
Volume 21 Issue 2 Article 14

AN EXACT AND META-HEURISTIC APPROACH FOR TWO-AGENT SINGLE-AN EXACT AND META-HEURISTIC APPROACH FOR TWO-AGENT SINGLE-
MACHINE SCHEDULING PROBLEM MACHINE SCHEDULING PROBLEM

Wen-Hung Wu
Department of Business Administration, Kang-Ning Junior College of Medical Care and Management, Taipei, Taiwan,
R.O.C., wu410226@knjc.edu.tw

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal

 Part of the Business Commons

Recommended Citation Recommended Citation
Wu, Wen-Hung (2013) "AN EXACT AND META-HEURISTIC APPROACH FOR TWO-AGENT SINGLE-MACHINE
SCHEDULING PROBLEM," Journal of Marine Science and Technology: Vol. 21: Iss. 2, Article 14.
DOI: 10.6119/JMST-013-0128-1
Available at: https://jmstt.ntou.edu.tw/journal/vol21/iss2/14

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and
Technology.

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol21
https://jmstt.ntou.edu.tw/journal/vol21/iss2
https://jmstt.ntou.edu.tw/journal/vol21/iss2/14
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol21%2Fiss2%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/622?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol21%2Fiss2%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol21/iss2/14?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol21%2Fiss2%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages

AN EXACT AND META-HEURISTIC APPROACH FOR TWO-AGENT SINGLE-AN EXACT AND META-HEURISTIC APPROACH FOR TWO-AGENT SINGLE-
MACHINE SCHEDULING PROBLEM MACHINE SCHEDULING PROBLEM

Acknowledgements Acknowledgements
We are grateful to the Editor and two anonymous referees for their constructive comments on the
previous version of our paper.

This research article is available in Journal of Marine Science and Technology: https://jmstt.ntou.edu.tw/journal/
vol21/iss2/14

https://jmstt.ntou.edu.tw/journal/vol21/iss2/14
https://jmstt.ntou.edu.tw/journal/vol21/iss2/14

Journal of Marine Science and Technology, Vol. 21, No. 2, pp. 215-221 (2013) 215
DOI: 10.6119/JMST-013-0128-1

AN EXACT AND META-HEURISTIC APPROACH
FOR TWO-AGENT SINGLE-MACHINE

SCHEDULING PROBLEM

Wen-Hung Wu

Key words: scheduling, single-machine, two-agent, genetic algorithm.

ABSTRACT

In many real-life applications, it can be often found that
multiple agents compete on the usage of a common processing
resource in different application environments and different
methodological fields, such as artificial intelligence, decision
theory, operations research, etc. Moreover, scheduling with
multiple agents is relatively unexplored. Based on this ob-
servation, this paper attempts to study a single-machine
scheduling problem where the objective is to minimize the
total tardiness of the first agent with the constraint that no
tardy job is allowed for the second agent. In this study, we
provide a branch-and-bound algorithm and a genetic algorithm
for the optimal and near-optimal solutions. We also report a
computational experiment to evaluate the impact of the pa-
rameters involving with proposed problem simulation settings.

I. INTRODUCTION

Scheduling with multiple agents has received growing at-
tention in recently years. Agnetis et al. [1] and Baker and
Smith [3] were independently the first authors to introduce
the concept of multi-agent into scheduling problems. Yuan
et al. [30] addressed two dynamic programming recursions
in Baker and Smith [3] and developed a polynomial-time
algorithm for the same problem. Cheng et al. [9] considered
the feasibility model of multi-agent scheduling on a single
machine where each agent’s objective function is to minimize
the total weighted number of tardy jobs. Ng et al. [23] studied
a two-agent scheduling problem on a single machine, where
the objective is to minimize the total completion time of the
first agent with the restriction that the number of tardy jobs
of the second agent cannot exceed a given number. Agnetis

et al. [2] considered the scheduling problems when several
agents, each owning a set of non-preemptive jobs, compete to
perform their respective jobs on one shared processing re-
source. Each agent wants to minimize a certain cost function,
which depends on the completion times of its jobs only.
Cheng et al. [9] studied multi-agent scheduling on a single
machine where the objective functions of the agents are of
the max-form. Lee et al. [18] considered a multi-agent sched-
uling problem on a single machine in which each agent is
responsible for his own set of jobs and wishes to minimize
the total weighted completion time of his own set of jobs.
Besides, for more multiple-agent works with time-dependent,
we refer readers to Liu and Tang, Cheng et al., Wan et al.,
Liu et al., Wu et al., Mor and Mosheiov, Nong et al., and Yin
et al., etc. [7, 10, 19-22, 24, 26-29]. For more recent sched-
uling problems faced by the manufacturing industry, but are
from the same agent, the reader can refer to Hsu et al. [16],
Shyr and Lee [25].

