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ABSTRACT 

An analytical and numerical comparison of great circle  
(GC) sailing, great elliptic (GE) sailing, and geodesic (Geod) 
sailing is presented.  The comparison between GC and GE 
sailing addresses some problems whether the navigator and 
navigational software developers promptly have to use GE 
sailing or use hybrid sailing mixed with features of the GC 
sailing and GE sailing.  This fact found here presents that  
the formulae tackling relationship of latitude and longitude of 
GC sailing also can be suited to the GE sailing except some 
calculation of GE sailing involving distance and course.  The 
validity of effectiveness of proposed GE sailing has been 
verified with numerical tests and compared with extremely 
accurate geodetic methods (Vincenty’s method).  The nu- 
merical tests calculate the standard deviation of large sample 
of distance differences comparing GE sailing and An-
doyer-Lambert method to Geod sailing.  The result reveals that 
the mean and the standard deviation of distance dif- 
ferences of GE is one half and one sixth of Andoyer-Lambert 
method.  The significance gives the assertion that the accu- 
racy of GE sailing is better than Andoyer-Lambert method 
which (UK) Royal Navy and (US) Naval Oceanographic Of-
fice preferred spheroidal mathematical solution.  We also  
give a dynamic programming recursive algorithm attaining 
any requirement of accuracy for distance calculation of GE 
sailing and more compact computational procedure of inter- 
mediate points along the GE.  The course of GE sailing can be 
obtained from the proposed course reduction of GC sailing. 

I. INTRODUCTION 

In traditional navigation, the computations are simplified 
by the use of a spherical Earth model.  It is well know that 
more accurate results can be obtained by the adoption of a 
spheroidal Earth and the calculation of geodesics distance  

and course.  Vincenty’s formulae [14] are two related iterative 
methods of nested equations used in geodesy to calculate the 
distance between two points on the surface of a spheroid, 
developed by Thaddeus Vincenty in 1975.  They are based on 
the assumption that the figure of the Earth is an oblate 
spheroid, and hence are more accurate than methods such as 
great circle.  The direct method computes the location of a 
point which is a given distance and course from another point.  
The inverse method computes the distance and course between 
two given points.  They have been widely used in geodesy 
because they are very accurate to within 0.5 mm on the 
spheroidal Earth. 

The discrepancies between the results on the GC sailing  
and the Geod sailing are in order of 0.27% according to  
Tobler [10], and in the order of 0.5% according to Earle [4].  
Despite these discrepancies the use of the spherical model  
in traditional navigation for most practical purpose is con- 
sidered satisfactory.  Nevertheless for the case of sailing 
computations in GIS navigational systems such as ECDIS the 
computation has to be conducted on the spheroid in order to 
eliminate these significant errors but without seeking the sub- 
meter accuracies pursued in the other geodetic application.  
Seeking extremely high accuracy for marine navigation pur-
pose does not offer any real benefit and require more com-
puting power and processing time.  For these reasons and 
before proceeding with the adoption of any geodetic com- 
putational method on the spheroid for sailing calculation it is 
required to adopt a realistic accuracy standard in order not 
only to eliminate the significant errors of the spherical model 
but also to avoid the exaggerate and unrealistic requirement of 
sub-meter accuracy. 

In reality these discrepancies of distances calculated on  
the WGS-84 ellipsoid by the Vicenty’s method [14] and GC 
sailing can reach maximum value 38.777908 nautical miles 
(71.81669 km) along the Equator around the Earth and 
minimum value 2.517774 nautical miles (4.662917 km) pass- 
ing two Poles along one meridian around the Earth (made of 
comparison by this paper).  In practice very accurate results 
can be obtained by calculation of the GE sailing or Andoyer- 
Lambert method [6] rather than the geodesic.  In reality  
this discrepancies of distance around one quarter of the  
Earth between GE sailing (5405.18004 nm) and Geodesic 
(5405.17622 nm) computed by Vicenty’s algorithm can only 
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reach maximum value 7.0643 meters from one point at the 
Equator to another points at latitude 45 degrees and longi- 
tude 90 degrees away.  The difference will vanish when both 
departure and destination are at the Equator or the same  
meridian.  Around the Earth, the maximum different value is  
4 times 7.0643 meters about 28.25732 meters.  This discrep-
ancy is still acceptable for the practical purposes of marine 
navigation. 

The Andoyer-Lambert method [6] also provides very ac- 
curate solutions.  In this method distance and bearing are 
pre-computed on an auxiliary sphere of radius equal to the 
semi-major axis of the spheroid on which the positions are 
located.  Corrections are then made to obtain the correspond- 
ing spheroidal values.  In fact, the Andoyer-Lambert method  
is just another type of the GE sailing.  There are some 
drawbacks existed in this method that the bearing is the 
approximately value, the arc of auxiliary between two points 
equal to 0 or 180 degrees on the auxiliary sphere will give 
some problems of calculation divided by zero, and the cal- 
culated distances are not enough accurate.  The GE sailing 
overcomes those drawbacks and gives the waypoints directly 
along the GE. 

Comparatively, the discrepancies of distances between the 
great elliptic (GE) sailing and Geod sailing should be able to 
fulfill the requirement of meters accuracy.  The numerical 
algorithm of the GE sailing is also more computer-efficient 
than the Geod sailing, and therefore is nice alternative in- 
stead the Geodesic.  Even though the GE sailing is nice al-
ternative, nevertheless the application of the GE sailing has  
to be considered the similarities and differences between  
the GE and GC sailing.  Are the implements of the GE sailing 
holistic better than the implements of the GC sailing on navi- 
gation and (GIS)?  There are some misconceptions about the 
navigational solutions of GE sailing and GC sailing.  In this 
paper, these myths are discussed and demystified so that 
navigators and software developers in navigational industry 
can better understand what the real implements are.  An ana-
lytical and numerical comparison among GC sailing, GE 
sailing, and Geod sailing is presented.  The comparison be-
tween GC sailings and GE sailing addresses the confusing 
problems whether the navigator and navigational software 
developers promptly have to use GE sailing or use hybrid 
sailing mixed with features of the GC sailing and GE sailing.  
This paper discovers that the functional relationship between 
latitude and longitude of the GC sailing is the same as the  
GE sailing.  This fact found here presents that the formulae 
tackling relationship of latitude and longitude of the GC sail-
ing also can be suited to the GE sailing except some calcu- 
lation of GE sailing involving distance and course.  The  
answer suggested by this paper is that the hybrid sailing can be 
applied. 

