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ABSTRACT 

The natural frequency of axial-loaded concrete beam de-
creases with increasing applied compressive force, and the 
natural frequency of tensioned cable increases with increasing 
tensile force.  However, the variation of natural frequency of 
prestressed concrete beam (PCB) consisting of concrete and 
cable has rarely been discussed based on both |the rigorous 
mathematic model and experimental results.  In this study, a 
testing program was conducted and Rayleigh’s method was 
used to derive an approximate equation for computing natural 
frequency.  The results indicate that (1) the natural frequency 
decreases with increasing prestressing force for PCB with 
eccentric parabolic tendon, but it is no change for PCB with 
eccentric straight tendon, (2) the proposed equation was 
proved to be an adequate method for estimating first mode 
natural frequency in vertical direction, and (3) a modified 
computed method for effective moment of inertia of PCB was 
also proposed. 

I. INTRODUCTION 

From the previous literatures [10, 12], the natural frequency 
ωn in vertical direction for a simply supported beam subjected 
to an axial compressive force is computed as 

 2 1/ 2 4 2 1/ 2( ) ( ) ( )n
cri

EI P
n n

l m P

πω = −  (1)  

 2 4 2( ) ( ) ( ) ( )n

n EI n P

l m l m

π πω = −  (1a) 

And for a cable stretched between two fixed ends with a 
distance l, the natural frequency ωn of the cable is computed as 

 1/ 2( )
2n

n T

l m
ω =  (2) 

where l is the length of span, EI is flexural rigidity, m is  
mass per unit length, P is compressive force, Pcri is Euler 
buckling load, T is the tensile force in the cable, and n is the 
order number of vibration modes.  The above-mentioned 
equations illustrate that the vertical natural frequency of con-
crete beam will decrease with increasing axial compressive 
force, and conversely the natural frequency of tensioned cable 
will increase with increasing tensile force.  But only a few 
researches discussed the variation of the natural frequency  
for prestressed concrete beams (PCB)s which are composed of 
concrete beam and prestressing cable. 

Kanaka and Venkatesawa [9] formulated the natural fre-
quency using Rayleigh-Ritz method for simply supported 
beam subjected to axial compressive force.  The axial com-
pressive force have significant effect on the lower mode vi-
bration.  In 1994, Saiidi [11] conducted a field bridge test and 
|a laboratory test.  The natural frequencies and static vertical 
deflection were measured and it was found both natural fre-
quency and effective rigidity decreased with decreasing axial 
compressive force.  However, the testing results contradicted 
the theoretical prediction.  He explained that the decrease of 
the natural frequency or effective rigidity could be due to the 
development of micro-crack resulting from prestress losses.  
His explanation induced 3 discussions.  The discussions from 
Deak [5] and Jain [7] pointed out that an internal prestress- 
ing force would not reduce the natural frequency of PCB, but 
no experimental data or mathematical model were proposed to 
verify their hypothesis.  The other discussion from Dall’Asta 
and Dezi [3] indicated that Eq. (1a) was proper to predict the 
natural frequency for concrete beam subjected to external 
force, but not for PCB.  They proposed a modified Eq. (3) 
which was obtained by subtracting compressive stress from 
elastic modulus (E) to predict ωn for PCB with axial prestress- 
ing force.  Where P is prestressing force and A is the cross 
section area of concrete beam. 
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Fig. 1.  Details of specimens. 
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Prior to 1994, the studies of natural frequency variation  
for PCB were focused on PCB with straight cable but without 
eccentricity.  Until 1996, Dall’Asta and Leoni [4] used kine-
matic model to derive a complicated mathematical formula-
tion for PCB with internal frictionless eccentricity curve ca-
bles.  It was found that by increasing prestressing force, the 
natural frequency would decrease which was about equivalent 
to 10%~20% loss of elastic modulus.  In 2006, Hamed and 
Frostig [6] derived a governing equation of motion for the 
dynamic behavior of PCB with bonded and unbonded tendons 
by using the variation principle of virtual work and Hamilton’s 
principle.  His conclusion was opposite to some previous 
research results.  He pointed out that the prestressing forces 
didn’t affect the dynamic behavior of PCB with bonded tendon 
and the natural frequency could be determined by linear elastic 
beam theory.  But for PCB with un-bonded tendon, a modified 
model was proposed.  In 2009, Breccolotti et al. [2] estab-
lished a structural model which could be solved using com-
mercial software ABAQUS 6.7.  Breccolotti et al. [2] and 
Hamed [6] obtained similar conclusions.  For PCB with un-
bonded tendon, the compression softening phenomenon was 
prominent, but not for PCB with bonded tendon. 

