of Marine Science and Technology, Vol. 21, No. 3 (2013) 

 

w

Origin
w
ξ

-
w
b

-

 
Fig. 2.  Hyperplane through two linearly inseparab classes. 

 
 

priate way to extend the SVM methodology to data that is not 
linearly separable.  Cortes and Vapnik [5] introduced positive 
slack variables ξ and a penalty factor C. 

As Fig. 2 shows, data points on the incorrect side of the 
margin boundary have a penalty that increases with distance.  
To reduce the number of misclassifications, modify the con-
straints of Eq. (5) for the non-separable case as follows: 

minimize            
1

1

2

l
T

i
i

w w C ξ
=

+ ∑   (14) 

subject to            ( ) 1 0 ,T
i i iy w x b iξ+ − + ≥ ∀  (15) 

where ξ is called a slack variable used to account for the  
effects of misclassification.  C is called a penalty factor, a 
parameter defines the trade-off  between the number of mis-
classification in the training data and margin maximization.  
As before, reformulating this as a Lagrangian requires the 
minimization of w, b, and ξ, and the maximization of α  
(where αi ≥ 0): 
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subject to          , 0 ( 1, 2, ..., )i i i Nα β ≥ =  (17) 

Differentiating L with w, b, and ξ, and setting the deriva-
tives to zero leads to 
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Fig. 3.  Mapping from the data space X to the feature space F. 

 
 
After substituting these values in, LD has the same form as 

Eq. (10), Eq. (11).  Again, maximize 
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The equations are almost the same dual problem as before, 
with a slight difference being that the multipliers αi have an 
extra constraint. 

 

3. Nonlinear Separable SVM 

The concepts can also be extended to the case of a nonlinear 
separating hyperplane by mapping the input space onto a high 
dimensional space, ( ),x xφ→  where the data can be linearly 
classified (Fig. 3).  The key property of this mapping is that the 
function φ must be subject to the condition that the dot product 
of the two functions φ(xi) ⋅ φ(xj) can be written as a kernel 
function K(xi, xj) The decision function then becomes 

 
1

( ) ( , )
N

i i i j
i

f x y K x x bα
=

= +∑  (23) 

Different kernel functions can construct various learning 
machines.  Some typical kernel functions are as follows: 

Linear kernel: ( , ) T
i j i jK x x x x=  (24) 

Polynomial kernel: ( , ) ( ) , 0T d
i j i jK x x x x rγ γ= + >  (25) 

Radial basis function (RBF):  

 ( )2
( , ) exp , 0i j i jK x x x xγ γ= − − >  (26) 
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Fig. 4.  A k-fold cross-validation procedure. 

 

Sigmoid kernel:     ( , ) tan( )T
i j i jK x x x x rγ= +  (27) 

In the questions above, γ , r and d are kernel parameters. 

III. CROSS-VALIDATION 

Cross-validation is a technique for assessing how the results 
of statistical analysis can be generalized to an independent 
dataset.  This technique is mainly used in situations where the 
goal is prediction, and one wants to estimate how accurately a 
predictive model will perform in practice. 

This study adopts a k-fold cross-validation technique that 
randomly partitions the original sample into k subsamples.  A 
single subsample is retained as validation data for testing the 
model, and the remaining k − 1 subsamples are used as training 
data.  The cross-validation process is repeated k times (the 
folds), with each of the k subsamples used exactly once as the 
validation data.  The k results from the folds can be averaged 
(or otherwise combined) to produce a single estimation.  Fig. 4 
provides an example of a k-fold cross-validation procedure. 

The advantage of this method over repeated random sub-
sampling is that all observations are used for both training and 
validation, and each observation is used for validation exactly 
once.  The main drawback of this method is that it requires 
intense computation.  Fig. 5 shows the k-fold cross-validation 
error versus k for a big data set, and indicates that a k value 
between 4 and 10 is a good trade-off: increasing this value sig- 
nificantly increases computation time and does not significantly 
improve results [11].  Thus, this study adopts 5-fold cross- 
validation.  This approach may not be useful in achieving high 
training accuracy, but it can prevent the over-fitting problem. 

IV. GRID SEARCH 

The grid search algorithm performs an exhaustive search 
through the parameter space of a learning algorithm to solve 
the problem of model selection (i.e., finding the optimal pa-
rameters for a dataset). 
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Fig. 5.  A plot of k-fold cross-validation error vs. k [11].  

 
Researchers have proposed four basic kernel functions for 

SVM models.  First, decide which one to use, and then choose 
the penalty C and kernel parameters.  For example, there are 
two parameters for an RBF kernel: C and γ .  Various pairs  
of (C, γ) values are tried with a grid search procedure and  
the one with the best cross-validation accuracy is chosen.  
Testing exponentially growing sequences of C and γ is a 
practical method for identifying good parameters (e.g., C = 2-4, 
2-3.5, …, 24; γ  = 2-4, 2-3.5, …, 24). 

