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ABSTRACT 

This study investigates the performance of a piston-type 
porous wave energy converter (PTPWEC), which consists of  
a solid wall, a vertical porous plate, a transmission bar, a rigid 
block constrained by rollers, a spring, and a damper.  The 
PTPWEC is subjected to dynamic external loading by wave 
actions.  To simulate this dynamic system, a mathematical 
model is used with a single-degree-of-freedom (SDOF) sys-
tem.  Linear wave theory governs the entire fluid domain, 
which is divided into two regions by the vertical porous  
plate.  Darcy’s law is applied to flow through the porous plate.  
Finally, this investigation employs an eigenfunction expan- 
sion to yield a solution.  A series of numerical experiments are 
conducted to determine the hydrodynamic added mass, radia-
tion damping, converter response, and instantaneous me-
chanical power obtained from the wave. 

I. INTRODUCTION 

Since the First World War, petroleum has become the most 
important modern source of energy.  As a nonrenewable source, 
its supply is intrinsically limited.  The two oil crises in the 
1970s and concerns about global warming in the last decade 
reflect concerns about the extensive utilization of fossil fuels.  
The increasing public awareness of the problem has stimu- 
lated advances in renewable energy development [10, 11]. 

An important characteristic of ocean waves is their high 
energy density, which is the highest among renewable energy 
sources.  Worldwide wave power is estimated at 90 × 1015 W, 
presenting a renewable resource of 1012-1013 W [16].  More-
over, the International Energy Agency [12] estimated that 
wave energy could eventually provide over 10% of the world’s 
current electricity supply. 

Previous studies (e.g., [2, 8-10, 15, 19]) have introduced 
and compared several wave energy converters (WECs) as 
proposed designs for power-take-off (PTO) mechanisms.  This 
study investigates the performance of a piston-type porous 
wave energy converter (PTPWEC) consisting of a solid wall,  
a vertical porous plate, a transmission bar, a rigid block, a 
spring, a damper, and several rollers (see Fig. 1). 

Investigation of the vertical porous plate in coastal engi-
neering began many years ago.  Chwang and Dong [5] lin-
earized the problem of wave reflection from a thin barrier  
with fine pores, solving the system by an eigenfunction ex-
pansion method.  The authors found that the reflected wave 
amplitude was minimized when the distance between the 
porous barrier and the chamber end wall was equal to an odd 
multiple of the quarter-wavelength of the incident wave.   
Twu and Lin [18] extended Chwang’s method to evaluate 
wave reflection from a wave absorber containing a finite 
number of vertical porous plates with various porosities.   
The wave absorber was most efficient when the porosity of  
the plates was arranged in progressively decreasing order  
from the front of the absorber to the back.  Several researchers 
have considered vertical porous plates as flexible structures 
(e.g., [20, 21, 23]).  Others have focused on the interaction 
between water waves and composite structures with a finite 
number of porous plates (e.g., [13, 17, 22, 25, 26]). 

Caska and Finnigan [3] proposed that a good wavemaker  
is also a good wave absorber.  Chwang and Li [6] and Chwang 
[4] defined porous plates or paddles using a porous-effect 
parameter and obtained analytical solutions.  They found that 
resonance occurs when porous plates are located at wave 
antinodes.  In the porous wavemaker system, the porous plate 
functions as an energy supplier; hence, the specific kinematic 
properties of its movement (including the period, stroke, ve-
locity, and acceleration) can be given.  For the WEC problem, 
these properties depend on the design of the PTO mechanism. 

Lastly, other authors [1, 14] have used a single-degree- 
of-freedom (SDOF) system to simulate the dynamic system 
represented by a vertical impermeable plate in the wave- 
body interaction problem. 

The present study extends Chwang’s method by introduc-
ing a SDOF system to analyze the PTPWEC.  Analytical  
solutions were obtained for the added mass, the radiation 
damping, the reflection coefficient, the exerted force, the  
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Fig. 1.  Sketch of the modeled system. 