From the aforementioned discussion, further study was 
needed to clarify the variation of natural frequency or rigidity 
for PCB due to internal axial stress.  In this study, the natural 
frequencies before prestressing, after prestressing without 
grouting, and after grouting were measured for five post- 
tensioned PCB specimens.  The P-∆ relationships were also 
monitored to evaluate the variation of flexural rigidity for 

bonded PCB.  In addition, analytical results obtained from 
Rayleigh’s method were compared to the testing results. 

II. EXPERIMENTAL PROGRAMS  

1. Specimens 

Five post-tensioned prestressed concrete beams were cast 
and tested.  All the beams were designed with same geometric 
dimensions and steel reinforcement.  For minimizing prestress- 
ing losses at transfer, BBRV wire post-tensioning system was 
selected.  Two ϕ7 mm-coated stress-relieved wires which 
meeting the requirements of ASTM A421 were placed in a  
ϕ5 cm metal duct as prestressing tendon in each beam.  The 
metal duct were grouted after prestressing.  Three beams  
with parabolic curve tendon were stressed to 0.50, 0.625 and 
0.75 fpu, (equivalent to 31.4, 39.3 and 47.1 KN prestress force 
was applied) and were designated as P500, P625 and P750, 
respectively.  The parabolic curve of tendon was designed with 
eccentricity e = 0 at both ends and e = 8 cm at center.  Other 
two beams with straight tendon placed as a constant eccen-
tricity of 8 cm were streessed to 0.50 and 0.75 fpu (equivalent 
to 31.4, and 47.1 KN prestress force was applied) and were 
designated as S500 and S750, respectively.  The average com- 
pressive strength of concrete was 25.48 MPa.  Details of 
testing specimens are shown in Fig. 1. 

2. Frequency Measurement 

Piezotronics Model 086D20 impact hammer kits which 
including impact hammer, accelerometers, dynamic signal 
analyzer and displayer as shown in Fig. 2.  were used to 
measure the frequencies of each specimen at three stages:  
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Fig. 2.  Impact hammer kits and specimens under testing. 
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Fig. 3.  Natural frequency spectra of specimens. 
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Table 1.  The first two measured natural frequencies in vertical direction of specimens. 

1st. mode (Hz) 2nd. mode (Hz) Specimen  
Designation 

Prestressing Force  
Ps (KN) ωb1 ωp1 ωg1 ωb2 ωp2 ωg2 

P500 31.39 27.00 26.20 27.00 123.50 110.00 116.70 
P625 39.24 33.80 32.00 43.50 132.20 130.00 140.00 
P750 47.09 36.00 33.00 36.50 130.50 130.00 135.60 
S500 31.39 33.00 33.00 23.30 131.00 120.00 116.70 
S750 47.09 30.30 30.30 33.30 113.30 116.70 129.50 

 
 

 
Fig. 4.  P-∆ loading test. 

 
 
before prestressing (simulating RC beams), prestressed before 
grouting (simulating unbonded PCB) and after grouting 
(simulating bonded PCB).  Based on SIMO (single-input, 
multiple-output) approach, two accelerometers (H1_2 and 
H1_3) were attached on the top surface at 1/2 and 1/3 spans of 
beam as shown in Fig. 1 for measuring vertical vibration for 
each input excitation.  The recorded natural frequency spectra 
are illustrated in Fig. 3 in which each stage is marked as green 
(1st. stage), red (2nd. stage) and blue (3rd. stage) color, respec-
tively.  The natural frequencies of first two modes were ob-
tained from the peak values and listed in Table 1.  Where ωb1, 
ωp1, and ωg1 represents the first mode of natural frequency for 
PCB before applying prestress, prestressed and without 
grouting and prestressed with grouting, respectively, similarly 
ωb2, ωp2, and ωg2 is the second mode of natural frequency for 
PCB at various stages. 

