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ABSTRACT 

In many real-life applications, it can be often found that 
multiple agents compete on the usage of a common processing 
resource in different application environments and different 
methodological fields, such as artificial intelligence, decision 
theory, operations research, etc.  Moreover, scheduling with 
multiple agents is relatively unexplored.  Based on this ob-
servation, this paper attempts to study a single-machine 
scheduling problem where the objective is to minimize the 
total tardiness of the first agent with the constraint that no 
tardy job is allowed for the second agent.  In this study, we 
provide a branch-and-bound algorithm and a genetic algorithm 
for the optimal and near-optimal solutions.  We also report a 
computational experiment to evaluate the impact of the pa-
rameters involving with proposed problem simulation settings. 

I. INTRODUCTION 

Scheduling with multiple agents has received growing at-
tention in recently years.  Agnetis et al. [1] and Baker and 
Smith [3] were independently the first authors to introduce  
the concept of multi-agent into scheduling problems.  Yuan  
et al. [30] addressed two dynamic programming recursions  
in Baker and Smith [3] and developed a polynomial-time 
algorithm for the same problem.  Cheng et al. [9] considered 
the feasibility model of multi-agent scheduling on a single 
machine where each agent’s objective function is to minimize 
the total weighted number of tardy jobs.  Ng et al. [23] studied 
a two-agent scheduling problem on a single machine, where 
the objective is to minimize the total completion time of the 
first agent with the restriction that the number of tardy jobs  
of the second agent cannot exceed a given number.  Agnetis  

et al. [2] considered the scheduling problems when several 
agents, each owning a set of non-preemptive jobs, compete to 
perform their respective jobs on one shared processing re-
source.  Each agent wants to minimize a certain cost function, 
which depends on the completion times of its jobs only.  
Cheng et al. [9] studied multi-agent scheduling on a single 
machine where the objective functions of the agents are of  
the max-form.  Lee et al. [18] considered a multi-agent sched- 
uling problem on a single machine in which each agent is 
responsible for his own set of jobs and wishes to minimize  
the total weighted completion time of his own set of jobs.  
Besides, for more multiple-agent works with time-dependent, 
we refer readers to Liu and Tang, Cheng et al., Wan et al.,  
Liu et al., Wu et al., Mor and Mosheiov, Nong et al., and Yin  
et al., etc. [7, 10, 19-22, 24, 26-29].  For more recent sched-
uling problems faced by the manufacturing industry, but are 
from the same agent, the reader can refer to Hsu et al. [16], 
Shyr and Lee [25]. 

Due to the importance of multiple agents competing on  
the usage of a common processing resource in different ap-
plication environments and different methodological fields, 
we studied two-agent scheduling on a single machine.  The 
objective is to minimize the total tardiness of the jobs of  
the first agent with the restriction that no tardy job is allowed 
for the second agent. 

The remainder of this paper is organized as follows: In 
Section II, the problem statement is given.  In Section III, 
some dominance properties and a lower bound are pre- 
sented.  In Section IV, the details of three genetic algorithms 
are described.  In Section V, the extensive computational ex-
periments to assess the performance of all of the proposed 
algorithms are reported.  The conclusion is given in the last 
section. 

II. PROBLEM FORMULATION 

The problem is described as follows.  There are n jobs 
which belongs to one of the agents AG0 or AG1.  For each  
job j, there is a normal processing time pj, a due date dj, and  
an agent code Ij, where Ij = 0 if Jj ∈ AG0 or Ij = 1 if Jj ∈ AG1.  
All the jobs are available at time zero.  Under a schedule S,  
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let Cj(S) be the completion time of job j, Tj(S) = max{0,  
Cj(S) – dj} be the tardiness of Jj and Uj(S) = 1 if Tj(S) > 0,  
and zero otherwise.  The objective of this paper is to find an 

optimal schedule to minimize 1 ( )(1 ) 0n
j j jT S I= − =∑ subject  

to 1 ( ) 0.n
j j jU S I= =∑  

III. BRANCH-AND-BOUND ALGORITHM 

The classical single-machine total tardiness problem 
without agents was proved to be NP-hard.  Thus, our problem 
is also NP-hard.  Moreover, no relative computational results 
from the algorithm viewpoints for the problem have been 
reported.  Thus, we will attempt to use the branch-and-bound 
technique and a genetic algorithm to search for the optimal 
solution and near optimal solution, respectively. 