In dealing with GE sailing or GC sailing, many papers  
[2, 3, 5, 11-13, 15] demonstrate the finding of solutions for 
positions on a GE sailing or GC sailing.  The mathematical 
derivations of those articles are a little bit tedious and ab- 

struse hardly suited to coding, Pallikaris (2009) [8].  Our pre-
viously work [11] gave a mathematic unclosed form which 
lacks a convenient anti-derivative; the computation of the 
integral has to be carried out by numerical integration.  There 
are no insightful comparisons of the GC equation, GE equa-
tion, and geodesic..  For those reasons, we revisit the topic of 
GE sailing. 

The paper provides a more straightforward and compact 
mathematical derivation of the vector solution for GE sail- 
ing.  The functional relationships among those parameters 
involving GE sailing and GC sailing are rearranged and more 
discussed comparing our previously work [11].  We also give  
a dynamic programming recursive numerical algorithm at-
taining discretionary accuracy for calculation of arc length  
and develop the more compact calculation of the geodetic 
coordinates of intermediate points along GE arc.  Additionally, 
we give the reduction of spherical course computing the 
course of GE sailing. 

Compare GE sailing with GC sailing, this paper discovers 
that the functional relationship between latitude and longitude 
of the GC sailing is the same as the GE sailing.  This fact  
found here presents that the formulae tackling relationship of 
latitude and longitude of the GC also can be suited to the GE 
such as waypoints, vertices, and node of passing Equator 
except some problems of GE sailing involving distance and 
course.  Applying vector methods to navigation problems gives 
some advantage for GE sailing to both syntax of programming 
algorithms and commercial mathematics software. 

In the mathematical derivation, we take a direct scenario  
to produce the GE equation determining a great ellipse by a 
point and its course.  We also provide different mathematical 
derivation for vertices and nodes along a GE arc or great circle.  
Finally, we give dynamic programming recursive algorithms 
that satisfy any requirement of accuracy for distance calcula- 
tion of GE sailing and the complete set of the proposed algo-
rithm for the great elliptic sailing, and then the readers should 
comprehensively grasp the meaning of geometry. 

II. VECTORS INVOLVED IN DERIVATION 

Using geodetic latitude, a point P on the surface of the 
Earth can be represented as a vector function of longitude λ 
and geodetic latitude ϕ . 

( , ) ( )P x y zϕ λ =
�

 

2( cos cos , cos sin , (1 )sin )N N N eϕ λ ϕ λ ϕ= −  (1) 

where e is eccentricity, 2 2 1/ 2/(1 sin )N a e ϕ= −  is the radius of 
curvature of the prime vertical, and a is the semi-major axis. 

A moving point P on the surface of a spheroid along a path 
is associated with some vectors as the following.  The unit 
velocity vector VT

�

 tangent to the path which characterizes its 

moving direction, the north vector NT
�

 tangent to the meridian  
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Fig. 1. The geometric relationship among tangent plane and related 

vectors. 
 
 

which points the north pole and the east vector ET
�

 tangent to 

parallel that points to the east, and the course α which is the 
angle between the meridian plane and the normal plane con-
taining VT

�

 at point P. 

The above three vectors all lie in the tangent plane at the 
tangency P to spheroid.  The tangent plane at the surface is 
perpendicular to the normal of P.  The normal vector, often 
simply called the “normal,” to a surface is a vector perpen- 
dicular to it.  The normal plane is the plane determined by a 
unit tangent vector to point P and the normal to the point P on 
the spheroid.  Then the normal section is defined as the in- 
tersection of normal plane and spheroid.  The normal PN

�

 is a 

vector perpendicular to tangent plane at point P on the sphe- 
roid.  We show all those aforementioned important vectors as 
the following.  Fig. 1 describes the geometric relationship 
among those important vectors and tangent plane at point P.  
In Fig. 1, we have the unit normal to the meridian at point P. 

 (cos cos , cos sin , sin )pN ϕ λ ϕ λ ϕ=
�

. (2) 

Partial differentiate vector function (2) with respect to 
latitude to obtain the north tangent unit vector (3).  The same 
operation obtains the east tangent vector, and then normalizes 
it to give the east tangent unit vector (4). 

 ( sin cos , sin sin , cos )NT ϕ λ ϕ λ ϕ= − −
�

. (3) 

 ( sin , cos , 0)ET λ λ= −
�

. (4) 

Since the two vectors ET
�

 and NT
�

 form an orthogonal basis 

for the set of all vectors in the tangent plane at point P on a 
spheroid, the velocity vector VT

�

 is a linear combination of ET
�

 

and NT
�

 [12], which is shown in Eq. (5). 

 sin cosV E NT T Tα α= ⋅ + ⋅
� � �

. (5) 

III. THE GREAT ELLIPTIC EQUATION 

Geodesic is defined to be the shortest path between two 
points on the Earth’s surface [14].  On the sphere, the ge- 
odesics are great circles.  A great circle is the intersection of a 
sphere and a plane passing its origin.  On the spheroid, the 
great ellipse is defined to be the intersection of a spheroid and 
a plane passing its origin.  The great ellipse is not the shortest 
path between two points on the Earth’s surface.  The flattening 
of the Earth is very small, and therefore the great ellipses are 
very similar to the Geodesics.  The discrepancies in the com- 
puted distances, courses, and waypoints betweens geodesic 
and great elliptic sailing are practically negligible for naviga- 
tion [8].  For computational convenience, we develop two 
scenarios for determining a GE equation as the follow: 

 
(1) Determine a GE Equation by a point on a spheroid and its 

course angle.  
(2) Determine a GE Equation by specific two points on a 

spheroid. 
 
Direct Scenario: Determine a great ellipse by a point and its 

course angle on a spheroid. 
Let the vector of a given point be A

�

 and its course angle be 
αa. 

 2(cos cos , cos sin , (1 )sin )a a a a aA N eϕ λ ϕ λ ϕ= −
�

 

2( , , (1 ) )a a aN x y e z= − . (6) 

The velocity vector can be obtained by Eq. (7): 

 sin cosVa a Ea a NaT T Tα α= ⋅ + ⋅
�� �

. (7) 

The velocity vector VaT
�

 is linear combination of the 

northern tangent vector NaT
�

 and the eastern tangent vector 

EaT
�

 at departure A.  The last two vectors are the following: 

 ( sin cos , sin sin , cos )Na a a a aT ϕ λ ϕ λ ϕ= − −
�

. (8) 

 ( sin , cos , 0)Ea a aT λ λ= −
�

 (9) 

Expanding Eq. (9) yields: 

sin cos sin sin cos

sin sin sin cos cos

cos sin

T T

v a a a a a

Va v a a a a

v a a

x

T y

z

ϕ λ α λ α
ϕ λ α λ α

ϕ α

− −   
   = = − +   
      

�

. (10) 

Since the three vectors ,A
�

 ,VaT
�

 and P
�

 are coplanar, let a  
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plane equation containing the three vectors be 

 0eN P l x m y z⋅ = ⋅ + ⋅ + =
� �

 (11) 

Note that ( , ,1)eN l m=
�

 is the normal to the plane of a great 

ellipse (see Fig. 1): 

 ( , ,1) ( / , / ,1)l m q s r s=  (12) 

where ( , , ) .Vaq r s A T= ×
� �

 

This function of vector cross product exists or can be 
written as user-defined function in some programming lan-
guages.  Further expansion of Eq. (12) into trigonometric 
terms is unnecessary for computer evaluation.  Expanding Eq. 
(11) gives the following. 