3. Load-Deflection Test 

Load-deflection tests were conducted in the laboratory to 
estimate the flexural rigidity of specimens.  The test set-up as 
shown in Fig. 4, each specimen was equally loaded at two 
points 115 cm away from supports.  Three electronic gages 
connected to a data acquisition system were arranged under 
two loading points and middle point.  Deflection was recorded 
at each 0.6 KN increment until failure.  The load-deflection 
curves for five specimens are illustrated in Fig. 5 and partial 
curves are magnified as in Fig. 6 for estimating flexural ri-
gidity of the uncracked specimen. 

For predicting the immediate deflection after cracking, the 
effective moment of inertia, Ie, was suggested as Eq. (4) by 
ACI [1]. 
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Fig. 5.  Loading – deflection diagram. 
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Fig. 6.  Scaled up part of Fig. 5. 
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Where ,r g
cr

t

f I
M

y
=  fr is rupture modulus of concrete 

which is taken as 0.6 cf ′  for normal weight concrete, Ig is 

moment of inertia of gross section, yt is distance from central 
axis of gross section to tension face, and Ma is maximum 
moment in member due to loading at stage deflection is 
computed. 

Following Notes on ACI 318-95 [8], the moment of inertia 
of a cracked beam with tension reinforcement and prestressing  
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Fig. 7.  Cracked Transformed Section of PCB. 

 
 
tendon Icr is computed in the following manner. 

Taking moment of areas about neutral axis in Fig. 7 

 ( ) ( )
2 s ps p

c
b c nA d c nA d c× × = − + −  (5) 

The moment of inertia of cracked section about neutral axis 
can be expressed as  

 
3

2 2( ) ( )
3cr s ps p

bc
I nA d c nA d c= + − + −  (6) 

All of 5 specimens are designed with the same dimensions 
and amount of non-presstressed and prestressed steel which 
are b = 16 cm, d = 26 cm, dp = 23 cm, Es = 28,200 MPa, Ec = 
23,726 MPa, n = Es/Ec = 8.48, Aps = 0.772 cm2, As = 5.7 cm2. 

 
Solving Eq. (5) 
c = 10.27 cm. 
Substituting c and above data into Eq. (6) 
Icr = 18,791 cm4. 
 
For each specimen, the immediate deflection curve (black 

line) computed with Ec and Ie which is obtained by substitute- 
ing Icr into Eq. (4) is plotted together with testing load- 
deflection curve as shown in Fig. 8. 

III. THEORETICALS 

Rayleigh’s method is one of the methods for determining an 
approximate fundamental natural frequency.  Since the system 
of simply support PCB is conservative, based on Rayleigh’s 
principle, the maximum kinetic energy Tmax. is equal to the 
maximum potential energy Vmax..  By equating Tmax. to Vmax., 
the fundamental natural frequency ω can be founded. 

The kinetic energy of PCB can be expressed as  

 2 2

0 0

1 1
( )

2 2

l l
T y dm y x dxρ= =∫ ∫� �  (7) 

Where dm is mass of the element, ρ(x) is mass per unit 
length, and y is harmonic moving equation assumed as y =  
w(x) cos ω t, then ( ) ( ) sin .y t w x tω ω= −�   The term w(x) is as- 

sumed as vertical deformed shape function of beam.  Then the 
maximum kinetic energy can be expressed as  

 
2

2 2
max0 0

1
( ( ) ) ( ) ( )[ ( )]

2 2

l l

maxT y t x dx x w x dx
ωρ ρ= =∫ ∫�  (8) 

By disregarding the work done by shear forces, the poten-
tial energy of the deformed beam can be expressed as  

 
0

1

2

l
V Mdθ= ∫  (9) 

Where M is the bending moment expressed by M =  
2

2

y
EI

x

∂
∂

 = 
2

2 cos ,
w

EI t
x

ω∂
∂

θ is the slope of deformed beam, 

then cos
y w

t
x x

θ ω∂ ∂= =
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 and 
2

2 cos .
w

d t
x

θ ω∂=
∂

  By sub- 

stituting M and dθ into Eq. (9), then 
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2
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The maximum value of V is  

 
2

2
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1
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l
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Let Tmax. = Vmax., the fundamental natural frequency ω can 
be founded 
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For simply supported non-prestressed concrete beams, The 
shape function in vertical direction w(x) is assumed as Eq. (13), 
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Fig. 8.  Comparison of immediate deflections computed following ACI Notes with proposed. 