Below we will develop the branch-and-bound technique 
incorporating with some dominance rules to help searching  
for the optimal solution.  Below are some adjacent properties. 

1. Dominance Properties 

In this subsection, some adjacent dominance rules are first 
derived by using the pairwise interchange method.  Let S1  
and S2 denote two given job schedules in which the differ- 
ence between S1 and S2 is a pairwise interchange of two ad-
jacent jobs i and j.  That is, S1 = (σ, i, j, σ ′) and S2 = (σ, j, i, σ ′), 
where σ and σ ′ each denote a partial sequence.  In addition,  
let t be the completion time of the last job in σ. 

 
Property 1. If jobs i, j ∈ AG0, pi < pj, and t > max{di – pi, dj – 
pj}, then S1 dominates S2. 

 
Proof: From t > max{di – pi, dj – pj}, we have 

 1( )i i iT S t p d= + − , (1) 

 1( )j i j jT S t p p d= + + − . (2) 

 2( )j j jT S t p d= + − , (3) 

and 

 2( )i j i iT S t p p d= + + − , (4) 

From Eqs. (1)-(4), and pi < pj, we have  

2 2 1 1[ ( ) ( )] [ ( ) ( )] [2 ] [2 ] 0j i i j j i i jT S T S T S T S p p p p+ − + = + − + >  

and 

 1 2( ) ( )j iC S C S= . 

Therefore, S1 dominates S2.  The proof is completed. 

Property 2. If job i ∈ AG0, job j ∈ AG1, t + pi < di < t +  
pi + pj, and t + pi + pj < dj, then S1 dominates S2. 
 
Proof: From job i ∈ AG0, job j ∈ AG1, and t + pi < di < t + pi + 
pj, it imply that Ti(S1) = 0 and Ti(S2) = t + pi + pj – di.  Mean-
while, because t + pi + pj < dj, we have Tj(S1) = 0.  Therefore, 
we have [Tj(S2) + Ti(S2)] > [Ti(S1) + Tj(S1)]. 
 
Property 3. If job i ∈ AG0, job j ∈ AG1, t + pi < di and t + pi +  
pj < dj, then S1 dominates S2. 
 
Proof: From job i ∈ AG0, job j ∈ AG1, and t + pi > di, it  
imply that job i is tardy in S1 and S2.  Ti(S1) = t + pi – di and 
Ti(S2) = t + pi + pj – di.  Meanwhile, because t + pi + pj < dj, we 
have Tj(S1) = 0 and Tj(S2) = 0.  Therefore, we have [Tj(S2) + 
Ti(S2)] > [Ti(S1) + Tj(S1)]. 

 
Next, we give a proposition to determine the feasibility  

of the partial schedule.  Let (π, π c) be a sequence of jobs 
where π is the scheduled part with k jobs and π c is the  
unscheduled part with (n-k) jobs.  Among the unscheduled 

jobs, let (1) min{ }
c

j
j

J
p p

π∈
=  and 

1

1
(1) min { }

c
j

j
J AG

d d
π∈ ∩

= .  Moreover, 

let C[k] be the completion times of the last job in π.  Also, let  
π′ and π″ denote the unscheduled jobs in AG0 arranged in  
the weighted smallest processing times (SPT) order and the 
unscheduled jobs in AG1 arranged in the earliest due date rule 
(EDD) order, respectively. 

 
Property 4. If all the unscheduled jobs belong to AG0 and 

[ ] max { }ck jj
C dπ∈

≥ , then schedule (π, π c) is dominated by 

schedule (π, π ′). 
 

Proof: Since [ ] max { }ck jj
C dπ∈

≥ , all the unscheduled jobs are 

from AG0 and tardy.  So the SPT rule yields an optimal sub- 
schedule. 
 
Property 5.  If all the unscheduled jobs belong to AG1 and  
no tardy job can be found in schedule (π, π ″), then schedule  
(π, π c) is dominated by schedule (π, π ″). 
 
Proof: Similar to Property 4. 
 