 
 

motion response, and the corresponding instantaneous device 
power.  Although certain assumptions were made to simplify 
the original conditions from a physical problem to yield the 
mathematical model, thus limiting the solutions to a reliant 
zone (e.g., a small-amplitude surface wave or a small plate 
displacement), this study explores the basic mechanics of 
wave-body interactions. 

The next section describes the governing equations and 
boundary conditions.  Section 3 presents the eigenfunction 
expansion method; Sections 4-7 explore the hydrodynamic 
added mass and radiation damping, the porous-plate response, 
the wave-exerted force, and the instantaneous power, respec-
tively.  Section 8 presents our conclusions. 

II. GOVERNING EQUATIONS AND  
BOUNDARY CONDITIONS 

We first consider the interaction between a PTPWEC and  
a gravity wave train.  The PTPWEC consists of a solid wall,  
a vertical porous plate, a transmission bar, a rigid block con-
strained by rollers, a weightless spring, and a damper.  The 
transmission bar horizontally connects the vertical porous 
plate and the rigid block.  The weightless spring of stiffness  
kv (per unit width) and damper (per unit width) are both 
planted between the solid wall and the rigid block.  A semi- 
infinite fluid region of constant depth, h, is connected to the 
PTPWEC.  Fig. 1 displays a sketch of the configuration.  A 
SDOF system is used to simulate the dynamic system.  The 
entire mass Mv of this dynamic system per unit width was 
included in the rigid block, constrained by rollers to move 
horizontally along the solid wall.  In this system, the total 
damping force (including the inherent and applied damping)  
is the product of the damping constant cv and the velocity of 
the porous plate.  The width of the wave-absorbing chamber  
is B, and the single displacement coordinate sv completely 
defines the position of the vertical porous plate.  The ratio of 
the plate thickness to the length scale of the wave motion 
within the porous medium is sufficiently small that the plate 
thickness can be neglected.  A Cartesian coordinate system is 
used to represent the problem: the origin O of the rectangular 
coordinate system is at the still water line; the x-axis points 

horizontally in the direction of wave propagation, and the 
z-axis points vertically upward.  The vertical porous plate 
divides the fluid domain into two regions: (I) The exterior 
region (x ≤ 0, −h ≤ z ≤ 0) and (II) the interior region within  
the wave-absorbing chamber (0 ≤ x ≤ B, −h ≤ z ≤ 0). 

For an incompressible fluid and nonrotational motion,  
velocity potentials Φ j(x, z, t) describe the wavefield and sat-
isfy the Laplace equation within the fluid region: 

 
2 2

2
2 2( , , ) 0, I, II

j j
j x z t j

x z

∂ Φ ∂ Φ∇ Φ = + = =
∂ ∂

 (1) 

where ∇2 denotes the Laplace operator, t is time, and the su-
perscript j represents the variables with respect to region ( j). 

Assuming constant air pressure, the linearized boundary 
condition on the free surface is obtained from the free surface 
kinematic and dynamic boundary conditions: 

 
2

2 0 on 0, I, II
j j

g z j
zt

∂ Φ ∂Φ+ = = =
∂∂

 (2) 

where g is gravitational acceleration. 
The boundary condition on the impermeable seabed and the 

fixed solid wall are provided by Eqs. (3) and (4), respectively: 

 0 on , I, II
j

z h j
z

∂Φ = = − =
∂

 (3) 

 
II

0 on x B
x

∂Φ = =
∂

 (4) 

Under a wave attack, the porous plate of this WEC moves 
horizontally.  The plate is assumed to be a rigid homogene- 
ous porous medium [4]. 

I II
I II0 ( ) on 0 and 0v

k G
P P U x h z

x x ρσ
∂Φ ∂Φ= = − + = − ≤ ≤
∂ ∂

 

  (5) 

where ρ denotes the fluid density, σ represents the angular 
frequency ( 2 / ,Tσ π=  where T is the wave period), G is the 
complex (G = Gr + iGi) porous-effect parameter [24], k0 is  
the wavenumber of the incident wave satisfying the disper- 
sion relation in Eq. (15), PI and PII respectively represent the 
hydrodynamic pressures on the left and right sides of the 
movable porous boundary, and Uv = dsv /dt denotes the po- 
rous plate velocity. 