 2cos cos cos sin (1 )sin 0l m eϕ λ ϕ λ ϕ⋅ + ⋅ + − = . (13) 

Rearranging and rewriting Eq. (13) as a tangent function, 
we arrive at 

 2tan ( cos sin ) /(1 )l m eϕ λ λ= − ⋅ + ⋅ − . (14) 

From Eq. (14), the geographic latitude of any point along 
the great ellipse can be identified once the longitude is speci-
fied.  The longitude can also be expressed in terms of latitude 
as Eq. (15). 

 
2

2 2 2 2

(1 ) tan
sin( ) tan

' '

e

l m l m

ϕλ ϕ−− ∆ = =
+ +

 (15) 

where 1tan ( )
l

m
−∆ =  and 2( ', ') ( , ) /(1 )l m l m e= − . 

Inverse Scenario: Determining a great ellipse by two points 
on a spheroid. 

Let A
�

 and B
�

 be the vectors of the departure and the des-
tination.  

 2(cos cos , cos sin , (1 )sin )b b b b bB N eϕ λ ϕ λ ϕ= −
�

 

2( , , (1 ) )b b bN x y e z= − , (16) 

Since the three vectors ,A
�

 ,B
�

 and P
�

 are coplanar, let a 
plane equation containing the three vectors be 

 0eN P l x m y z⋅ = ⋅ + ⋅ + =
� �

 (17) 

Note that ( , ,1)eN l m=
�

 is the normal to the plane of a great 
ellipse. 

 ( , ,1) ( / , / ,1)l m q s r s=  (18) 

where ( , , )q r s A B= ×
� �

. 
The normal vector ( , ,1)eN l m=

�

 to the plane parallels the 

cross product A B×
� �

.  Solving for (l, m), we find the following. 

2 2(1 )( ), (1 )( )b a a b a b b a

a b b a a b b a

y z y z x z x z
l e m e

x y x y x y x y

− −= − − = − −
− −

 (19) 

Expanding Eq. (11) also gives the following. 

 2cos cos cos sin (1 )sin 0l m eϕ λ ϕ λ ϕ⋅ + ⋅ + − = . (20) 

Rearranging and rewriting Eq. (20) as a tangent function, 
we arrive at 

 2tan ( cos sin ) /(1 )l m eϕ λ λ= − ⋅ + ⋅ − . (21) 

Letting eccentricity=0 obtains Eq. (22) describing a great 
circle (GC) on a sphere. 

 tan ( ' cos ' sin )l mϕ λ λ= − ⋅ + ⋅ . (22) 

where 2( ', ') ( , ) /(1 )l m l m e= − . 
Comparing the Eq. (22) with Eq. (21) gives the fact that the 

GC equation is the same as the GE equation.  Therefore, using 
the implements of GC sailing can give the relationship be-
tween latitude and longitude of the waypoints along a great 
ellipse instead of GE sailing.  Substituting Eq. (19) into Eq. 
(21) and expanding into trigonometric terms gives the con-
cisely formula appropriate for both the GE sailing and the GC 
sailing. 

 
sin( ) sin( )

tan tan( ) tan( )
sin( ) sin( )

b a
a b

b a b a

λ λ λ λϕ ϕ ϕ
λ λ λ λ

− −= +
− −

 (23) 

What will be your latitude on passing mid-longitude?  Ap-
ply double angle formulae of trigonometric identities into Eq. 
(23) and some manipulations to give Mid-longitude Equation 
which was discussed in the Journal of Navigation by our pre-
vious work [13]. 

 
tan( ) tan( )

tan
2cos( )

a b

m

ϕ ϕϕ
λ

+=  (24) 

where ( ) / 2m b aλ λ λ= −  is the mid-longitude of the departure 

and destination. 

IV. THE VERTEX AND NODE OF A  
GREAT ELLIPSE 

The semi minor axis of a great ellipse equals the distance 
between the vertex of the great ellipse and the center of the 
spheroid.  A vertex (N or S vertex), whose latitude and  
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longitude are denoted as ϕ v and λv, is shown in Fig. 2.  The 
geocentric latitude of vertex equals to co-latitude of the nor-
mal vector to the plane of a great ellipse; the meaning is shown 
in Fig. 2.  The longitude of vertex can be obtained by the 
Y-axis component of normal vector to GE dividing the X-axis 
component of it in Eq. (27). 

The tangent of the geocentric latitude angle VVOλ  is equal 

to the cotangent of an angle ' 'VV Oλ  between normal vector 

to GE and equatorial plane.  Substituting Eq. (1) into tangent 
and cotangent trigonometric functions obtains the follow. 

 
2 2 2 2

2 2 2 2 2 22 2

(1 ) sin

cos cos cos sin
v

v v v v

N ez

N Nx y

ϕ
ϕ λ ϕ λ

−=
++

 

2 2l m= + .  (25) 

Rearrange Eq. (25) and apply trigonometric identity to yield 
the following. 

 
2

2
2

2
2tan ' '

1v

l m
l m

e
ϕ += ± = +

−
 (26) 

In trigonometry, the two-argument function atan2 is a 
variation of the arctangent function.  The atan2 function is 
useful in many applications involving vectors in Euclidean 
space, such as finding the direction from one point to another.  
For any real arguments x and y not both equal to zero, atan2(y, 
x) is the angle in radians between the positive x-axis of a  
plane and the point given by the coordinates (x, y) on it.  The 
angle is positive for counter-clockwise angles (upper half- 
plane, y > 0), and negative for clockwise angles (lower half- 
plane, y < 0). 