Property 6.  If 1
[ ] (1) (1)kC p d+ > , then (π, π c) is not a feasible 

sequence. 
 

Proof: Since 1
[ ] (1) (1) 0kC p d+ − > , one job of AG1 among the 

unscheduled jobs must be tardy.  So (π, π c) is not a feasible 
solution. 

2. A Lower Bound 

A simple lower bound of the partial sequence will be de-
veloped in the following.  Assume that π is a partial schedule 
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in which the order of the first k jobs is determined and let π c  
be the unscheduled part with (n-k) jobs.  Among the un-
scheduled jobs, there are n0 jobs from agent AG0 and n1  
jobs from agent AG1.  Moreover, let C[k] denote the com- 
pletion times of the kth job in π.  The completion time for the 
(k+j)th job is 

 [ ] [ ] ( ) 0
1

, for 1
j

k j k k i
i

C C p j n+ +
=

≥ + ≤ ≤∑  

Then a lower bound can be obtained as follows 

 

0 0

1 1

1

( ) ( )1 1

( )(1 ) ( )(1 )

( ( ) ( ))(1 )

( )

n n

j j j jj j

n

j j jj

n n

j jj j

T S I L S I

C S d S I

C S d LB

= =

=

= =

− ≥ −

= − −

= − =

∑ ∑

∑

∑ ∑

 

IV. GENETIC ALGORITHM 

The branch-and-bound becomes very time consuming 
when the job size is getting larger.  Meanwhile, a heuristic 
algorithm can supply time-saving approximate solution with 
small margin of error.  Thus, we adopted three genetic algo-
rithms (GAs) for near-optimal solution.  

Genetic algorithms (GAs) are intelligent random search 
strategies which have been successfully applied to find near- 
optimal solutions of many complex problems [5-6, 16].  A ge- 
netic algorithm starts with a set of feasible solutions (popula-
tion) and iteratively replaces the current population by a new 
population.  It requires a suitable encoding for the problem and 
a fitness function that represents a measure of the quality of 
each encoded solution (chromosome or individual).  The re-
production mechanism selects the parents and recombines 
them using a crossover operator to generate offsprings that are 
submitted to a mutation operator in order to alter them locally 
[12].  The procedures of the GA applied to solve the proposed 
problem were summarized in the following. 

 
Representation of structure- In this study we adopt the 
method proposed by Etiler et al. [13] that a structure can be 
described as a sequence of the jobs in the problem. 
 
Initial population- We randomly generate the initial popula-
tion based on Bean [4].  In order to arrive at the final solution 
more quickly, three improvement techniques are applied in 
initial sequences.  There are including pairwise interchange, 
backward-shifted reinsertion, and forward-shifted reinsertion 
[11].  In GA1, initial sequences are improved by pairwise  
interchange.  While in GA2, initial sequences are improved  
by forward-shifted reinsertion.  In GA3, initial sequences are 
adopted by backward-shifted reinsertion. 
 
Population size- The population size plays an important role 

in the computational process of GA.  In a preliminary trial, the 
population size N is set at 40 in our computational experiment. 
 
Fitness function- Following Iyer and Saxena [17], the fitness 
function assigns to each member of the population a value 
reflecting their relative superiority or inferiority.  Our objec-
tive is to minimize the total tardiness.  The fitness function of 
the strings can be calculated as follows: 

 1
1 1

( ( )) max ( ( )) ( ( ))
n n

i l N j l j i
j j

f S v T S v T S v≤ ≤
= =

  = − 
  
∑ ∑ , 

where Si(v) is the ith string chromosome in the v-th genera- 

tion, 
1

( ( ))
n

j i
j

T S v
=
∑  is the total tardiness of Si(v), and f(Si(v))  

is the fitness function of Si(v).  Therefore, the probability, 
P(Si(v)), of selection for a schedule is to ensure that the 
probability of selection for a sequence with lower value of the 
objective function is higher.  Here P(Si(v)) can be calculated as 
follows: 

 
1

( ( )) ( ( )) / ( ( ))
N

i i l
l

P S v f S v f S v
=

= ∑ . 

This is also the criterion used for the selection of parents for 
the reproduction of children. 