 
 

 3 3 4( ) ( 2 )w x K l x lx x= − +  (13) 

where 0

24
K

EI

γ= , γ 0 is unit weight of beam and x is the sec-

tion position distance from the original point. 
By substituting Eq. (13) into Eq. (12), the first mode of 

natural frequency ω1 can be found and expressed as Eq. (14).  
Comparing Eq. (14) with Eq. (1) which use n = 1 and P = 0, the 
ω1 computed by Eq. (14) is very close to the value computed 
by Eq. (1). 

 
4

2
1 4 4

3024
( )

31
max

max

V EI EI

T ml ml

πω = = ≈  (14) 

For beams with parabolic pre-stressing tendons, an addi-
tional moments dMp induced by pre-stressing forces at x as 
shown in Fig. 9 exists in the specified section.  By force equi-
librium, 

( )( ( ) )cos( ( ) )p s sdM P dP e x de x dα α+ + + +  

( ) cos ( ) sin ( ) 0s sP e x x P x dxα α− − =  

 ( ) ( ) ( ) ( )p s s s sdM P e x x d P de P x dx e x dPα α α= − + −  (15) 

where Ps is prestressing force, dPs is the change of prestress- 
ing force which will increase in one side and decrease in the 
other side for beams with symmetrical tendon and prestress at  
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Fig. 9.  An element of PCB with prestressed tendon. 

 
 
both ends.  Therefore the effects of dPs will be vanished each 
other in the process of integration and can be neglected. 

The term e(x) is the eccentricity of tendon at x.  For beams 
with parabolic tendon (P500, P625 and P750), the profile of 
parabolic tendons as shown in Fig. 1 is: 

 2 20
2

4
( ) ( ) ( )

e
e x x lx C x lx

l
= − = −  (16) 

where 0
2

4e
C

l
=  

 tan (2 ) sin
de

C x l
dx

α α α= = − ≈ ≈  (17)  

where α is curvature of tendon profile  

 de dxα∴ =  (18) 

 
2

2 2
d d e

C
dx dx

α = =  

 2d Cdxα∴ =  (19) 

Then Eq. (13) can be derived as dMp = 2C3Ps(x
2 – lx)(2x – 

l)dx, and the additional moment Mx at x is shown as Eq. (20) 

 3 4 3 2 2

0
( 2 )

x

x p sM dM PC x lx l x= − +∫  (20) 

Then the maximum potential energy Vmax. can be shown as 
Eq. (21).  The first term in right side of equal sign in Eq. (21) is 
potential energy for beams without pre-stress, and the second 
term is additional potential energy due to pre-stress.  

1
( )

2maxV M x dθ= ∫  

 2

0 0

1 1
[ ( )] ( )

2 2

l l

xEI w x dx M w x dx′′ ′′= +∫ ∫  

2 5 3 712 3

5 70 sEIK l PC Kl= −  (21) 

The maximum kinetic energy Tmax. for PCB with parabolic 
tendons are un-changed.  Based on Rayleigh’s principle, the 
first natural frequencies for PCB with parabolic tendons can 
be shown as Eq. (22). 

 
3 2

2 0
1 4

3024 1296 /
( ) ( )

31
max s

max

V PC l
EI

T ml

γω −= =  (22) 

For beams (S500 and S750) with straight prestressing 
tendon, the profile e(x) as shown in Eq. (16) is constant.   
Then Eq. (11) dM is zero and the first mode of natural fre-
quencies should be similar to natural frequencies of reinforced 
concrete beams. 

IV. RESULTS AND DISCUSSION 

1. Variation of Flexural Rigidity 

To understand the variation of flexural rigidities for PCB, 
the first step is to determine the initial flexural rigidity (EcI0)i 
of each specimen before prestressing.  There are three initial 
flexural rigidities (EcI0)iACI, (EcI0)iω and (EcI0)iP∆ computed by 
three approaches listed in Table 2.  Where I0 is moment of 
inertia of net cross section before grouting, (EcI0)iACI is the 
product of Ec computed following ACI 8.5.1 and I0, (EcI0)iω  
is computed by measured first mode natural frequency fol-
lowing Eq. (1) or Eq. (14), (EcI0)iP∆ is the product of Io/Ig and 
(EcIg)Ρ∆ which is the flexural rigidity computed by P-∆ rela-
tionship before cracking for PCB after grouting (bonded).  
Both values of (EcI0)iACI and (EcI0)iP∆ are used for comparing 
reference.  Since the properties of concrete materials are non- 
homogeneous and shall be affected by the several uncertain 
factors as manufacturing process, curing conditions, and dis-
tribution of micro-cracks etc.  Hence (EcI0)iACI can not repre-
sent the actual initial flexural rigidities.  As for (EcI0)iP∆, these 
values derived from concrete beams had been prestressed 
don’t match the definition of initial flexural rigidities for  
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Table 2.  Comparison of initial flexural rigidities of PCB before prestressing computed by three approaches. 