The motion equation for the porous plate subjected to an 
external source of dynamic loading from the attack of the 
wave is written in terms of the complex displacement sv(t) as 
follows [1, 7]: 

 ( ) ( ) ( ) ( )v v v v v vM s t c s t k s t F t+ + =�� �  (6) 
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where F(t) represents the force exerted on the porous plate 
from the wave per unit width of the plate. 

The hydrodynamic pressures PI and PII are related to the 
velocity potentials through the linearized Bernoulli equation: 

 , I, II on = 0 and 0
j

jP j x h z
t

ρ ∂Φ= − = − ≤ ≤
∂

 (7) 

Based on linear wave theory, we assume that the velocity 
potential, the hydrodynamic pressure, and the porous plate 
displacement are all periodic functions of t with a time factor 
exp(−iσt): 

 ( , )exp( ), I, IIj j x z i t jφ σΦ = − =  (8) 

 ( , )exp( ), I, IIj jP p x z i t jσ= − =  (9) 

 exp( )vs i tσ= Λ −  (10) 

where φ denotes the spatial velocity potential, p is the spatial 
hydrodynamic pressure, and Λ  represents the complex dis-
placement amplitude, which is here assumed to be small in 
comparison with the undisturbed water depth. 

Substituting Eq. (10) into Uv = dsv /dt, we obtain 

 exp( )v
v

ds
U i i t

dt
σ σ= = − Λ −  (11) 

By substituting Eqs. (8), (9) and (11) into Eq. (5), the 
boundary conditions for the movable porous plate can be 
rewritten as spatial variables: 

I II
I II0 ( ) on 0 and 0

k G
p p i x h z

x x

φ φ σ
ρσ

∂ ∂= = − − Λ = − ≤ ≤
∂ ∂

 

  (12) 

III. EIGENFUNCTION EXPANSION METHOD 

We next construct eigensolutions for the boundary-value 
problem (BVP) described in the previous section.  By sepa-
rating the variables, the spatial velocity potentials φ j (j = I, II) 
satisfying the radiation condition and Eqs. (1)-(4) are ob-
tained: 

I 0
0 0

0

cosh ( )
( , ) exp( )

cosh

k h z
x z A ik x

k h
φ +=  

0
0 0

0

cosh ( )
exp( )

cosh

k h z
B ik x

k h

++ −  

1

cos ( )
exp( )

cos
m

m m
m m

k h z
B k x

k h

∞

=

++∑  

for 0 and 0x h z≤ − ≤ ≤  (13) 

II 0
0 0

0

cosh ( )
( , ) cos ( )

cosh

k h z
x z C k x B

k h
φ += −  

1

cos ( )
cosh ( )

cos
m

m m
m m

k h z
C k x B

k h

∞

=

++ −∑  

for 0 and 0x B h z≤ ≤ − ≤ ≤  (14) 

where A0 is the incident wave constant relating to the inci- 
dent wave amplitude; Bm and Cm (m = 0, 1, 2, …) are unde-
termined coefficients; and k0 and km (m = 1, 2, 3, …) satisfy the 
dispersion relation: 

 2
0 0tanhgk k hσ =  (15a) 

 2 tan , 1, 2, 3, ...m mgk k h mσ = − =  (15b) 

By substituting Eqs. (8), (13), and (14) into Eq. (7), the 
spatial hydrodynamic pressures on both sides of the porous 
plate (pI and pII) can be written as follows: 

I 0
0 0

10

cosh ( ) cos ( )
( )

cosh cos
m

m
m m

k h z k h z
p i A B B

k h k h
σρ

∞

=

 + += + + 
 

∑  

for 0h z− ≤ ≤   (16) 

II 0
0 0

0

cosh ( )
cos

cosh

k h z
p i C k B

k h
σρ

 += 


  

1

cos ( )
cosh

cos
m

m m
m m

k h z
C k B

k h

∞

=

++ 


∑ for 0h z− ≤ ≤  (17) 