The longitude of vertex is opposite direction of image 
vector of the normal to a great elliptic plane in the equatorial 
plane (X-Y plane), therefore the longitude of vertex is opposite 
of longitude of the normal. 

 atan2( , )v m lλ = − − . (27) 

Note: atan2 has the conventional ordering of arguments, 
namely atan2(y, x).  This is not universal, Excel for instance 
uses atan2(x, y).  Be warned.  It returns a value in the range -PI 
< atan2 <= PI. 
Further note: If your calculator/programming language is so 
impoverished that only atan is available then use: 

 

atan2(y, x) = atan(y/x), x > 0. 

atan2(y, x) = atan(y/x)+PI, x < 0, y >= 0. 

atan2(y, x) = PI/2, X = 0, y > 0. 

atan2(y, x) = atan(y/x)-PI, X < 0, y < 0. 

atan2(y, x) = -PI/2, x = 0, y < 0. 

atan2(0, 0), The value is undefined. 
 

The unit vector of the vertex is denoted as the vector .vertexV
�

  

Setting the geodetic latitude ϕ = 0 in Eq. (14) gives the as-
cending and descending nodes where the great ellipse inter-
sects with the equator at longitude λe: 

 atan2( , )e l mλ = −  (28) 

which is equivalent to / 2e vλ λ π= ± . 

The unit vector of the node is given by: 

 2 2( , , 0) /nodeV m l l m= − +
�

. (29) 

In a recent paper [5] dealing with GE sailing, substituting 
two identities of its Eq. (7) back into its Eqs. (3) and (4) can 
not lead to alternatives for GE equation as the following  
Eq. (31).  In [5], its Eq. (11) is also too tedious; we give more 
compact expression as Eq. (31). 

Substituting Eq. (26) and Eq. (27) into Eq. (15) yields a 
different presentation for the GE equation and GC equation as 
the following: 

 
tan

sin( )
tane

v

ϕλ λ
ϕ

− =  (30) 

Since the longitude difference between the longitude of the 
nodes and the longitude of the vertices is 90 degrees, then 
using this relation obtains  

 
tan

cos( )
tanv

v

ϕλ λ
ϕ

− =  (31) 

which is the same as the trigonometric identities of Napier’s 
mnemonic Rule for Right-Angle Triangle [6] for conventional 
technique of navigation.  The above both formulae can not be 
only applied to GE sailing but also applied to GC sailing. 
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V. THE COURSE FUNCTION OF GREAT 
ELLIPIC SAILING 

In navigation, a course is the intended path of a vehicle over 
the surface of the Earth.  For sea travel, it is the intended 
sailing path of a vessel or the direction of a line drawn on a 
chart representing the intended sailing path, expressed as the 
angle measured from a specific reference datum clockwise 
from 0° through 360° to the line.  

The course is the angle between the meridian plane and 
normal plane containing velocity vector at point P.  The nor-
mal plane usually is slightly different from the GE plane at 
point P. 

By above definition, the course can be obtained by the inner 
dot of the unit velocity vector VT

�

 and the unit parallel tangent 

vector ET
�

 dividing the inner dot of the vector VT
�

 and the unit 

meridian tangent vector NT
�

 at point P as the follow. 

 atan2( , )E V N VT T T Tα = ⋅ ⋅
� � � �

 (32) 

where e P
V

e P

N N
T

N N

×=
×

��

�

��
. 

In the sphere Earth model, the course can be obtained as 

 atan2( , )C E V N VT T T Tα = ⋅ ⋅
� � � �

 (33) 

where C P
V

C P

N N
T

N N

×=
×

��

�

��
. 

Note that ( ', ',1)CN l m=
�

 is the normal to the plane of a 
great circle (see Fig. 1). 

Expanding the Eq. (32) and Eq. (33) gives reduction of the 
course of GC sailing instead of the course of GE sailing. 

 
2 2

2

(1 sin )
tan tan

(1 )C

e

e

ϕα α −=
−

 (34) 

The unit normal vector (see Fig. 1) to the normal section 
containing the velocity vector at point P on the GE is the  
cross product of the unit normal and velocity vector at point  
P, that is  

 NS p VN N T= ×
� � �

 (35) 

The velocity vector is orthogonal combination of the north 
tangent vector and the east tangent vector forming orthogonal 
basis, and then we derive another approach for the solution of 
course.  Any waypoint on the path satisfies Eq. (36). 

sin sin cos sin cos

sin cos cos sin sin sin cos

cos cos

T

V E NT T T

λ α λ ϕ α
α α λ α λ ϕ α

ϕ α

− − 
 = ⋅ + ⋅ = − 
  

� � �

. 

  (36) 

Since velocity vector is orthogonal to the normal vector of 
the great ellipse, the inner product of the two vectors equals to 
zero. 

 0e VN T⋅ =
� �

 (37) 

where eN
�

 is normal to a great ellipse. 

Expanding Eq. (37) gives 

( sin cos )sin ( cos sin sin sin cos )cos 0.l m l mλ λ α λ ϕ λ ϕ ϕ α− + − + + =  

  (38) 

Rearranging Eq. (38) and incorporating Eq. (14), we have 

 
2 21 (1 ) tan

tan cos
( sin cos )

e

l m

ϕα ϕ
λ λ

+ −=
−

. (39) 

When eccentricity e = 0, Eq. (39) can be reduced into Eq. 
(40): 

 
' '

sec
tan

sin cosC l m

ϕα
λ λ

=
−

 (40) 

Expanding Eq. (40) and transforming into Eq. (41) by trigo- 
nometric identity. 

 
sec

tan
tan sin( )C

v V

ϕα
ϕ λ λ

=
−

 (41) 

Substituting Eq. (40) and into Eq. (39) also obtains the 
important reduction of spherical course to the course of GE 
sailing. 

 
2 2

2

(1 sin )
tan tan

(1 )C

e

e

ϕα α −=
−

 (42) 

Some relationships can be found aforementioned between 
GC sailing and GE sailing as Table 1. 

VI. THE CALCULATION OF THE DISTANCE  
OF THE GREAT ELLIPTIC SAILING 

The distance calculation of the GE sailing can be conducted 
by the use of standard geodetic Formula (46) for the length of 
the meridian arc after proper replacing the eccentricity e of  
the meridian ellipse with the eccentricity ε of the great ellipse.  
This is better understood if we consider a great ellipse as an 
inclined version of meridian ellipse.  The semi-minor axis of a 
great ellipse is measured from the vertex to the origin of the 
spheroid.  The eccentricity ε (0 ≤ ε ≤ e) of a great ellipse is: 

 
22 2

2 2 2

( , ) 1
sin

1 sin

V V
v

v

a P e
e

a e

ϕ λ
ε ϕ

ϕ

− −= =
−

 (43) 
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Table 1. Relationships of waypoints and courses between 
the Great Circle Sailing and the Great Elliptic 
Sailing. 