Due to the importance of multiple agents competing on
the usage of a common processing resource in different ap-
plication environments and different methodological fields,
we studied two-agent scheduling on a single machine. The
objective is to minimize the total tardiness of the jobs of
the first agent with the restriction that no tardy job is allowed
for the second agent.

The remainder of this paper is organized as follows: In
Section II, the problem statement is given. In Section III,
some dominance properties and a lower bound are pre-
sented. In Section IV, the details of three genetic algorithms
are described. In Section V, the extensive computational ex-
periments to assess the performance of all of the proposed
algorithms are reported. The conclusion is given in the last
section.

II. PROBLEM FORMULATION

The problem is described as follows. There are n jobs
which belongs to one of the agents AG0 or AG1. For each
job j, there is a normal processing time pj, a due date dj, and
an agent code Ij, where Ij = 0 if Jj ∈ AG0 or Ij = 1 if Jj ∈ AG1.
All the jobs are available at time zero. Under a schedule S,

Paper submitted 06/08/12; revised 12/11/12; accepted 01/28/13. Author for
correspondence: Wen-Hung Wu (e-mail: wu410226@knjc.edu.tw).
Department of Business Administration, Kang-Ning Junior College of Medi-
cal Care and Management, Taipei, Taiwan, R.O.C.

216 Journal of Marine Science and Technology, Vol. 21, No. 2 (2013)

let Cj(S) be the completion time of job j, Tj(S) = max{0,
Cj(S) – dj} be the tardiness of Jj and Uj(S) = 1 if Tj(S) > 0,
and zero otherwise. The objective of this paper is to find an

optimal schedule to minimize 1 ()(1) 0n
j j jT S I= − =∑ subject

to 1 () 0.n
j j jU S I= =∑

III. BRANCH-AND-BOUND ALGORITHM

The classical single-machine total tardiness problem
without agents was proved to be NP-hard. Thus, our problem
is also NP-hard. Moreover, no relative computational results
from the algorithm viewpoints for the problem have been
reported. Thus, we will attempt to use the branch-and-bound
technique and a genetic algorithm to search for the optimal
solution and near optimal solution, respectively.

Below we will develop the branch-and-bound technique
incorporating with some dominance rules to help searching
for the optimal solution. Below are some adjacent properties.

1. Dominance Properties

In this subsection, some adjacent dominance rules are first
derived by using the pairwise interchange method. Let S1
and S2 denote two given job schedules in which the differ-
ence between S1 and S2 is a pairwise interchange of two ad-
jacent jobs i and j. That is, S1 = (σ, i, j, σ ′) and S2 = (σ, j, i, σ ′),
where σ and σ ′ each denote a partial sequence. In addition,
let t be the completion time of the last job in σ.

Property 1. If jobs i, j ∈ AG0, pi < pj, and t > max{di – pi, dj –
pj}, then S1 dominates S2.

Proof: From t > max{di – pi, dj – pj}, we have

 1()i i iT S t p d= + − , (1)

 1()j i j jT S t p p d= + + − . (2)

 2()j j jT S t p d= + − , (3)

and

 2()i j i iT S t p p d= + + − , (4)

From Eqs. (1)-(4), and pi < pj, we have

2 2 1 1[() ()] [() ()] [2] [2] 0j i i j j i i jT S T S T S T S p p p p+ − + = + − + >

and

 1 2() ()j iC S C S= .

Therefore, S1 dominates S2. The proof is completed.

Property 2. If job i ∈ AG0, job j ∈ AG1, t + pi < di < t +
pi + pj, and t + pi + pj < dj, then S1 dominates S2.

Proof: From job i ∈ AG0, job j ∈ AG1, and t + pi < di < t + pi +
pj, it imply that Ti(S1) = 0 and Ti(S2) = t + pi + pj – di. Mean-
while, because t + pi + pj < dj, we have Tj(S1) = 0. Therefore,
we have [Tj(S2) + Ti(S2)] > [Ti(S1) + Tj(S1)].