After substituting Eqs. (13), (16), and (17) into Eq. (12) and 
multiplying both sides by cosh k0(h + z) and cos km(h + z),  
we integrate Eq. (12) from −h to 0.  The orthogonal relation-
ships yield the following equations: 

 0 0 0 0
0 0

(1 ) ( cos ) (1 )G B G k B C G A
N k

σΛ+ − = − +  (18) 

0 0( ) ( cosh ) , 1, 2, 3, ...m m m m
m

k G ik B k G k B C m
N

σΛ+ − = =  (19) 

where 

 0
0

0

21
1

2 sinh 2

k h
N

k h

 
= + 

 
 (20) 

 
21

1 , 1, 2, 3, ...
2 sin 2

m
m

m

k h
N m

k h

 
= + = 

 
 (21) 
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Similar to the above process, substituting Eqs. (14), (16), 
and (17) into Eq. (12), multiplying both sides by cosh k0(h + z) 
and cos km(h + z), and then integrating z from −h to 0 yields the 
following equations: 

 0 0 0 0 0
0 0

( cos sin )GB G k B i k B C GA
N k

σΛ− − = − +  (22) 

0 0( cosh sinh ) , 1, 2, 3,m m m m m
m

k GB k G k B ik k B C m
N

σΛ− + = = …  

  (23) 

Using Eqs. (18) and (22), B0 and C0 may be rewritten in 
terms of A0 and Λ: 

0

0 0

0 0
0 0

0 00 0

sin sin

sin sin

ik B

ik B ik B

Ge i k B i k B
B A

N kGe i k B Ge i k B

σ
− −

− Λ= − ⋅
− −

 (24) 

0 00 0
0 00 0

2 1

sin sinik B ik B

G
C A

N kGe i k B Ge i k B

σ
− −

Λ= − ⋅
− −

 (25) 

Similarly, Bm and Cm (m = 1, 2, 3, …) may be rewritten in 
terms of Λ by Eqs. (19) and (23): 

0

sinh
, 1, 2, 3,

sinhm

m
m k B

mm m

k B
B m

Nk Ge ik k B

σΛ= ⋅ =
+

…  (26) 

0

1
, 1, 2, 3,

sinhmm k B
mm m

C m
Nk Ge ik k B

σ− Λ= ⋅ =
+

…  (27) 

By integrating the hydrodynamic pressure distribution on 
the face of the porous plate, the exerting force F(t) can be 
expressed as 

 
0 I II( ) ( ) on 0
h

F t P P dz x
−

= − =∫  (28) 

Introducing Eqs. (9), (16), and (17) into Eq. (28) yields: 

0
0 0 0 0

0

tanh
( ) ( cos )

k h
F t i A B C k B

k
σρ


= + −


  

1

tan
( cosh ) exp( )m

m m m
m m

k h
B C k B i t

k
σ

∞

=


+ − −


∑  (29) 

which can be introduced into the particular solution, i.e., the 
steady-state harmonic response, of Eq. (6): 

 2

( )
exp( )

v v v

F t
i t

k M i c
σ

σ σ
Λ − =

− −
 (30) 

yielding 

( )0

0 0
0 02

0 0

2 sin tanh

( ) ( ) sinik B
v v A v D

k B k h
A C A

k M M i c R Ge i k B k

σρ
σ σ Λ−

Λ = =
 − + − + − 

 

  (31) 

where MA and RD are the hydrodynamic added mass and ra-
diation damping respectively, expressed as 

0 0 0
2 2 2 2

0 0 0 0 0

tanh sin cos

( sin ) ( sin cos )
i

A
r i

k h G k B k B
M

N k G k B G k B k B
ρ
 −= ⋅ + + −

 

2
0

222
1

0 0

tan 0.5 (1 )

( ) 0.5 (1 )

m

m

k B
m i m

k B
m m m r i m

k h k G k e

N k k G k G k e

−∞

−=


+ − + ⋅ 

 + + −   

∑  (32) 