Lon-Lat 
2 1

1 2
2 1 2 1

sin( ) sin( )
tan tan( ) tan( )

sin( ) sin( )

λ λ λ λϕ ϕ ϕ
λ λ λ λ

− −= +
− −

 O 

Vertex 
2

2
2

2
2

tan ' '
1v

l m
l m

e
ϕ += ± = +

−
 O 

 atan2( , ) atan2( ', ')v m l m lλ = − − = − −   

Node atan2( , ) atan2( ', ')e l m l mλ = − = −  O 

Course 
sec

tan
tan sin( )C

v V

ϕα
ϕ λ λ

=
−

 X 

 
2 2

2

(1 sin )
tan tan

(1 )C

e

e

ϕα α −=
−

  

O: no difference, X: need correction.  The vector (l, m, 1) is the 
normal to the plane of a great ellipse and the other vector ( ', ',1)l m is 
the normal to the plane of a great circle. 
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Fig. 3.  The angle from the node to point P on a great ellipse. 

 
 
Eqs. (22), (23), (30) or (31) can build the track of a GE 

sailing.  Once the latitude and longitude are given, the velocity 
vector VT

�

can be derived.  The sine of geodetic angle ψ is the 

inner product of the normal vector to the equator at a node 
(major axis of a great ellipse) and the normal vector to a great 
ellipse at a point P can be represented as the following (Fig. 3).  
The geodetic angle ψ is equivalent to the geodetic latitude  
used in the calculation of the length of the meridian arc. 

 sin( ) V nodeT Vψ = ⋅
� �

 (44) 

The angle also equals to the angle between the velocity 
vector and the vector of vertex as 

 cos( ) V vertexT Vψ = ⋅
� �

 (45) 

where e P
V

e P

N N
T

N N

×=
×

��

�

��
 is the velocity vector along a great 

ellipse. 
Distance from node of equator to one point ( , )P ϕ λ

�

 on the 
GE sailing is given by: 

 3
2

2
2 20

( ) (1 )
(1 sin )

d
L a

ψ θψ ε
ε θ

= −
−∫  (46) 

The above equation can be transformed to an elliptic inte-
gral of the second type, which can not be evaluated in closed 
form.  The integral of distance lacks convenient anti-derivative.  
The binomial expansion series of integrant can discover the 
analytic solution term by term.  The closed form of general 
differential equation is usually unavailable.  But the power 
series representation is always a welcome solution.  Expand-
ing the RHS of the Eq. (46) by binomial theorem as rapidly 
convergent series yields Eq. (47). 

2 2 2

0
0

3
( ) (1 ) ( 1) ( sin )2

n
i i

i

L a d R
i

ψ
ψ ε ε θ θ

=

  −  = − − +
      

∑∫  (47) 

By the Mean Value Theorem for definite integral applied to 
(47), we obtain the error bound. 

 2 1 2 2 1

3
(1 )( 1) ( sin )2

1

n n
nR R

n
ε ε ψ ψ+ +

 − < = − −
  + 

 

Integrating Eq. (47) termwisely by parts gives the relevant 
reduction formula which can enables us to handle positive 
integral powers of sine in Eq. (47). 

 
1

2sin cos 1
sin sin

n
n nn

d d
n n

θ θθ θ θ θ
−

−−= − +∫ ∫  (48) 

Apply dynamic programming algorithm to integrate Eq. (47) 
as Table 2.  When applicable, the method takes much less  
time than naive methods and attains discretionary accuracy. 

An approximation to Eq. (46) is provided in [9], the first 
two terms of the expansion is: 

 
2 23

( ) (1 ) sin(2 )
4 8

L a
ε εψ ψ ψ

 
= − − 

 
 (49) 

This approximation causes the error at most up to 836.0592 
meters when ϕ equals to 90 degrees.  Since the values of pow- 
ers of ε are very small, we can attain any requirement of ac-
curacy by retaining some terms of powers of eccentricity ε.  
For example, since the fifth term in Eq. (47) is less than 
0.049186cmeter, holding the first four terms arrives at the  
sub meter accuracy.  If the point P is the same semi-sphere of 
the departure, then the distance can be computed as the fol-
lowing. 

 Dist( ) ( ) ( )aL Lψ ψ ψ= −  (50) 
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Table 2. Dynamic programming of calculation of the el- 
lipse arc. 

Function Ellipse_Arc(θ, n, a, ε) 
Input: positive even integer n such that n ≧ 0, 
geodetic angle θ.  
ϖ = 1, Ellipse_Arc = θ, A = 1, B = θ, C = sin θ cos θ, 
eps=small number 

Do while (A ⋅ B > eps and 2ϖ ≤ n) 

2 2 1
(2 1) /(2 ) ,

2 2

C
A A B B

ϖϖ ϖ ε
ϖ ϖ

−= ⋅ + ⋅ = − +  

Ellipse_Arc = Ellipse_Arc + A ⋅ B 
C = C ⋅ sin2 θ 
ϖ = ϖ + 1 

End Do 
Ellipse_Arc = a ⋅ (1 − ε 2) ⋅ Ellipse_Arc 
End Ellipse_Arc 

 
 
If the point P is the opposite semi-sphere of the departure, 

then the distance can be computed as the following. 

 Dist( ) ( ) ( )aL Lψ ψ ψ= +  (51) 

VII. THE PROPOSED SIMPLE ALGORITHM 
FOR THE GREAT ELLIPTIC SAILING, 

NUMERICAL TESTS AND COMPARISON 

The track of a GE sailing can be plotted by connecting 
successive intermediate points along a great ellipse.  In the fol- 
lowing algorithm we selected integer longitude between suc-
cessive intermediate points along a great ellipse.  The com-
plete set of the proposed algorithm for the great elliptic sailing 
is listed in Table 3.  From Comparing the proposed algorithm 
with another algorithm (from Part I to Part IV) provided by 
Pallikaris [6], we found that our proposed algorithm is more 
easily, simpler, shorter, more logical and more intuitive than 
another algorithm. 

For comparison, the results of the computation for the great 
ellipse, the great circle and the geodesics (using Andoyer- 
Lambert method [6] and the method of Vicenty [14]) departed 
from A point (Lat 0 N, long 120 E) to successive latitudes in 1 
degree increments up to 90 degrees (GE and GC) passing one 
quarter of the Earth (see Fig. 4) (longitude difference is 90 
degrees E) are shown in Table 4. 