Property 3. If job i ∈ AG0, job j ∈ AG1, t + pi < di and t + pi +
pj < dj, then S1 dominates S2.

Proof: From job i ∈ AG0, job j ∈ AG1, and t + pi > di, it
imply that job i is tardy in S1 and S2. Ti(S1) = t + pi – di and
Ti(S2) = t + pi + pj – di. Meanwhile, because t + pi + pj < dj, we
have Tj(S1) = 0 and Tj(S2) = 0. Therefore, we have [Tj(S2) +
Ti(S2)] > [Ti(S1) + Tj(S1)].

Next, we give a proposition to determine the feasibility

of the partial schedule. Let (π, π c) be a sequence of jobs
where π is the scheduled part with k jobs and π c is the
unscheduled part with (n-k) jobs. Among the unscheduled

jobs, let (1) min{ }
c

j
j

J
p p

π∈
= and

1

1
(1) min { }

c
j

j
J AG

d d
π∈ ∩

= . Moreover,

let C[k] be the completion times of the last job in π. Also, let
π′ and π″ denote the unscheduled jobs in AG0 arranged in
the weighted smallest processing times (SPT) order and the
unscheduled jobs in AG1 arranged in the earliest due date rule
(EDD) order, respectively.

Property 4. If all the unscheduled jobs belong to AG0 and

[] max { }ck jj
C dπ∈

≥ , then schedule (π, π c) is dominated by

schedule (π, π ′).

Proof: Since [] max { }ck jj
C dπ∈

≥ , all the unscheduled jobs are

from AG0 and tardy. So the SPT rule yields an optimal sub-
schedule.

Property 5. If all the unscheduled jobs belong to AG1 and
no tardy job can be found in schedule (π, π ″), then schedule
(π, π c) is dominated by schedule (π, π ″).

Proof: Similar to Property 4.

Property 6. If 1
[] (1) (1)kC p d+ > , then (π, π c) is not a feasible

sequence.

Proof: Since 1
[] (1) (1) 0kC p d+ − > , one job of AG1 among the

unscheduled jobs must be tardy. So (π, π c) is not a feasible
solution.

2. A Lower Bound

A simple lower bound of the partial sequence will be de-
veloped in the following. Assume that π is a partial schedule

 W.-H. Wu: An Exact and Meta-Heuristic Approach for Two-Agent Single-Machine Scheduling Problem 217

in which the order of the first k jobs is determined and let π c
be the unscheduled part with (n-k) jobs. Among the un-
scheduled jobs, there are n0 jobs from agent AG0 and n1
jobs from agent AG1. Moreover, let C[k] denote the com-
pletion times of the kth job in π. The completion time for the
(k+j)th job is

 [] [] () 0
1

, for 1
j

k j k k i
i

C C p j n+ +
=

≥ + ≤ ≤∑

Then a lower bound can be obtained as follows

0 0

1 1

1

() ()1 1

()(1) ()(1)

(() ())(1)

()

n n

j j j jj j

n

j j jj

n n

j jj j

T S I L S I

C S d S I

C S d LB

= =

=

= =

− ≥ −

= − −

= − =

∑ ∑

∑

∑ ∑

IV. GENETIC ALGORITHM

The branch-and-bound becomes very time consuming
when the job size is getting larger. Meanwhile, a heuristic
algorithm can supply time-saving approximate solution with
small margin of error. Thus, we adopted three genetic algo-
rithms (GAs) for near-optimal solution.

Genetic algorithms (GAs) are intelligent random search
strategies which have been successfully applied to find near-
optimal solutions of many complex problems [5-6, 16]. A ge-
netic algorithm starts with a set of feasible solutions (popula-
tion) and iteratively replaces the current population by a new
population. It requires a suitable encoding for the problem and
a fitness function that represents a measure of the quality of
each encoded solution (chromosome or individual). The re-
production mechanism selects the parents and recombines
them using a crossover operator to generate offsprings that are
submitted to a mutation operator in order to alter them locally
[12]. The procedures of the GA applied to solve the proposed
problem were summarized in the following.

Representation of structure- In this study we adopt the
method proposed by Etiler et al. [13] that a structure can be
described as a sequence of the jobs in the problem.