2
0 0
2 2 2 2

0 0 0 0 0

tanh sin

( sin ) ( sin cos )
r

D
r i

k h G k B
R

N k G k B G k B k B
σρ

 += ⋅ + + −
 

0
222

1
0 0

tan

( ) 0.5 (1 )m

m r

k B
m m m r i m

k h k G

N k k G k G k e

∞

−=


+ ⋅ 

 + + −   

∑  

  (33) 

Substituting Eq. (31) into Eqs. (24)-(27), we obtain the 
following: 

 0 0 0BB C A=  (34) 

 0 0 0CC C A=  (35) 

 0 , 1, 2, 3,m BmB C A m= = …  (36) 

 0 , 1, 2, 3,m CmC C A m= = …  (37) 

where 

0

0 0

0 0
0

0 00 0

sin sin

sin sin

ik B

B ik B ik B

Ge i k B i k B C
C

N kGe i k B Ge i k B

σ Λ
− −

−= − ⋅
− −

 (38) 

0 00
0 00 0

2 1

sin sinC ik B ik B

CG
C

N kGe i k B Ge i k B

σ Λ
− −= − ⋅

− −
 (39) 

0

sinh
, 1, 2, 3,

sinhm

m
Bm k B

mm m

k B C
C m

Nk Ge ik k B

σ Λ= ⋅ =
+

…  (40) 

0

1
, 1, 2, 3,

sinhmCm k B
mm m

C
C m

Nk Ge ik k B

σ Λ−= ⋅ =
+

…  (41) 

A gravity wave train propagating in the x-direction toward 
the porous plate is represented by 
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 0 0sin( )I k x tη ζ σ= −  (42) 

where ηI is the free-surface elevation of the incident wave,  
and ζ0, a real-number constant, denotes the amplitude of ηI.  
We substitute Eqs. (8) and (13) into the linearized dynamic 

free surface boundary condition (DFSBC) 
1

g t
η ∂Φ= −

∂
 (z = 0) 

to obtain the free-surface elevation for region (I).  The two 
relationships can be written as 

 0R B
g

σζ =  (43) 

 0 0A
g

σζ = −  (44) 

where ζR, a real-number constant, is the amplitude of the  
reflected wave.  The equation for the reflection coefficient R 
can be expressed as 

 0

0 0

R
B

R
A

ζ
ζ

= = −  (45) 

Following Eq. (44), we find that when ζ0 is positive, A0 is  
a negative real number.  Introducing Eq. (34) into Eq. (45) 
yields Eq. (46): 

 0BR C=  (46) 

By substituting Eq. (44) into Eq. (31), the dimensionless 
complex amplitude Λ /ζ0 representing the porous plate re-
sponse is expressed as follows: 

0 0

2 2 2 2
0 0 1 1 2 2

2sin tanhk B k hg
C

k h a b a bζ σΛ
Λ = − =

+ +
 

1 11 2

1 2

exp tan tan
b b

i i
a a

− −    
⋅ − −    

     
 (47) 

where 

 1 0 0tanh ( )v A va k h k h M M k= + −  (48) 

 1 0 0( ) tanhv Db c R k h k h= +  (49) 

 2 0 0cos sinr ia G k B G k B= +  (50) 

 ( )2 0 0cos 1 sini rb G k B G k B= − +  (51) 

2
A

A

M
M

hρ
=  

0 0 0
2 2 2 2

0 0 0 0 0

tanh sin cos

( ) ( sin ) ( sin cos )
i

r i

k h G k B k B

k h N G k B G k B k B

−= ⋅
+ + −

 

2
0

2221
0 0

tan 0.5 (1 )

( ) 0.5 (1 )

m

m

k B
m i m

k B
m m m r i m

k h k hG k h e

N k h k hG k hG k h e

−∞

−=

+ −+ ⋅
 + + − 

∑  

  (52) 

3

D
D

R
R

ghρ
=  

0 0tanhk h k h=  

2
0 0

2 2 2 2
0 0 0 0 0

tanh sin

( ) ( sin ) ( sin cos )
r

r i

k h G k B

k h N G k B G k B k B

 +⋅ ⋅ + + −
 

0
2221

0 0

tan

( ) 0.5 (1 )m

m r

k B
m m m r i m

k h k hG

N k h k hG k hG k h e

∞

−=


+ ⋅ 

 + + −   

∑  

  (53) 

where 2/v vM M hρ= , 3/v vc c ghρ=  and /v vk k ghρ= . 