The differences of distances between the GE and Geodesics 
are far less than the differences of distances between the GC 
sailing and Geodesics.  The maximum value of GC-Geod is 
about -17.95 km occurred at the Equator where the difference 
of GE-Geod is 0.  The maximum value of GE-Geod is about 
7.06 meters occurred at about latitude 45 degrees and the dif- 
ference of GC-Geod is about 9.5864 km (Fig. 6). 

The differences of distances between the Andoyer-Lambert 
parametric method and Geodesics are decreasing from lati- 
tude 0 degree shown in Table 5.  The value attains to maxi- 
mum about -7.051 meters along the meridian. 

Table 3. The complete set of the proposed algorithm for 
the great elliptic sailing. 

Input A,B A = (ϕa, λa), B = (ϕ b, λb)  
Applying the great circle sailing 
Step 1: Transform to Cartesian Coordinates  

' (cos cos ,cos sin ,sin )a a a a aA ϕ λ ϕ λ ϕ=
�

 

' (cos cos ,cos sin ,sin )b b b b bB ϕ λ ϕ λ ϕ=
�

 

Step 2: Calculate the normal to great ellipse 

( , , ) ' ', ( '. '.1) ( / , / ,1),Cq r s A B N l m q s q s= × = =
� � �

 
2 2( '(1 ), '(1 ),1)eN l e m e= − −

�

 

Step 3: Calculate the latitude of vertex , vector of node passing the 
Equator, and eccentricity of the great ellipse. 

2 2 2 2atan( ' ' ), ( ', ',0) / ' ' ,v nodel m V m l l mϕ = ± + = − +
�

 

2

2 2

1
sin , , 0,

1 sin
v J a

v

e
e J

e
ε ϕ λ λ

ϕ
−= = =

−
 

Loop Steps: 
Do while(λJ < λb) 
Calculate the latitude given longitude and the course of the GE sailing 
Method 1: atan( ' cos ' sin )J J Jl mϕ λ λ= − ⋅ − ⋅  

Method 2:
sin( ) sin( )

atan tan( ) tan( )
sin( ) sin( )

b J J a
J a b

b a b a

λ λ λ λϕ ϕ ϕ
λ λ λ λ

 − −= + − − 
 

Calculate the normal vector and velocity vector of moving point P  

(cos cos ,cos sin ,sin )p J J J J JN ϕ λ ϕ λ ϕ=
�

 

e P
V

e P

N N
T

N N

×=
×

��

�

��
 

Calculate the northern tangent vector and eastern tangent vector 

( sin cos , sin sin ,cos )N J J J J JT ϕ λ ϕ λ ϕ= − −
�

 

( sin ,cos ,0)E J JT λ λ= −
�

 

Calculate the course at point P and distance from A to point P 
1atan2( , ), / 2 cos ( ),N V E V J V nodeT T T T T Vα ψ π −= ⋅ ⋅ = − ⋅

� � � � � �

 

( ) ( ) ,sgn( ) sgn( )
( ), distance

( ) ( ) ,,sgn( ) sgn( )
J a a J

J J
J a a J

L L
L L

L L

ψ ψ ϕ ϕ
ψ

ψ ψ ϕ ϕ
 − == =  + ≠

 

1 1, 1J J J Jλ λ+ = + = +  

End do 
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Fig. 4.  The 91 passages of GE sailing passing one quarter. 
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Table 4. Comparison between great circle, great ellipse, and 
geodesics. 

Lat. Distance (nautical mile) Distance Differences 

 Geod GE GC GE-Geod (Meter) GC-Geod (KM) 

0 5409.6945  5409.6945  5400 0.0000 0.000000% 17.9542  0.1792% 

10 5409.4228  5409.4232  5400 0.8227 0.000008% 17.4510  0.1742% 

20 5408.6399  5408.6415  5400 2.9082 0.000029% 16.0012  0.1597% 

30 5407.4389  5407.4417  5400 5.2856 0.000053% 13.7768  0.1376% 

40 5405.9628  5405.9665  5400 6.8456 0.000068% 11.0432  0.1103% 

44 5405.3344  5405.3382  5400 7.0545 0.000070%   9.8793  0.0987% 

45 5405.1762  5405.1800  5400 7.0643 0.000071%   9.5864  0.0958% 

46 5405.0180  5405.0218  5400 7.0569 0.000070%   9.2934  0.0928% 

50 5404.3887  5404.3924  5400 6.8570 0.000069%   8.1279  0.0812% 

60 5402.9064  5402.9093  5400 5.3110  0.000053%   5.3827  0.0538% 

70 5401.6958  5401.6973  5400 2.9296 0.000029%   3.1405  0.0314% 

80 5400.9045  5400.9049  5400 0.8301 0.000008%   1.6751  0.0167% 

90 5400.6294  5400.6294  5400 0.0000 0.000000%   1.1657  0.0117% 
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Fig. 5.  Distance differences between Great Circle and Geodesics. 

 
 
Fig. 5 depicts the differences of distances between the GC 

sailing and Geod sailing from the same departure (Latitude 0, 
longitude 0) to the distinct destinations (between equator and 
successive latitudes in 1 degree increments up to 90 degrees 
and longitude 90 degrees away).  The difference reaches to 
maximum about 17.95 KM at the Equator.  The discrepancy is 
diminishing toward Poles.  The minimum value is 1.165729 
KM at Poles.  This is not acceptable for practical purposes of 
navigation and ECDIS. 

Calculation of shortest sailing paths on the ellipsoid by a 
geodetic inverse and direct method involves formulae that  
are too much complex.  By above analysis, the GE sailing is a 
nice, simpler, and straightforward alternative.  The method can 
satisfy the requirement of meter accuracy. 

Fig. 6 depicts the discrepancies of those distances between 
the GE sailing and the Geod sailing from the same departure 
(Latitude 0, longitude 0) to the distinct destinations (from 
equator to successive latitudes in 1 degree increments up to 
90° and longitude 90°).  There are no differences occurring at 
Lat 0° and Lat 90° where the two great ellipses coincide with  

Table 5. Comparison between Andoyer-Lambert method 
and geodesics. 

Latitude Geod Andoyer_Lambert Geod-Lambert 
0  5409.6945  5409.6945  0.0000  
10  5409.4228  5409.4228  -0.0019  
20  5408.6399  5408.6399  -0.0813  
30  5407.4389  5407.4387  -0.4149  
40  5405.9628  5405.9622  -1.1732  
50  5404.3887  5404.3874  -2.4006  
60  5402.9064  5402.9043  -3.9471  
70  5401.6958  5401.6928  -5.4883  
80  5400.9045  5400.9009  -6.6295  
90  5400.6294  5400.6256  -7.0508  
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Fig. 6.  Distance differences between Great Ellipse and Geodesics. 
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Fig. 7. Distance differences between great ellipse and Geodesics for 

different geodetic angles on great ellipses. 
 