V. APPLICATIONS OF SVM  
CLASSIFICATION 

The case records in this study were evaluated using the 
MATLAB (R2010a) program and tool box [2, 6].  Fig. 6 shows 
the flowchart of the proposed SVM system. 

The database includes 466 CPT-based field liquefaction 
records from over 11 major earthquakes between 1964 and 
1999.  The data consists of 21 case records from Japan, 85 
from China, 7 from Canada, 219 from the USA, and 134 from 
Taiwan.  This represents 250 sites that liquefied and 216 sites 
that did not liquefy.  Five parameters that were recorded in all 
466 sites are (1) earthquake magnitude, M ; (2) total overbur-
den pressure, σ0; (3) effective overburden pressure, 0

'σ ; (4) qc 
values from CPTs; and (5) peak acceleration, amax Table 1 
summarizes the maximum and minimum values of each pa-
rameter.  The parameter values for all 466 case records are 
presented in a paper written by Chern et al. [3].  The input re- 
presenting the liquefaction potential is given a binary value of 
1 for liquefied sites and a value of −1 for non-liquefied sites. 

Before the datasets were used to train the SVM model, they 
were preprocessed using Eq. (28).  Each parameter is nor-
malized between 0 and 1, with 

 min

max min

x x
y

x x

−=
−

 (28) 

in which y is a normalized input parameter, x is the original 
input parameter, and xmax and xmin are the maximum and 
minimum parameters, respectively. 
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Table 1. The maximum and minimum values of the ref-
erence datasets. 

Parameter M σ0(kpa) σ0(kpa) qc(kpa) amax(kpa) 

Max. 7.8 364.5 227.5 25.0 0.8 

Min. 5.9 16.7 16.7 0.18 0.08 
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Fig. 6.  Flowchart of the proposed SVM system. 

 
 
The main advantage of scaling is to avoid attributes with 

greater numeric ranges dominating those with smaller numeric 
ranges.  Another advantage of this method is to avoid nu-
merical difficulties during calculation. 

A normal SVM model randomly selects kernel parameters 
using a trial-and-error method [8, 10].  The grid search ap-
proach in this study is an alternative way to find the best pa-
rameters for the SVM classifier.  This approach avoids the 
over-fitting problem of the SVM model occurring because of 
the improper determination of these parameters. 

The RBF kernel is a reasonable first choice for an SVM 
model [9].  Hence, the proposed SVM model was first con-
structed by a radial basis function (RBF) kernel.  There are  
two parameters, C and γ , to be determined.  After the grid 
search procedure, the optimal parameters with maximal clas-
sification accuracy were selected.  As shown in Fig. 7, the best 
(C, γ) is (22.5, 25) with a cross-validation rate of  95.279%.  In 
this result, the optimal parameters are used to train the SVM 
model to generate the final classifier. 
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Fig. 7.  Parameters C and γ versus the accuracy rate. 

 
 
To improve SVM classification accuracy, the grid search 

procedure plays an important role in the performance of the 
SVM.  Fig. 7 also shows that the parameters C and γ greatly 
affect the classification accuracy of the SVM. 

VI. RESULTS AND DISCUSSION 

The procedure for using the SVM is described below: 
 

1. Transform data to the format of the SVM package.  
2. Conduct simple scaling on the data. 
3. Consider the RBF kernel. 
4. Use cross-validation and grid searching to find the best 

parameters C and γ . 
5. Use the best C and γ  to train the whole training set. 
6. Test. 
7. Find the best accuracy rate. 

 
After the training procedure, the best (C, γ) is (22.5, 25) with 

a cross-validation rate of 95.279%.  Out of the 466 datasets 
used, only 6 cases were misclassified, achieving an overall 
classification accuracy rate of 98.71%. 

In addition to verifying the effectiveness of the proposed 
method, this study compares it with an ANN method in the 
reference [3, 4].  The ANN model proposed in that paper 
combines fuzzy theory with a subtractive clustering algo- 
rithm to form a fuzzy-neural network system.  To verify the 
feasibility of the ANN model, this study compares that ANN 
model with the B5 model employed in Goh [7] using the  
same 109 data groups, including 74 training data groups and 
35 test data groups.  The results of this analysis are presented 
in Table 2.  The ANN-G5 model [3] performs better than 
Goh’s optimal B5 model in both the training and testing seg-
ments.  Therefore, the 466 collected CPT datasets are used in 
this study to compare the SVM model with the ANN (C4, 
C4H6, C5, and C5N) models [3].  Results are listed in Table 3, 
it shows that the SVM model achieves better results than the 
ANN models because of its lower total error rate of 1.29%. 
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Table 2.  Result of the G5 model and B5 model [7]. 