Moreover, the wave-exerted force F(t) is obtained by sub-
stituting Eqs. (44) and (34)-(37) into Eq. (29): 

0
0 0 0 0

0

tanh
( ) (1 cos )B C

k h
F t i g h C C k B

k h
ρ ζ


= − + −


 

1

tan
( cosh ) exp( )m

Bm Cm m
m m

k h
C C k B i t

k h
σ

∞

=


+ − −


∑  

  (54) 

We can now derive the instantaneous power PW(t) from its 
physical definition. 

( ) ( ) ( )W vP t F t U t= ⋅  

2 2
0g hCρ ζ Λ=  

0
0 0 0

0

tanh
(1 cos )B C

k h
C C k B

k h


⋅ + −


 

1

tan
( cosh ) exp( 2 )m

Bm Cm m
m m

k h
C C k B i t

k h
σ

∞

=


+ − −


∑  

  (55) 
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Fig. 2. The convergent speed of the hydrodynamic added mass and ra- 

diation damping as a function of mE and k0h (G = 1.0 + 0.5i; B/L = 

0.25) (a) AM ; (b) DR . 
 

IV. THE HYDRODYNAMIC ADDED MASS  
AND RADIATION DAMPING 

As described in the preceding section, the hydrodynamic 
added mass MA and radiation damping RD can be derived to  

the dimensionless forms AM and ,DR respectively (Eqs. 

(52)-(53)).  However, both AM  and DR  still include an infi-

nite series.  For a practical implementation, these series terms 
are summed until convergent results are obtained.  In Fig. 2, 

the variation of convergence of AM  and DR  is plotted ver- 

sus the number of terms mE for various values of k0h at  
G = 1.0 + 0.5i and B/L = 0.25.  The infinite series is observed 
to make a low contribution until k0h is increased to a certain 
value, indicating that evanescent waves are important in the 
deep water region.  Generally, a highly convergent speed is 
obvious as mE increases for each value of k0h, and the varia- 
tion approximates a constant as mE ≥ 3.  To reduce trunca- 
tion error, the summation process is terminated when the  
following condition is satisfied for all the studied examples: 

 1 910E E

E

m m
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Val Val
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where 
EmVal denotes a mE-term summation of a physical quan- 

tity.  Fig. 3 presents the dimensionless added mass and ra- 
diation damping as a function of B/L for various values of  

k0h at G = 1.0 + 0.5i.  The variations of AM  (Fig. 3(a)) and 

DR  (Fig. 3(b)) for all k0h are oscillating curves (i.e., with 

periodically occurring local maximum and minimum values) 
as B/L is increased.  Furthermore, the variation period is  
close to 0.5 B/L.  The difference between the local maxi- 
mum value and local minimum value decreases when k0h is  
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Fig. 3. Variations in the hydrodynamic added mass and radiation damp- 

ing as a function of B/L and k0h (G = 1.0 + 0.5i) (a) AM ; (b) DR . 
 
 

increased.  In other words, variations in AM  and DR  are con- 

tinuously reduced as k0h is increased; i.e., AM  and DR  ap-

proximate constants as B/L increases in the deep-water region. 

V. THE POROUS-PLATE RESPONSE 

Based on linear wave theory, the porous-plate response in 
this study is a steady-state harmonic motion.  We investi- 
gated the variation of displacement amplitude Λ for the pre-
sent converter.  Fig. 4 presents the dimensionless amplitude 

0/ζΛ  as a function of B/L for several values of k0h at  

G = 1.0 + 0.5i, vM = 2.5, vc = 0.4, and vk = 1.0.  It is evident 

here that the variation of 0/ζΛ  for each k0h clearly oscil- 

lates as B/L is increased; moreover, the period of variation is 
close to 0.5 B/L.  In the cases of low k0h values, the locations 
of the maximum 0/ζΛ  are found to be near the wave- 

trapping condition (B/L = n/4 (n = 1, 3, 5, 7, …)).  Regardless 
of the value of k0h, many motionless phenomena occur at  
B/L = n/4 (n = 0, 2, 4, 6, …).  In other words, when the porous  
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Fig. 4. Response amplitude / 0Λ ζ  as a function of B/L and k0h (G =  
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Fig. 5. Maximum response amplitude Λmax as a function of k0h and vc  

 (G = 1.0 + 0.5i; vM = 2.5; vk = 1.0). 
 