Initial population- We randomly generate the initial popula-
tion based on Bean [4]. In order to arrive at the final solution
more quickly, three improvement techniques are applied in
initial sequences. There are including pairwise interchange,
backward-shifted reinsertion, and forward-shifted reinsertion
[11]. In GA1, initial sequences are improved by pairwise
interchange. While in GA2, initial sequences are improved
by forward-shifted reinsertion. In GA3, initial sequences are
adopted by backward-shifted reinsertion.

Population size- The population size plays an important role

in the computational process of GA. In a preliminary trial, the
population size N is set at 40 in our computational experiment.

Fitness function- Following Iyer and Saxena [17], the fitness
function assigns to each member of the population a value
reflecting their relative superiority or inferiority. Our objec-
tive is to minimize the total tardiness. The fitness function of
the strings can be calculated as follows:

 1
1 1

(()) max (()) (())
n n

i l N j l j i
j j

f S v T S v T S v≤ ≤
= =

  = − 
  
∑ ∑ ,

where Si(v) is the ith string chromosome in the v-th genera-

tion,
1

(())
n

j i
j

T S v
=
∑ is the total tardiness of Si(v), and f(Si(v))

is the fitness function of Si(v). Therefore, the probability,
P(Si(v)), of selection for a schedule is to ensure that the
probability of selection for a sequence with lower value of the
objective function is higher. Here P(Si(v)) can be calculated as
follows:

1

(()) (()) / (())
N

i i l
l

P S v f S v f S v
=

= ∑ .

This is also the criterion used for the selection of parents for
the reproduction of children.

Crossover- This study adopts linear order crossover (LOX)
method which is developed by Falkenauer and Bouffouix [14].
In a pilot study, in order to protect the best schedule which
has the minimum total tardiness at each generation, we trans-
fer this schedule to the next population with no change. This
operation enables us to choose the higher crossover with the
crossover rate Pc = 100%.

Mutation- In this study, the mutation rates (Pm) are set at 0.3
based on our preliminary experiment.

Selection- It is a procedure to select offspring from parents to
the next generation. In our study, the population sizes are
fixed at 40 from generation to generation. Excluding the best
10% schedule which has the minimum total tardiness, the rest
90% of the offsprings are generated from the parent chromo-
somes by the roulette wheel method.

Termination- The proposed GA’s are terminated after 500
generations or the objective with zero in our preliminary ex-
periment.

V. COMPUTATIONAL EXPERIMENT

A computational experiment was conducted to test the
branch-and-bound algorithm and proposed genetic algorithms.

218 Journal of Marine Science and Technology, Vol. 21, No. 2 (2013)

Table 1. Performance of the branch-and-bound and GA algorithms (n = 10, 12, 14).

branch-and-bound algorithm GA1 GA2 GA3 GA*
valid CPU time number of nodes error percentages n τ R

sample size mean std mean std mean std mean std mean std mean std
10 0.25 0.25 50 4.6 0.9 785914 171846 0.02 0.12 0.00 0.00 0.49 3.11 0.00 0.00

 0.50 50 2.9 1.4 483862 253246 0.09 0.66 0.00 0.00 0.09 0.66 0.00 0.00
 0.75 50 0.4 0.7 69607 114075 0.43 1.74 0.17 1.19 0.31 1.52 0.17 1.19
 0.50 0.25 50 0.8 0.2 136659 34564 0.03 0.24 0.00 0.00 0.00 0.00 0.00 0.00
 0.50 50 0.7 0.3 120369 58854 0.68 4.81 0.78 4.84 0.09 0.62 0.00 0.00
 0.75 50 0.5 0.5 89639 80064 0.29 2.02 0.03 0.23 0.04 0.19 0.00 0.00

Average 1.7 0.7 281008 118775 0.26 1.60 0.16 1.04 0.17 1.02 0.03 0.20
12 0.25 0.25 50 519.8 91.1 64757081 11917319 0.00 0.00 1.33 7.76 0.37 2.00 0.00 0.00

 0.50 50 270.2 136.4 33403302 17547217 0.01 0.07 1.00 6.99 0.03 0.14 0.00 0.00
 0.75 50 44.2 68.9 5424919 8514648 5.99 35.73 0.09 0.65 0.23 1.13 0.09 0.65
 0.50 0.25 50 60.6 19.6 7258565 2358229 0.29 1.86 0.00 0.00 0.05 0.33 0.00 0.00
 0.50 50 49.1 24.6 5925444 3015943 0.24 1.26 0.15 0.52 0.56 2.86 0.00 0.00
 0.75 50 29.5 24.6 3556758 3000702 0.35 1.40 0.35 1.90 0.30 1.37 0.00 0.00