 

the geodesics.  The difference reaches to maximum value 
approximately 7.06 meters at about Latitude 45°. 

Fig. 7 depicts the differences of distances between the GE 
and Geod sailing from the same departure (Latitude 0°, lon-
gitude 0°) to the distinct destinations along a great ellipse 
(departing from the same departure to successive latitudes  
in 1º increments up to 90 degrees and the same difference  
of longitude equal to 90°) at successive geodetic angles of  
the great ellipse in 1 degree increment up to 90°, i.e.  The  
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Table 6. The means and standard deviation of distance differences comparing Andoyer-Lambert method1 and GE  
sailing2 to Geodesics.  (Unit: m, Sample: 8281) 

Lat 10 20 30 40 45 50 60 70 80 90 Total 

STD1 0.21 0.76 1.42 1.96 2.13 2.25 2.37 2.48 2.64 2.73 2.51 

STD2 0.21 0.76 1.38 1.78 1.84 1.78 1.38 0.76 0.22 0 1.19 

Mean1 0.434  1.573  2.993  4.195  4.590  4.815  4.772  4.286  3.748  3.520  3.159  

Mean2 0.142  0.502  0.912  1.181  1.219  1.183  0.916  0.505  0.143  0.000  0.603  
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Fig. 8. Distance differences between Andoyer-Lambert Method and 

Geodesics. 

 
 

coordinates of destinations range between integer latitude 
0°-90° N and integer longitude 0°-90° E. 

Fig. 8 depicts the discrepancies of distances between the 
values computed by the Andoyer-Lambert method [6] and the 
true geodesic distances from the same departure (Latitude 0, 
longitude 0) to the distinct destinations (from equator to suc- 
cessive latitudes in 1 degree increments up to 90° and longi-
tude 90° away).  There are no differences occurring at Lat 0° 
where the correction of Andoyer-Lambert method is equal to  
0.  The difference reaches to maximum value approximately 
-7.05 meters at about Latitude 90°. 

Fig. 9 depicts the differences of distances between the 
values computed by Andoyer-Lambert Method and geodesic 
distance from the same departure (Latitude 0°, longitude 0°)  
to the distinct destinations at successive latitudes in 1 degree 
increment up to 90 degree on the meridians starting from  
longitude 0 degree at successive longitude in 1 degree incre-
ment up to 90 degree.  The coordinates of destinations range 
between integers of latitude 0°-90° N and integers of longitude 
0°-90° E.  From comparison between Fig. 7 and Fig. 9, the 
curve surface of Fig. 7 is smoother than the Fig. 9.  The fact 
means that the numerical fitting of more accurate computation 
applied to GE sailing is more appropriate than Andoyer- 
Lambert Method. 

The accuracies of the GE sailing in terms of variance 
achieved are assessed and compared to Andoyer-Lambert 
method in the Table 6.  The mean differences and standard 
deviations are computed for the 8281 lines (91X91) by data  
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Fig. 9. Distance differences between Andoyer-Lambert method and 

Geodesics. 
 
 

extracted from the dataset plotting Fig. 7 and Fig. 9.  The 
difference standard deviations for the 8281 lines between true 
geodesic distances and computed values by Andoyer-Lambert 
method are increasing when destination (vertex) is toward 
North Pole. 

The mean difference between true geodesic distance and 
computed value of GE sailing is one sixth of the difference 
mean of Andoyer-Lambert method with one half standard 
deviation of Andoyer-Lambert method.  We can assert that the 
accuracy of GE is better than Andoyer-Lambert method. 

The statistics hypothesis testing can test whether the GE 
sailing is better than Andoyer-Lambert method.  Null hy- 
pothesis: The two methods have the same accuracy.  Alterna-
tive hypothesis: The accuracy of Andoyer-Lambert method is 
worse than GE sailing.  The observed level of significance  
is very small calculated by statistics method, therefore we 
reject null hypothesis.  We accept the alternative hypothesis 
that the accuracy of Andoyer-Lambert method is worse than 
GE sailing. 

Since the coefficients of Eq. (21) and Eq. (22) are the same, 
then the latitudes and longitudes of GC and GE have same 
value.  Instead of the GC sailing, plotting the positions of the 
GE to the chart does not give different positions.  Only for 
calculating distance and course, the GE equation generates 
significant effect. 

The numerical examples we used as based older numerical 
tests conducted by Pallikaris (2009).  The first numerical ex- 
ample very long distance with difference of longitude about  
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Table 7.  Determining route from Sydney to Valparaiso. 

G.C. Distance (N.M.) 6124.02416097770

G.E. Distance (N.M.) 6129.12072590703

Geodesic Distance (N.M.) 6129.11244819428

Diff. of GC-Geodesic (m) -9423.50792510500

Diff. of GE-Geodesic (m) 15.330324013 

Intermediate Waypoints At a given longitude of leg  

Leg interval Each integer longitude 

Vertex (longitude) 140.37062 W 

Vertex (latitude) 60.68006 S 

WP Latitude Longitude Total distance Leg distance Course 

0  -33.77017  151.53273      0.00000  0.00000  143.99462 

1  -34.30294  152.00000    39.51026  39.51026  143.73428 

2  -35.41490  153.00000  122.42280  82.91253  143.16528 

3  -36.48898  154.00000  203.13155  80.70875  142.58072 

4  -37.52597  155.00000  281.68506  78.55351  141.98135 

5  -38.52670  156.00000  358.13576  76.45070  141.36787 

6  -39.49208  157.00000  432.53913  74.40337  140.74094 

… … … … … … 

133  -37.78836  -76.00000  5770.56699  75.91550  38.17607 

134  -36.76084  -75.00000  5848.57120  78.00421  37.57298 

135  -35.69644  -74.00000  5928.71743  80.14622  36.98452 

136  -34.59435  -73.00000  6011.05529  82.33787  36.41142 

137  -33.45385  -72.00000  6095.62988  84.57458  35.85443 

138  -32.99997  -71.61125  6129.12073  33.49085  35.64241 
 
 

 
Fig. 10. The track from Sydney Harbor, Australia to Valparaiso, Chile. 

Note: This chart is plotted by Google Maps API 
 
 

136° is the sailing from the approaches of Sydney Harbor 
-Australia (33° 46.21’ S, 151° 31.964’ E) to the approaches of 
Valparaiso-Chile (32° 59.998’ S, 71° 36.675’ W).  The results 
of these calculations are shown in Table 7 and Fig. 10.  In this 
calculation we select successive integers of longitude between 
two locations along the great ellipse (the difference of longi-
tude between intermediate points can be selected by the user 
and can be as short as desired). 