 

plate is located at a wave antinode, the present converter is an 
inactive device.  Mathematically, the function sin k0B in  
Eq. (47) represents motionless phenomena.  Under physical 
conditions, this is a state of static equilibrium.  However, Eq. 

(47) shows that 0/ζΛ → +∞  as 2 2 2 2
1 1 2 2 0a b a b+ + →  

(excluding sin k0B thanh k0h = 0).  In the majority of prac- 
tical situations, the values of Mv, cv, kv [7], Gr, and Gi [24]  
are finite numbers in the set of positive real numbers.  These 

conditions lead to a value of 2 2 2 2
1 1 2 2a b a b+ + , which is 

also a finite number in the set of positive real numbers and 
cannot equal zero based on an analysis of Eqs. (48)-(53).  In 
essence, 0/ζΛ  does not approach infinity in practical appli-

cations.  To determine the maximum value of 0/ζΛ  along 

the k0h-axis for the same situation, we define a new variable, 
Λmax, to denote the maximum value of 0/ζΛ .  Fig. 5 depicts 

the relationship between Λmax and k0h for various values of  
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Fig. 6. The amplitude of wave-exerted force as a function of B/L and k0h 

(G = 1.0 + 0.5i; vM = 2.5; vc = 0.4; vk = 1.0). 

 
 

vc  at G = 1.0 + 0.5i, vM = 2.5 and vk = 1.0 to delimit the 

scope of the application of this solution. 
The pattern observed here is similar to the variation of the 

dynamic magnification factor in a SDOF system under a har- 
monically varying load.  The results indicate that Λmax de-

creases as vc  is increased because the damping property in 

this system absorbs energy and so reduces motion.  As de-
scribed above, the value of Λmax or 0/ζΛ  cannot trend to- 

ward infinity, even when vc = 0.  A physical phenomenon is 

called resonance, i.e., a property encountered when the fre-
quency of the applied loading equals the undamped natural 
vibration frequency of the system.  In this case, the result 
suggests that the resonant condition is satisfied when k0h ≈ 
0.678.  For a damped system, the peak value of Λmax occurs  
at a value of k0h slightly less than the resonant k0h value  
or low damping values. 

VI. THE WAVE-EXERTED FORCE 

We next address the wave-exerted force, F(t), which is ex-
pressed as a complex-valued function by Eq. (54).  We ob- 
serve that the variation of F(t) is harmonic along the t-axis; 
hence, the modulus of F(t) represents the amplitude of the 

harmonic loading.  Defining 0( ) /F F t g hρ ζ=  as the dimen-

sionless F(t), we plot the amplitude of F  as a function of  
B/L for several values of k0h at G = 1.0 + 0.5i, vM = 2.5,  

vc = 0.4 and vk = 1.0 in Fig. 6.  Moreover, the calculated 

implementation satisfies the truncation condition (Eq. (56)).  
The location of the maximum is found to be near the 
wave-trapping condition.  The pattern of curves in Fig. 6 is 
similar to that in Fig. 4; furthermore, a state of static equi- 
librium still occurs at B/L = n/4 (n = 0, 2, 4, 6, …).  As de-
scribed previously, a state of static equilibrium is the reason  
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Fig. 7. The maximum amplitude of wave-exerted force as a function of 

k0h and vc  (G = 1.0 + 0.5i; vM = 2.5; vk = 1.0). 