Average 162.3 60.9 20054345 7725676 1.15 6.72 0.49 2.97 0.25 1.30 0.02 0.11
14 0.25 0.25 0 - - - - - - - - - -

 0.50 5 5541.0 5297.7 447631420 427969908 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 0.75 44 1034.3 2533.8 85038885 209388961 489.26 3241.15 0.62 4.11 0.00 0.00 0.00 0.00
 0.50 0.25 50 5052.6 2019.8 440447020 179742131 0.05 0.25 0.10 0.45 0.01 0.04 0.01 0.04
 0.50 49 4292.1 2391.4 380001168 216586322 1.07 3.82 0.91 2.46 1.29 5.80 0.05 0.36
 0.75 49 2037.4 1639.4 178910871 146033731 1.11 7.62 0.60 1.64 1.71 7.72 0.02 0.10

Average 3591.5 2776.4 306405873 235944211 98.30 650.57 0.44 1.73 0.60 2.71 0.01 0.10

The algorithms were coded in Fortran and run on Compaq
Visual Fortran version 6.6 on a Intel(R) Core(TM)2 Quad
CPU 2.66 GHz with 4 GB RAM on Windows XP. The ex-
perimental design follows Fisher’s [16] framework. The job
processing times were generated from a uniform distribution
over the integers between 1 and 100. The due dates were
generated from a uniform distribution over the range of inte-
gers T(1 − τ − R/2) to T(1 − τ + R/2), where τ is the tardi-
ness factor, R is the due date range, and T is the sum of the

processing times of all the jobs, i.e.,
1

.
n

i
i

T p
=

=∑ The combi-

nation of (τ, R) took the values (0.25, 0.25), (0.25, 0.5),
(0.25, 0.75), (0.5, 0.25), (0.5, 0.5), and (0.5, 0.75).

For the branch-and-bound algorithm, the average and
standard deviation numbers of nodes as well as the average
and standard deviation execution times (in seconds) were
recorded. For the three genetic algorithms, the mean and
standard deviation error percentages were recorded, where
the error percentage was calculated as

 () / *100%iGA OP OP− ,

where GAi is the total tardiness obtained from the genetic
algorithm and OP is the total tardiness of the optimal schedule.
The computational times of the heuristic algorithms were not
recorded since they were finished within a second.

The computational experiment consisted of small job num-

bers and big job numbers. In the first part of the experiment
with small job numbers, three job sizes (n = 10, 12 and 14)
were examined in the branch-and-bound algorithm. The same
sets of instances were used to test the performance of the
branch-and-bound and the genetic heuristic algorithms. As a
consequence, 18 experimental situations were tested. A set of
50 instances were randomly tested for each case. Moreover,
the algorithms were set to skip to the next set of data if the
number of nodes exceeded 109. The instances with number of
nodes less than 109 were denoted as solvable instances (valid
sample size). The results are presented in Table 1.

As shown in Fig. 1 and Table 1, it indicated that the num-
ber of nodes in the instances is getting larger as the number of
jobs increases. The instances with a bigger value of τ (τ = 0.5)
is easily to solve than those with a smaller value of τ (τ = 0.25).
The performance of R also has the same situation. For ex-
ample, the instances with a bigger value of R (R = 0.75) is
easily to solve than those with a smaller value of R (R = 0.25,
0.5). It can be observed in Table 1 that fixed n = 14, the most
difficult case occurs at (τ, R) = (0.25, 0.25) where no instance
can be solved out.

As to the performance of the proposed GA algorithms, out
of the 18 cases, the performances of proposed genetic heu-
ristics were not affected as the values of τ or R varied. Most
of the mean error percentages of GA1, GA2, and GA3 were
less than 2% or below, except one case at (τ, R) = (0.25, 0.75)
in GA1 has a bigger mean error percentage. However, the
situation was disappeared when we further combined three

 W.-H. Wu: An Exact and Meta-Heuristic Approach for Two-Agent Single-Machine Scheduling Problem 219

Table 2. RDP of heuristic algorithms (n = 60, 80, 100).