P-∆ test Initial Flexural Rigidities (KN-m2) 
Specimen Designation 

Pcr (KN) δ (mm) 
(EcIg)Ρ∆  

(KN-m2) (EcI0)iΡ∆ (EcI0)iω (EcI0)iACI 
P500 14.55 2.260 4,853 4,675 4887 8,274 
P625 15.63 1.560 7,551 7,273 7658 8,274 
P750 16.70 1.630 7,724 7,440 8687 8,274 
S500 14.55 1.480 7,411 7,138 7300 8,227 
S750 16.70 1.930 6,524 6,284 6154 8,227 

 
 

Table 3.  Variation of flexural rigidities for PCB prestressed before grouting (PCB with unbonded tendon). 

Before prestressing Prestressed before grouting 
Specimen 

Designation 
Prestressing 

Force Ps (KN) ωb1 (Hz) 
(EcI0)iω 

(KN-m2) 
ωp1 (Hz) 

(EcI0)pω 
(KN-m2) 

(EcI0)iΡ∆ 
(KN-m2) 

0 iP
1

0

( )

( )
c

u
c p

E I

E I ω

ϕ ∆=  0
2

0

( )

( )
c p

u
c i

E I

E I
ω

ω

ϕ =  

P500 31.39 27.00 4,887 26.20 4,614 4,675 1.013 0.944 
P625 39.24 33.80 7,658 32.00 6,888 7,273 1.056 0.899 
P750 47.09 36.00 8,687 33.00 7,330 7,440 1.015 0.844 
S500 31.39 33.00 7,300 33.00 7,300 7,138 0.978 1.000 
S750 47.09 30.30 6,154 30.30 6,154 6,284 1.021 1.000 

 
 

Table 4.  Variation of flexural rigidities for PCB prestressed after grouting (PCB with bonded tendon). 

Before prestressing (KN-m2) Specimen  
Designation 

Prestressing  
Force Ps (KN) (EcI0)iω (EcIg)iω 

After grouting  
(EcIg)Ρ∆ (KN-m2) 2

( )

( )
c g p

u
c g i

E I

E I
ω

ω

ϕ =  

P500 31.39 4,887 5,073 4,853 0.957 
P625 39.24 7,658 7,951 7,551 0.950 
P750 47.09 8,687 9,019 7,724 0.856 
S500 31.39 7,300 7,579 7,411 0.978 
S750 47.09 6,154 6,389 6,524 1.021 

 
 

beams before prestressing.  By comparing (EcI0)iω with those 
two reference values in Table 2, it shows values of (EcI0)iω are 
slightly greater and closed to the values of (EcI0)iP∆, but far less 
than the values of (EcI0)iACI.  Based on this comparison, values 
of (EcI0)iω are relatively reasonable as initial flexural rigidities 
for the following discussion. 

Table 3 shows the variation of flexural rigidities for PCB 
prestressed before grouting (simulating PCB with unbonded 
tendon).  Comparing (EcI0)pω flexural rigidity computed by 
measured frequencies ωp1 following Eq. (22) with (EcI0)iP∆, 
these two values are very closed just with 2~6% deviation (see 
column φu1 in Table 3).  This reveals that both ωp1 and Eq. (22) 
proposed in this study are consistent with each other and letting 
(EcI0)pω as flexural rigidities for PCB prestressed before grout-
ing is a valid assumption.  Then comparing ωb1,(EcI0)iω with  
ωp1, (EcI0)pω , it finds that natural frequencies (flexural rigidities) 
of PCB with parabolic unbonded tendons will decrease with 
increasing prestressing force.  But natural frequencies (flexural 
rigidities) will not be affected by prestressing forces for PCB 
with straight unbonded tendons.  As for predicting the amount 
of variation of natural frequency for PCB with unbonded ten- 
don, Eq. (22) proposed previously is available. 