 
 

for the motionless phenomenon when the porous plate is lo-
cated at a wave antinode in this system.  Again, we define a 

new variable, Fmax, to represent the maximum value of F  for 
every curve in Fig. 6.  As illustrated in Fig. 7, the obvious 
minimum value of Fmax occurs at a k0h value that is slightly 
more than the resonant k0h value for low damping values, 

especially at vc = 0.  This is a resonant phenomenon in the 

vc = 0 case that vanishes as vc  increases to a certain value.  

This phenomenon occurs because a simple harmonic motion 
(SHM) is allowed to occur without applied loading in an un-
damped SDOF system.  In contrast, a damped SDOF system 
requires applied loading to avoid a calm response. 

VII. THE INSTANTANEOUS POWER 

After calculating F(t) and Λ, the instantaneous power  
PW(t) is easy to obtain because the product of F(t) and Uv(t) 

( i ti e σσ −= − Λ ) defines the value of PW(t) (see Eq. (55)).  Fig. 8 

plots the amplitude of PW(t) as a function of B/L for several 

values of k0h at G = 1.0 + 0.5i, vM = 2.5, vc = 0.4 and vk = 1.0.  

Expectably, the variation of 2
0/WP ghσρ ζ  also oscillates 

along the B/L-axis, and the curves in Figs. 4 and 6 both follow 
this pattern. 

Fig. 8 displays the many local maximum values for each  

k0h.  The local maximum 2
0/WP ghσρ ζ  occurs as B/L ≈ n/4  

(n = 1, 3, 5, 7, …) (i.e., the porous plate is located near a  
wave node).  Moreover, several previous studies [17, 18, 
21-23] have indicated that wave trapping occurs under the 
same conditions.  Unlike the fixed porous plate, the original 
porous plate properties (i.e., friction and phase shift) and  
the PTO mechanism contribute to the absorption of wave 
energy.  Therefore, via a wave-trapping phenomenon, the 
present converter effectively transforms wave energy into 
mechanical energy.  PW max denotes the maximum amplitude  
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Fig. 8. The amplitude of instantaneous power as a function of B/L and 

k0h (G = 1.0 + 0.5i; vM = 2.5; vc = 0.4; vk = 1.0). 
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Fig. 9. The maximum amplitude of instantaneous power as a function of 

k0h and vc  (G = 1.0 + 0.5i; vM = 2.5; vk = 1.0). 

 
 

of 2
0/WP ghσρ ζ  for every curve in Fig. 8 to determine the 

optimal band.  Fig. 9 illustrates the influence of varying the 
dimensionless damping coefficient vc  of the converter for the 

case G = 1.0 + 0.5i, vM = 2.5 and vk = 1.0.  The results are 

shown for converters with the dimensionless damping coef- 
ficients vc = 0, 0.4, 0.8, 1.2, 1.6 and 2.0.  These results indi- 

cate that increasing vc  reduces PW max.  Moreover, no power 

generation occurs at the resonance k0h value in the undamped 

case (corresponding to vc = 0) because F(t) = 0 in the same 

situation (see Fig. 7).  Despite the high power available in the 
undamped case, the bandwidth between the maximum and 
null values is rather narrow. 

VIII. CONCLUSIONS 

This study analyzes the interaction between a PTPWEC  
and a gravity wave train.  The PTPWEC transforms wave 
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energy into mechanical energy using a wave-absorbing cham- 
ber containing a vertical porous plate.  The current investiga-
tion couples linear wave theory with a SDOF system to 
simulate this system. 

These results imply that the width of the wave-absorbing 
chamber B significantly affects the performance at a fixed 
value of the dimensionless wavenumber k0h.  Moreover, as B 
is increased, the value of the hydrodynamic added mass, the 
radiation damping, the porous-plate response, the wave- 
exerted force, and the instantaneous power all vary periodi-
cally.  The maximum values occur when the porous plate is 
established near a wave node (i.e., near wave-trapping condi-
tions).  In contrast, a null situation occurs when the porous 
plate is established at a wave antinode.  In damped systems, 
the peak value of porous-plate response and instantaneous 
power is found at a k0h value that is slightly less than the 
resonant k0h value for low damping values, and the damping 
absorbs wave energy, thereby reducing performance. 
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