GA1 GA2 GA3

CPU time RDP CPU time RDP CPU time RDP n τ R

mean std mean std mean std mean std mean std mean std

60 0.25 0.25 0.09 0.01 0.86 2.76 0.08 0.01 10.77 9.18 0.08 0.01 7.27 9.22

 0.50 0.09 0.01 3.49 14.49 0.08 0.01 115.71 259.07 0.09 0.01 125.68 296.91

 0.75 0.08 0.01 0.00 0.00 0.09 0.01 4978.00 22320.87 0.08 0.01 3696.00 14394.23

 0.50 0.25 0.09 0.01 0.04 0.24 0.09 0.01 5.90 4.28 0.09 0.01 4.79 3.14

 0.50 0.09 0.01 0.01 0.06 0.09 0.01 12.35 8.24 0.09 0.01 12.40 7.70

 0.75 0.09 0.01 0.24 1.64 0.09 0.01 23.32 18.47 0.09 0.01 25.46 20.50

Average 0.09 0.01 0.77 3.20 0.09 0.01 857.67 3770.02 0.09 0.01 645.27 2455.28

80 0.25 0.25 0.12 0.01 0.80 2.91 0.12 0.01 7.91 6.01 0.12 0.01 7.82 5.99

 0.50 0.11 0.01 7.24 27.64 0.11 0.01 654.20 2161.53 0.11 0.01 220.52 443.90

 0.75 0.11 0.01 0.00 0.00 0.11 0.00 946.00 4787.28 0.11 0.01 3808.00 24982.86

 0.50 0.25 0.12 0.01 0.03 0.23 0.13 0.01 6.52 3.26 0.13 0.01 7.24 3.78

 0.50 0.12 0.01 0.04 0.28 0.13 0.01 18.21 9.42 0.13 0.01 17.87 9.99

 0.75 0.13 0.01 0.00 0.00 0.13 0.01 36.00 21.58 0.13 0.01 42.74 20.76

Average 0.12 0.01 1.35 5.18 0.12 0.01 278.14 1164.85 0.12 0.01 684.03 4244.55

100 0.25 0.25 0.15 0.01 0.07 0.51 0.17 0.02 13.36 6.06 0.16 0.01 12.41 7.31

 0.50 0.14 0.01 1.29 5.54 0.14 0.02 575.99 2032.50 0.15 0.01 1556.42 6256.08

 0.75 0.14 0.01 0.00 0.00 0.14 0.01 882.00 5714.77 0.14 0.01 7096.00 27727.35

 0.50 0.25 0.16 0.01 0.03 0.22 0.20 0.02 8.47 4.91 0.19 0.01 8.19 4.00

 0.50 0.17 0.02 0.00 0.00 0.19 0.02 20.40 9.35 0.19 0.01 20.61 8.72

 0.75 0.18 0.02 0.00 0.00 0.19 0.02 46.23 25.67 0.18 0.01 46.40 19.09

Average 0.15 0.01 0.23 1.05 0.17 0.01 257.74 1298.87 0.17 0.01 1456.67 5670.43

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

A
ve

ra
ge

 n
um

be
r o

f n
od

es

R

τ = 0.25

τ = 0.50

0.750.500.25

Fig. 1. Performance of the branch-and-bound algorithms (n = 12).

proposed three GAs into GA* in which (GA* = min{GAi, i = 1,
2, 3}. Table 1 further indicated that the mean error percent-
ages of GA* were reduced to 0.2% or below no matter that the
values of τ or R varied.

In the second part of the experiment for large job-sized
problems, the proposed heuristic algorithms were tested with
three different numbers of jobs at n = 60, 80, and 100. The
mean execution time and the mean relative deviance percent-
age were recorded for each heuristic. The relative deviance
percentage (RDP) was given by

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

M
ea

n
er

ro
r p

er
ce

nt
ag

es

R

GA1, τ = 0.25

GA1, τ = 0.50

GA2, τ = 0.25

GA2, τ = 0.50

GA3, τ = 0.25

GA3, τ = 0.50

0.750.500.25

Fig. 2. Performance of the GA1~3 algorithms (n = 12).

 * *() / 100%iGA GA GA− ∗ ,

where GAi is the value of the objective function generated
by the ith heuristic, and GA* = min{GAi, i = 2, 3} is the
smallest value of the objective function obtained from the
heuristics. The results are summarized in Table 2.