Comparing (EcIg)Ρ∆ with (EcI0)iω for each specimen in Table 

4, it reveals that (EcIg)Ρ∆ decrease with increasing prestressing 
force for PCB with parabolic bonded tendon similar to un-
bonded tendon as mentioned above.  For PCB with straight 
bonded tendon, neglecting the deviation of ±2% shown in 
column φb in Table 4, flexural rigidities will also not be af-
fected by prestressing forces as for unbonded tendon. 

2. Effect Moment of Inertia for PCB 

Comparing computed immediate deflection curve (black 
line) with testing load-deflection curve in Fig. 8, it reveals that 
computed deflection is always greater than testing deflection 
at the same loading.  This results will over-optimistically 
assess the extent of cracking of PCB and lead to un-safety. 

Following Notes on ACI 318-95 [8], both of c in Eq. (5) and 
Icr in Eq. (6) are independent of prestressed forces, then all the 
Icr of specimens are the same.  It seem unreasonable for PCB.  
It is well known that prestressing forces may constrain and 
postpone the development of cracking, so the Icr of PCB will 
greater than Icr of reinforce concrete beam with the same 
amount of prestressing and non-prestressing steel but not 
prestressed.  This study proposes force equilibrium method to 
compute c in Fig. 7 and use the same manner to calculate Icr in 
Eq. (6). 
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Table 5.  Moment of inertia of cracked section calculated by proposed method. 

Specimen  
Designation 

Ec (MPa) fc′ (MPa) fps (MPa) 
∆fps = fps-fpe 

(MPa) 
c (cm) Icr (cm4) 

P500 13,481   8.23   521 114 - 36,000 
P625 20,975 19.92 1188 680 14.19 22,475 
P750 21,456 20.84 1209 599 13.62 21,459 
S500 20,586 19.18 1170 764 14.66 23,480 
S750 18,121 14.87 1029 419 18.29 35,636 

Note: The compressive strength of concrete of P500 is too low to failure before steel yield and Icr is taken as Ig . 
 
 

 10.85 c s y ps psf b c A f A fβ′ × = +  (23) 

Where cf ′  is concrete specified compressive strength of 

concrete, β1 = 0.85 is factor relating depth of equivalent rec-
tangular compressive stress block to neutral axis depth.  fy = 
412 MPa is specified yield strength of reinforcement, and 
according to ACI 318M-08 [1] the stress in prestressing steel 
at nominal flexural strength fps which is expressed as Eq. (24) 

 
1

1 (p pu
ps pu p

c p

f d
f f

f d

γ
ρ ω ω

β

   ′= − + −  ′    

 (24) 

Where fpu = 1,658 MPa is specified tensile strength of 
prestressing steel, factor of type of prestressing steel γ p is 

taken as 0.55 for this study, ps
p

p

A

bd
ρ = , tensile reinforcement 

index ω is taken as s y

c

A f

bdf ′
, and compressive reinforcement 

index ω' is taken as 0s y

c

A f

bdf

′
=

′
in this study. 

Substituting the calculating values of fps of Eq. (24) and c  
of Eq. (23) into Eq. (6), the proposed Icr are tabulated as  
Table 5.  The immediate deflection curve (red line) computed 
with Ec and the effective moment of inertia Ie which is ob-
tained by substituting proposed Icr. into Eq. (4) is also plotted 
together with testing load-deflection curve as shown in Fig. 8.  
It shows the red line is very closed to testing curve for every 
specimen. 

V. CONCLUSSIONS 

The findings from the testing program and theoretical 
analysis are summarized as follows: 

 
1. No matter what post-tensioned PCB with bonded or un-

bonded tendons, natural frequencies (flexural rigidities) of 
PCB with parabolic tendons will decrease with increasing 
prestressing force.  But natural frequencies (flexural ri-
gidities) will not be affected by prestressing forces for PCB 
with straight tendons. 

2. Comparing the analytic results with testing data, Rayleigh’s 
method is proved to be a simple and useful method to cal-
culate the first mode of natural frequencies for PCB.  
Similarly, for higher mode natural frequencies, Rayleigh- 
Ritz method which is an extension of Rayleigh’s method 
may be an effective method. 

3. Eq. (4) which moment of inertia of cracked section is com-
puted following Notes on ACI 318-95 would over-estimate 
the non-linear immediate deflection of PCB.  A force equi-
librium method is introduced and the computed results are 
very closed to the testing results. 
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