No. of  Error 
Model Input variables 

No. of elements in every  
training cluster 

No. of hidden neurons 
Training Testing 

Total error rate (%) 

B5 M, D50, 0 ,'σ qc, amax − 5 1  2 2.75 
G5 M, D50, 0 ,'σ qc, amax 53, 23, 11 5 0 1 0.92 
 
 

Table 3.  Comparison between SVM and ANN models [3]. 

Model Input variables 
No. of elements in every  

training cluster 
No. of hidden neurons No. of Misclassified Total  error rate (%) 

C4 M, 0 ,'σ  qc, amax 217,116,82,79 5 20 4.29 

C4H6 M, 0 ,'σ  qc, amax 217,116,82,79 6 19 4.08 

C5 M, σ0, 0 ,'σ qc, amax 190,93,114,89 5 12 2.58 

C5N M, σ0, 0 ,'σ qc1N, amax 190,91,113,91 5 16 3.43 

SVM M, σ0, 0 ,'σ qc, amax − −   6 1.29 

 
 

Table 4. The classification accuracies versus C for differ-
ent  kernel functions. 

C 10-2 10-1 2 22.25 25 100 200 

Linear 53.65 82.40 90.99 90.99 91.20 90.99 91.20 

Poly 53.65 53.65 72.10 76.61 85.84 87.98 88.84 

RBF 53.65 93.99 98.07 98.71 97.65 96.53 96.53 

Sigmoid 53.65 58.80 89.06 90.77 89.70 86.70 84.55 
 
 
As indicated previously, there are four types of basic kernel 

functions: linear, RBF, second order polynomial, and sigmoid.  
This study employs the accuracy rate as a criterion to find  
the optimal kernel function.  Table 4 shows the accuracy rate 
versus the C parameter from 0.01 to 200 for different kernel 
functions.  The RBF kernel function with parameter C = 22.25 
provides the best performance for the SVM model. 

The excellent classification accuracy of an SVM suggests 
its practicality for engineering applications.  Therefore, this 
study develops a liquefaction assessment algorithm based on 
SVM theory, called LA-SVM.  The graphical user interface 
(GUI) of this algorithm was implemented in a MATLAB/GUI.  
This interface provides an intuitive and user-friendly means of 
interaction.  Users do not need any diagrams, formulae, or 
manuals.  By simply using a mouse cursor to select options 
and input training data and parameter ranges, they can receive 
the classification results and accuracies of the testing data in a 
short CPU runtime.  LA-SVM greatly simplifies the liquefac-
tion assessment process and produces extremely accurate 
results.  The operation steps are listed as follows: 

 
1. Launch LA-SVM program (Fig. 8). 
2. Select the input button, and input the training data and 

testing data. 
3. Select the data’s normalization and its ranges (specified by 

users). 
4. Select the grid search method and specify the parameter 

ranges. 

 
Fig. 8.  Easy to use LA-SVM/GUI interface. 

 
 

 
Fig. 9.  Experimental Result of LA-SVM. 

 
 

5. Specify the number of folds for cross-validation. 
6. Select the run button, and start the analysis.  
7. When analysis is complete, obtain the optimal kernel func-

tion parameters and the classification accuracy (Fig. 9). 



324 Journal of Marine Science and Technology, Vol. 21, No. 3 (2013) 

 

VII. CONCLUSION 

SVM has been successfully applied in many applications, 
but it is less widely applied in the geotechnical field.  The 
results in this study show that SVM is a powerful computa-
tional tool that can be used to analyze the complex relationship 
between soil and seismic parameters in liquefaction assess-
ment. 

The experimental results in this study indicate that an SVM 
achieves greater classification accuracy than an ANN.  In 
addition to its higher accuracy rate, the SVM model requires 
only two parameters, as compared to the ANN, which requires 
multiple parameters.  In conclusion, the SVM model is more 
effective and feasible than the conventional ANN.  An SVM 
not only has a solid foundation in statistical learning theory, 
but can also effectively handle nonlinear classification.  
Therefore, it is regarded as one of the most effective classifi-
cation methods. 

The experimental results and discussion above show that 
the proposed LA-SVM can be effectively applied to liquefac-
tion assessment.  The LA-SVM program has an intuitive in-
terface that is easily understandable.  As new liquefaction 
assessment cases are collected to expand the database, the 
classification accuracy of LA-SVM can be further increased.  
Thus, LA-SVM is a novel liquefaction assessment tool worthy 
of promotion and support. 
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