As shown in Fig. 3 and Table 2, it was observed that
the mean RDP of GA1 is lower than those of GA2 and GA3.
The overall mean RDP of GA1 was less than 2%. However,
there is no absolutely dominance between the performances

220 Journal of Marine Science and Technology, Vol. 21, No. 2 (2013)

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

0.750.500.25

A
ve

ra
ge

 o
f R

PD

R

n = 60, τ = 0.25

n = 60, τ = 0.50

n = 80, τ = 0.25

n = 80, τ = 0.50

n = 100, τ = 0.25

n = 100, τ = 0.50

Fig. 3. Performance of the GA1~3 algorithms (n = 60, 80, 100).

of the first three genetic algorithms. Thus, it is recommended
to use the GA* algorithm since it has both accuracy and the
smallest RDP.

VI. CONCLUSIONS

This paper studied a single-machine two-agent scheduling
problem here the objective is to minimize the total tardiness of
the first agent with the constraint that no tardy job is allowed
for the second agent. The contributions of this paper were;
Firstly, a branch-and-bound algorithm incorporating with
several dominances and a lower bound was proposed to derive
an optimal solution, and then three genetic algorithms were
provided for near-optimal solution. Finally, the impacts of the
relative parameters about proposed problem were tested and
reported.

The computational results also showed that with the help of
the proposed heuristic initial solution, the branch-and-bound
algorithm can solve the instances up to n = 14. Moreover, the
computational experiments also showed that the proposed
GA* algorithm performed quite well in terms of accuracy and
the smallest RDP.

ACKNOWLEDGMENTS

We are grateful to the Editor and two anonymous referees
for their constructive comments on the previous version of our
paper.

REFERENCES

1. Agnetis, A., Mirchandani, P. B., Pacciarelli, D., and Pacifici, A., “Sched-
uling problems with two competing agents,” Operations Research, Vol.
52, pp. 229-242 (2004).

2. Agnetis, A., Pacciarelli, D., and Pacifici, A., “Multi-agent single machine
scheduling,” Annals of Operations Research, Vol. 150, pp. 3-15 (2007).

3. Baker, K. R. and Smith, J. C., “A multiple-criterion model for machine
scheduling,” Journal of Scheduling, Vol. 6, pp. 7-16 (2003).

4. Bean, J. C., “Genetic algorithms and random keys for sequencing and
optimization,” ORSA Journal of Computing, Vol. 6, pp. 154-160 (1994).

5. Beasley, D., Bull, D., and Martin, R. R., “An overview of genetic algo-
rithms, part 1: fundamentals,” Journal of University Computing, Vol. 15,

pp. 58-69 (1993).
6. Chen, J. S., Pan, J. C. H., and Lin, C. M., “A hybrid genetic algorithm for

the reentrant flowshop scheduling problem,” Expert Systems with Ap-
plications, Vol. 34, pp. 570-577 (2008).

7. Cheng, T. C. E., Cheng, S.-R., Wu, W.-H., Hsu, P.-H., and Wu, C.-C., “A
two-agent single-machine scheduling problem with truncated sum-of-
processing-times-based learning considerations,” Computers and Indus-
trial Engineering, Vol. 60, pp. 534-541 (2011).

8. Cheng, T. C. E., Ng, C. T., and Yuan, J. J., “Multi-agent scheduling on a
single machine to minimize total weighted number of tardy jobs,” Theo-
retical Computer Science, Vol. 362, pp. 273-281 (2006).

9. Cheng, T. C. E., Ng, C. T., and Yuan, J. J., “Multi-agent scheduling on a
single machine with max-form criteria,” European Journal of Opera-
tional Research, Vol. 188, pp. 603-609 (2008).

10. Cheng, T. C. E., Wu, W. H., Cheng, S. R., and Wu, C. C., “Two-agent
scheduling with position-based deteriorating jobs and learning effects,”
Applied Mathematics and Computation, Vol. 217, pp. 8804-8824 (2011).

11. Della Croce, F., Narayan, V., and Tadei, R., “The two-machine total
completion time flow shop problem,” European Journal of Operational
Research, Vol. 90, pp. 227-237 (1996).

12. Essafi, I., Matib, Y., and Dauzere-Peres, S., “A genetic local search
algorithm for minimizing total weighted tardiness in the job-shop
scheduling problem,” Computers and Operations Research, Vol. 35, pp.
2599-2616 (2008).

13. Etiler, O., Toklu, B., Atak, M., and Wilson, J., “A generic algorithm for
flow shop scheduling problems,” Journal of Operations Research Society,
Vol. 55, No. 8, pp. 830-835 (2004).