 
Crossover- This study adopts linear order crossover (LOX) 
method which is developed by Falkenauer and Bouffouix [14].  
In a pilot study, in order to protect the best schedule which  
has the minimum total tardiness at each generation, we trans-
fer this schedule to the next population with no change.  This 
operation enables us to choose the higher crossover with the 
crossover rate Pc = 100%. 
 
Mutation- In this study, the mutation rates (Pm) are set at 0.3 
based on our preliminary experiment. 
 
Selection- It is a procedure to select offspring from parents to 
the next generation.  In our study, the population sizes are 
fixed at 40 from generation to generation.  Excluding the best 
10% schedule which has the minimum total tardiness, the rest 
90% of the offsprings are generated from the parent chromo-
somes by the roulette wheel method. 
 
Termination- The proposed GA’s are terminated after 500 
generations or the objective with zero in our preliminary ex-
periment. 

V. COMPUTATIONAL EXPERIMENT 

A computational experiment was conducted to test the 
branch-and-bound algorithm and proposed genetic algorithms.   
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Table 1.  Performance of the branch-and-bound and GA algorithms (n = 10, 12, 14). 

branch-and-bound algorithm GA1 GA2 GA3 GA* 
valid CPU time number of nodes error percentages n τ R 

sample size mean std mean std mean std mean std mean std mean std 
10 0.25 0.25 50 4.6 0.9 785914 171846 0.02 0.12 0.00 0.00 0.49 3.11 0.00 0.00 

  0.50 50 2.9 1.4 483862 253246 0.09 0.66 0.00 0.00 0.09 0.66 0.00 0.00 
  0.75 50 0.4 0.7 69607 114075 0.43 1.74 0.17 1.19 0.31 1.52 0.17 1.19 
 0.50 0.25 50 0.8 0.2 136659 34564 0.03 0.24 0.00 0.00 0.00 0.00 0.00 0.00 
  0.50 50 0.7 0.3 120369 58854 0.68 4.81 0.78 4.84 0.09 0.62 0.00 0.00 
  0.75 50 0.5 0.5 89639 80064 0.29 2.02 0.03 0.23 0.04 0.19 0.00 0.00 

Average 1.7 0.7 281008 118775 0.26 1.60 0.16 1.04 0.17 1.02 0.03 0.20 
12 0.25 0.25 50 519.8 91.1 64757081 11917319 0.00 0.00 1.33 7.76 0.37 2.00 0.00 0.00 

  0.50 50 270.2 136.4 33403302 17547217 0.01 0.07 1.00 6.99 0.03 0.14 0.00 0.00 
  0.75 50 44.2 68.9 5424919 8514648 5.99 35.73 0.09 0.65 0.23 1.13 0.09 0.65 
 0.50 0.25 50 60.6 19.6 7258565 2358229 0.29 1.86 0.00 0.00 0.05 0.33 0.00 0.00 
  0.50 50 49.1 24.6 5925444 3015943 0.24 1.26 0.15 0.52 0.56 2.86 0.00 0.00 
  0.75 50 29.5 24.6 3556758 3000702 0.35 1.40 0.35 1.90 0.30 1.37 0.00 0.00 

Average 162.3 60.9 20054345 7725676 1.15 6.72 0.49 2.97 0.25 1.30 0.02 0.11 
14 0.25 0.25   0 - - - - - - - - - -   

  0.50   5 5541.0 5297.7 447631420 427969908 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
  0.75 44 1034.3 2533.8 85038885 209388961 489.26 3241.15 0.62 4.11 0.00 0.00 0.00 0.00 
 0.50 0.25 50 5052.6 2019.8 440447020 179742131 0.05 0.25 0.10 0.45 0.01 0.04 0.01 0.04 
  0.50 49 4292.1 2391.4 380001168 216586322 1.07 3.82 0.91 2.46 1.29 5.80 0.05 0.36 
  0.75 49 2037.4 1639.4 178910871 146033731 1.11 7.62 0.60 1.64 1.71 7.72 0.02 0.10 

Average 3591.5 2776.4 306405873 235944211 98.30 650.57 0.44 1.73 0.60 2.71 0.01 0.10 

 
 