Comparing the distance of GE sailing calculated by our 
algorithm mentioned above between Sydney and Valparaiso  

Table 8.  Determining route from Yokohama to Valparaiso. 

G.C. Distance  (N.M.) 9250.05315077852 

G.E. Distance  (N.M.) 9242.56158336103 

Geodesic Distance (N.M.) 9242.55803581660 

Diff. of GC-Geodesic (m) 13880.95290947430 

Diff. of GE-Geodesic (m) 6.570052283  

Intermediate Waypoints At a given longitude of leg  

Leg interval Integers of longitude 

Vertex (longitude) 129.6260160 E  

Vertex (latitude) 34.86578657 N  

WP Latitude Longitude Total distance Leg distance Course 

0  34.43630  139.85650    0.00000    0.00000  95.80092  

1  34.42414  140.00000    7.15921    7.15921  95.88169  

2  34.33461  141.00000  57.10861  49.94940  96.44379  

3  34.23674  142.00000  107.16895  50.06034  97.00454  

4  34.13051  143.00000  157.34994  50.18099  97.56381  

5  34.01589  144.00000  207.66129  50.31136  98.12150  

6  33.89284  145.00000  258.11272  50.45142  98.67746  

… … … … … … 

145 -32.13663  -76.00000  9014.12408  52.68847  104.24813  

146 -32.34826  -75.00000  9066.56531  52.44123  103.71718  

147 -32.55105  -74.00000  9118.76859  52.20328  103.18317  

148 -32.74505  -73.00000  9170.74328  51.97468  102.64625  

149 -32.93030  -72.00000  9222.49877  51.75549  102.10655  

150 -32.99997  -71.61125  9242.56158  20.06281  101.89601  

 
 

(6129.120726 nautical miles) with the corresponding true 
geodesic distance (6129.112448 nautical miles) calculated  
by built-in geodesicfwd.m function of Matlab ( Vicenty’s 
algorithm, Adapted from U.S. National Geodetic Survey 
(NGS) Fortran program INVERSE.FOR, Version 200208.19 
by Stephen J. Frakes, including subroutines GPNHRI and 
GPNLOA by Robert (Sid) Safford.) gives the fact that even for 
this extremely long distance with difference of longitude about 
137°, the little discrepancy (15.33 m) is still negligible for the 
practical purposes of navigation.  The older numerical test 
calculated by Pallikaris (2009) [8] gave the bigger discrepancy 
(0.71 nautical miles, about 1315 meters).  The value is 86 
times computed value here.  This result is too exaggerative to 
make us doubt.  We don’t know how the author got it. 

The second numerical example of very long navigational 
route with difference of longitude greater than 145° is the 
sailing from Valparaiso-Chile (32° 59.998’ S, 71° 36.675’ W) 
to Yokohama-Japan (34° 26.178’ N, 139° 51.39 E).  

The results of these calculations are shown in Table 8.  The 
geodesic is slightly curved than the great ellipse (see Fig. 11).  
The eccentricity of the Earth exaggeratedly is set to 0.5 for 
showing the difference between the great ellipse and geodesic 
(see Fig. 11).  In this example the discrepancy between the GE 
distance computed by our algorithm (9242.561583 nautical 
miles) and the true geodesic distance computed by Vicenty’s 
algorithm (9242.558036 nautical miles) is a little smaller  
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Fig. 11. The track from Yokohama, Japan to Valparaiso, Chile. 
 Note: To show that the difference between the two, the eccen-

tricity exaggeratedly is set to 0.5. 

 
 

(6.57 meters) acceptable for the practical purposes of naviga-
tion.  Because the track passes through the Equator, and then 
the discrepancy becomes smaller.  The older numerical test 
calculated by Pallikaris (2009) [6] also gave the bigger dis-
crepancy (0.88 nautical miles, about 1356.76 meters).  The 
value is 208 times the value computed here.  This result is too 
exaggerative to make us doubt again. 

It is noted that even for these two extreme cases where the 
differences of longitude between departure and destination 
points are about 136° and 145°.  The resulting discrepancies 
that are still less than 17 meters are practically diminished in 
the process of the computation of the intermediate points.   
Our algorithm computes these coordinates for as many in-
termediate points as desired that is easier, more accurate and 
efficient than other methods provided by previous researcher 
(see Table 7). 

VIII. CONCLUSION 

In this paper, we have presented a method for computing 
the position, the distance, and the course of intermediate 
points along a great ellipse.  With basic vector analysis, the 
mathematical derivations presented here are more straight-
forward.  A variety of expressions are suited to both the syntax 
of computer algorithms and commercial mathematics software.  
We have developed a course reduction function instead of the 
solution of GE.  Since the GE equation and GC equation are 
the same, many formulae tackling the problems of GC sailing 
also can be applied or reduced to GE sailing. 

The differences of distances between the GC sailing and 
Geodesics passing one quarter of the Earth can reach to 
maximum about 17.95KM along the Equator.  The minimum 
value is 1.165729 KM along one meridian arc.  This is not 
acceptable for practical purposes of navigation and ECDIS.  
The GE sailing can overcome those drawbacks of GC sailing 
and is more computer-efficient than Geodesic mathematics.  
The proposed algorithm for GE sailing provides extremely 
high accuracies comparable to those obtained by the compu- 
tations of geodesics.  Numerical tests show that discrepancies 

between geodesic and GE sailing are practically negligible for 
navigation and ECDIS. 

The numerical tests calculate the mean difference and the 
standard deviation of large sample of distance differences 
comparing the values computed by GE sailing and Andoyer- 
Lambert method to the true geodesic distances.  The result 
reveals that the difference and the standard deviation of dis-
tance differences of GE sailing is one half and one sixth of the 
values computed by Andoyer-Lambert method.  The signifi-
cance gives the assertion that the accuracy of GE sailing is 
better than Andoyer-Lambert method. 

By above analysis, the hybrid sailing mixed with the fea-
tures of the GC sailing and GE sailing is a nice, simpler, and 
straightforward alternative.  The GC sailing gives waypoints, 
courses and some parameters used in the GE sailing, and then 
the GE sailing proceeds to calculate the distance from way-
points to departure point and the course computed by course 
reduction function of GC.  The proposed algorithm can be 
easily implemented by software language such as C++, Java, 
Javascript, Matlab and some mathematical packets.  The gist 
of this paper is to facilitate navigators and designers of GIS or 
electronic chart to design the navigational software more ef-
ficiently, accurately, and easily. 
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