14. Falkenauer, E. and Bouffoix, S., “A genetic algorithm for job shop,”
Proceedings of the 1991 IEEE International Conference on Robotics and
Automation, Vol. 1, pp. 824-829 (1991).

15. Fisher, M. L., “A dual algorithm for the one-machine scheduling prob-
lem,” Mathematical Program, Vol. 11, pp. 229-251 (1971).

16. Hsu, C.-J., Yang, Y.-J., and Yang, D.-L., “Due-date assignment and
optimal maintenance activity scheduling problem with linear deteriorat-
ing jobs,” Journal of Marine Science and Technology, Vol. 19, No. 1, pp.
97-100 (2011).

17. Iyer, S. K. and Saxena, B. S., “Improved genetic algorithm for the per-
mutation flowshop scheduling problem,” Computers and Operations
Research, Vol. 31, pp. 593-606 (2004).

18. Lee, K. B., Choi, B. C., Leung, J. Y. T., and Pinedo, M. L., “Approxima-
tion algorithms for multi-agent scheduling to minimize total weighted
completion time,” Information Processing Letters, Vol. 109, pp. 913-917
(2009).

19. Liu, P. and Tang, L., “Two-agent scheduling with linear deteriorating jobs
on a single machine,” Lecture Notes in Computer Science, Vol. 5092, pp.
642-650 (2008).

20. Liu, P., Yi, N., and Zhou, X., “Two-agent single-machine scheduling
problems under increasing linear deterioration,” Applied Mathematical
Modelling, Vol. 35, No. 5, pp. 2290-2296 (2011).

21. Mor, B. and Mosheiov, G., “Scheduling problems with two competing
agents to minimize minmax and minsum earliness measures,” European
Journal of Operational Research, Vol. 206, pp. 540-546 (2010).

22. Mor, B. and Mosheiov, G., “Single machine batch scheduling with two
competing agents to minimize total flowtime,” European Journal of
Operational Research, Vol. 215, pp. 524-531 (2011).

23. Ng, C. T., Cheng, T. C. E., and Yuan, J. J., “A note on the complexity of
the problem of two-agent scheduling on a single machine,” Journal of
Combinatorial Optimization, Vol. 12, pp. 387-394 (2006).

24. Nong, Q. Q., Cheng, T. C. E., and Ng, C. T., “Two-agent scheduling to
minimize the total cost,” European Journal of Operational Research, Vol.
215, pp. 39-44 (2011).

25. Shyr, O. F. F. and Lee, Y.-L., “Modeling pricing and scheduling strate-
gies for air cargo carriers as non-cooperative games,” Journal of Marine
Science and Technology, Vol. 20, No. 2, pp. 216-222 (2012).

26. Wan, G., Vakati, S. R., Leung, J. Y. T., and Pinedo, M., “Scheduling two
agents with controllable processing times,” European Journal of Opera-

 W.-H. Wu: An Exact and Meta-Heuristic Approach for Two-Agent Single-Machine Scheduling Problem 221

tional Research, Vol. 205, pp. 528-539 (2010).
27. Wu, C. C., Huang, S. K., and Lee, W. C., “Two-agent scheduling with

learning consideration,” Computers & Industrial Engineering, Vol. 61,
No. 4, pp. 1324-1335 (2011).

28. Yin, Y., Cheng, S. R., Cheng, T. C. E., Wu, W. H., and Wu, C. C.,
“Two-agent single-machine scheduling with release times and deadlines,”
International Journal of Shipping and Transport Logistics, Vol. 5, No. 1,

pp. 75-94 (2013).
29. Yin, Y., Wu, W. H., Cheng, S. R., and Wu, C. C., “An investigation on a

two-agent single-machine scheduling problem with unequal release dates,”
Computers & Operations Research, Vol. 39, pp. 3062-3073 (2012).

30. Yuan, J. J., Shang, W. P., and Feng, Q., “A note on the scheduling with
two families of jobs,” Journal of Scheduling, Vol. 8, pp. 537-542 (2005).

	AN EXACT AND META-HEURISTIC APPROACH FOR TWO-AGENT SINGLE-MACHINE SCHEDULING PROBLEM
	Recommended Citation

	AN EXACT AND META-HEURISTIC APPROACH FOR TWO-AGENT SINGLE-MACHINE SCHEDULING PROBLEM
	Acknowledgements

	tmp.1627949883.pdf.m6bZq