The algorithms were coded in Fortran and run on Compaq 
Visual Fortran version 6.6 on a Intel(R) Core(TM)2 Quad 
CPU 2.66 GHz with 4 GB RAM on Windows XP.  The ex-
perimental design follows Fisher’s [16] framework.  The job 
processing times were generated from a uniform distribution 
over the integers between 1 and 100.  The due dates were 
generated from a uniform distribution over the range of inte-
gers T(1 − τ − R/2) to T(1 − τ + R/2), where τ is the tardi- 
ness factor, R is the due date range, and T is the sum of the 

processing times of all the jobs, i.e., 
1

.
n

i
i

T p
=

=∑   The combi-

nation of (τ, R) took the values (0.25, 0.25), (0.25, 0.5),  
(0.25, 0.75), (0.5, 0.25), (0.5, 0.5), and (0.5, 0.75). 

For the branch-and-bound algorithm, the average and 
standard deviation numbers of nodes as well as the average 
and standard deviation execution times (in seconds) were 
recorded.  For the three genetic algorithms, the mean and 
standard deviation error percentages were recorded, where  
the error percentage was calculated as  

 ( ) / *100%iGA OP OP− , 

where GAi is the total tardiness obtained from the genetic 
algorithm and OP is the total tardiness of the optimal schedule.  
The computational times of the heuristic algorithms were not 
recorded since they were finished within a second. 

The computational experiment consisted of small job num- 

bers and big job numbers.  In the first part of the experiment 
with small job numbers, three job sizes (n = 10, 12 and 14) 
were examined in the branch-and-bound algorithm.  The same 
sets of instances were used to test the performance of the 
branch-and-bound and the genetic heuristic algorithms.  As a 
consequence, 18 experimental situations were tested.  A set of 
50 instances were randomly tested for each case.  Moreover, 
the algorithms were set to skip to the next set of data if the 
number of nodes exceeded 109.  The instances with number of 
nodes less than 109 were denoted as solvable instances (valid 
sample size).  The results are presented in Table 1. 

As shown in Fig. 1 and Table 1, it indicated that the num- 
ber of nodes in the instances is getting larger as the number of 
jobs increases.  The instances with a bigger value of τ (τ  = 0.5) 
is easily to solve than those with a smaller value of τ (τ  = 0.25).  
The performance of R also has the same situation.  For ex-
ample, the instances with a bigger value of R (R = 0.75) is 
easily to solve than those with a smaller value of R (R = 0.25, 
0.5).  It can be observed in Table 1 that fixed n = 14, the most 
difficult case occurs at (τ, R) = (0.25, 0.25) where no instance 
can be solved out. 

As to the performance of the proposed GA algorithms, out 
of the 18 cases, the performances of proposed genetic heu- 
ristics were not affected as the values of τ or R varied.  Most  
of the mean error percentages of GA1, GA2, and GA3 were  
less than 2% or below, except one case at (τ, R) = (0.25, 0.75) 
in GA1 has a bigger mean error percentage.  However, the 
situation was disappeared when we further combined three  
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Table 2.  RDP of heuristic algorithms (n = 60, 80, 100). 

GA1 GA2 GA3 

CPU time RDP CPU time RDP CPU time RDP n τ R 

mean std mean std mean std mean std mean std mean std 

60 0.25 0.25 0.09 0.01 0.86 2.76 0.08 0.01 10.77 9.18 0.08 0.01 7.27 9.22 

  0.50 0.09 0.01 3.49 14.49 0.08 0.01 115.71 259.07 0.09 0.01 125.68 296.91 

  0.75 0.08 0.01 0.00 0.00 0.09 0.01 4978.00 22320.87 0.08 0.01 3696.00 14394.23 

 0.50 0.25 0.09 0.01 0.04 0.24 0.09 0.01 5.90 4.28 0.09 0.01 4.79 3.14 

  0.50 0.09 0.01 0.01 0.06 0.09 0.01 12.35 8.24 0.09 0.01 12.40 7.70 

  0.75 0.09 0.01 0.24 1.64 0.09 0.01 23.32 18.47 0.09 0.01 25.46 20.50 

Average 0.09 0.01 0.77 3.20 0.09 0.01 857.67 3770.02 0.09 0.01 645.27 2455.28 

80 0.25 0.25 0.12 0.01 0.80 2.91 0.12 0.01 7.91 6.01 0.12 0.01 7.82 5.99 

  0.50 0.11 0.01 7.24 27.64 0.11 0.01 654.20 2161.53 0.11 0.01 220.52 443.90 

  0.75 0.11 0.01 0.00 0.00 0.11 0.00 946.00 4787.28 0.11 0.01 3808.00 24982.86 

 0.50 0.25 0.12 0.01 0.03 0.23 0.13 0.01 6.52 3.26 0.13 0.01 7.24 3.78 

  0.50 0.12 0.01 0.04 0.28 0.13 0.01 18.21 9.42 0.13 0.01 17.87 9.99 

  0.75 0.13 0.01 0.00 0.00 0.13 0.01 36.00 21.58 0.13 0.01 42.74 20.76 

Average 0.12 0.01 1.35 5.18 0.12 0.01 278.14 1164.85 0.12 0.01 684.03 4244.55 

100 0.25 0.25 0.15 0.01 0.07 0.51 0.17 0.02 13.36 6.06 0.16 0.01 12.41 7.31 

  0.50 0.14 0.01 1.29 5.54 0.14 0.02 575.99 2032.50 0.15 0.01 1556.42 6256.08 

  0.75 0.14 0.01 0.00 0.00 0.14 0.01 882.00 5714.77 0.14 0.01 7096.00 27727.35 

 0.50 0.25 0.16 0.01 0.03 0.22 0.20 0.02 8.47 4.91 0.19 0.01 8.19 4.00 

  0.50 0.17 0.02 0.00 0.00 0.19 0.02 20.40 9.35 0.19 0.01 20.61 8.72 

  0.75 0.18 0.02 0.00 0.00 0.19 0.02 46.23 25.67 0.18 0.01 46.40 19.09 

Average 0.15 0.01 0.23 1.05 0.17 0.01 257.74 1298.87 0.17 0.01 1456.67 5670.43 
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Fig. 1.  Performance of the branch-and-bound algorithms (n = 12). 

 
 

proposed three GAs into GA* in which (GA* = min{GAi, i = 1, 
2, 3}.  Table 1 further indicated that the mean error percent-
ages of GA* were reduced to 0.2% or below no matter that the 
values of τ or R varied. 

In the second part of the experiment for large job-sized 
problems, the proposed heuristic algorithms were tested with 
three different numbers of jobs at n = 60, 80, and 100.  The 
mean execution time and the mean relative deviance percent- 
age were recorded for each heuristic.  The relative deviance 
percentage (RDP) was given by 
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Fig. 2.  Performance of the GA1~3 algorithms (n = 12). 

 

 * *( ) / 100%iGA GA GA− ∗ , 

where GAi is the value of the objective function generated  
by the ith heuristic, and GA* = min{GAi, i = 2, 3} is the 
smallest value of the objective function obtained from the 
heuristics.  The results are summarized in Table 2. 

As shown in Fig. 3 and Table 2, it was observed that  
the mean RDP of GA1 is lower than those of GA2 and GA3.  
The overall mean RDP of GA1 was less than 2%.  However, 
there is no absolutely dominance between the performances  
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Fig. 3.  Performance of the GA1~3 algorithms (n = 60, 80, 100). 

 
 
of the first three genetic algorithms.  Thus, it is recommended  
to use the GA* algorithm since it has both accuracy and the 
smallest RDP. 

VI. CONCLUSIONS 

This paper studied a single-machine two-agent scheduling 
problem here the objective is to minimize the total tardiness of 
the first agent with the constraint that no tardy job is allowed 
for the second agent.  The contributions of this paper were; 
Firstly, a branch-and-bound algorithm incorporating with 
several dominances and a lower bound was proposed to derive 
an optimal solution, and then three genetic algorithms were 
provided for near-optimal solution.  Finally, the impacts of the 
relative parameters about proposed problem were tested and 
reported. 

The computational results also showed that with the help of 
the proposed heuristic initial solution, the branch-and-bound 
algorithm can solve the instances up to n = 14.  Moreover, the 
computational experiments also showed that the proposed 
GA* algorithm performed quite well in terms of accuracy and 
the smallest RDP. 
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