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ABSTRACT 

This paper proposes a passive fuzzy controller design for 
the discrete ship steering system that is represented by the 
Takagi-Sugeno (T-S) fuzzy model with multiplicative noises.  
Applying the Lyapunov theory for guaranteeing mean square 
stability, the sufficient conditions are developed to design  
the fuzzy controller for the T-S fuzzy model with multiplica-
tive noises.  The sufficient conditions derived in this paper 
belong to the Linear Matrix Inequality (LMI) forms which can 
be solved by the convex optimal programming algorithm.  
Besides, the fuzzy controller is carried out by the concept of 
Parallel Distribution Compensator (PDC).  Finally, the simu-
lation results are proposed to show that the strictly input pas-
sivity and mean square stability of the closed-loop system can 
be achieved via the designed fuzzy controller. 

I. INTRODUCTION 

It’s well known that the T-S fuzzy models [2, 6, 8, 9, 11,  
13, 15, 19, 20, 23] have become one of the useful control 
approaches for complex nonlinear systems.  It can provide  
an effective representation of complex nonlinear systems in  
terms of fuzzy sets, described by a set of IF-THEN rules, 
which can locally represent linear input-output relations of 
nonlinear systems.  Moreover, its stability analysis and syn-
thesis issue can be transformed to a LMI problem.  The LMI 
technique [1] has emerged as a powerful design tool in areas 
ranging from control engineering to system identification and 
structural design even in the T-S fuzzy models.  In the point of 
control systems, recasting the stability analysis and controller 

design problems as LMI problems is equivalent to finding 
solutions to the original problems.  In the literature, the con- 
vex optimal programming algorithm is usually used to solve 
the LMI problems [1].  Based on the PDC concept, the re-
casting of stability analysis and design of fuzzy control  
models to LMI problems was first made in [23].  Employing 
the PDC technique, some results have been developed to  
find fuzzy controllers via LMI scheme for the T-S fuzzy 
models [2, 6, 8, 9, 11, 13, 15, 20].  According to the PDC con- 
cept, the passive fuzzy controller design problem is studied in 
this paper for the discrete nonlinear ship steering system.  In 
order to express better performances, the T-S fuzzy model is 
employed in this paper to construct the discrete nonlinear ship 
steering system. 

The passivity property [14, 21, 25, 26] and Lyapunov 
function are usually used to issue stability analysis and syn-
thesis of control systems.  The energy of system can be rep-
resented by states via Lyapunov function and the system input 
energy can be represented by passivity properties.  The 
Lyapunov function plays an important role in the stability 
analysis of nonlinear system described by state-space equa-
tions.  Using the property of passivity, one can integrate the 
stability conditions for controlled systems via the Lyapunov 
theory.  The passivity theory provides a useful concept for 
analyzing the stability of control systems.  Based on the pas-
sivity theory [14, 21, 25, 26], the purpose of this paper is to 
deal with the analysis and synthesis problem for the fuzzy 
controller design of stochastic nonlinear systems which are 
constructed by the T-S fuzzy models with multiplicative  
noises.  For attenuating the disturbance, the passivity theory is 
provided to derive the stability condition for designing the 
fuzzy controller.  Some important applications of passivity 
theory to the control engineering can be referred to [4, 5, 7, 27].  
Through applying the passivity theory, the stability sufficient 
conditions can be derived via the Lyapunov function and can 
be solved by the LMI technique. 

The stability and stabilization problems of stochastic dy-
namic systems have been attracted much attenuation via sto-
chastic differential equation [12] which can be described by 
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Itô’s form and Langevin’s form.  Comparing with the nominal 
differential equation, the stochastic ones appears a multipli-
cative noise term to characterize the stochastic behavior of 
system.  In the term, the noise presents the random motions 
which maybe caused from vibrations, chemical reactions and 
so on.  That means the noises often not only entry additively 
into a physical plant but also influence multiplicatively com-
ponents of the plant.  Based on stochastic differential equa- 
tion, many efforts [10, 17, 28] have been proposed to extend 
the issues from deterministic system to stochastic systems.  
Due to the T-S fuzzy model has been applied to approximate 
the nonlinear system.  Several stability criteria have been de- 
veloped for nonlinear stochastic systems via T-S fuzzy model.  
Specifically, the fuzzy controller design for nonlinear sto-
chastic system was investigated in [3, 16, 24, 29, 30].  Accord- 
ing to the T-S fuzzy model with multiplicative noise, this paper 
intends to develop a fuzzy controller design scheme based on 
LMI technique such that the passivity property of the closed- 
loop system can be achieved.  In order to demonstrate the 
effectiveness and applicability of the proposed fuzzy control 
approach, a discrete nonlinear ship steering system modeled 
by the T-S fuzzy model with multiplicative noise is introduced 
in the numerical example.  By solving the stability conditions 
derived in this paper, a passive fuzzy controller can be ob-
tained to stabilize the discrete nonlinear ship steering system. 

 
Notations: The [ ( )]E Q i  denotes the expected value of ( ).Q i   
The * denotes the transposed elements or matrices for sym-
metric position.  The ( )tr A  denotes the summation of the di-
agonal elements of matrix A.  The I denotes the identity matrix. 

II. SYSTEM DESCRIPTIONS AND PROBLEM 
FORMULATIONS 

Combining linear subsystems, a T-S fuzzy model can be 
constructed by a set of fuzzy IF-THEN rules that is used in  
this paper to deal with the stability analysis and synthesis 
problem of stochastic nonlinear systems.  The i-th fuzzy rule 
of the T-S fuzzy model with multiplicative noises can be de-
scribed as the following form. 

 
Rule i: 
IF x1(k) is Mi1 and x2(k) is Mi2 and … and xp(k) is Mip 
THEN 

( ) ( ) ( ) ( )i i i1 u wx k x k u k w k+ = + +A B B  

( ) ( ) ( )( ) ( )i i iu wx k u k w k kβ+ + +A B B� � �  (1a) 

( ) ( ) ( )i iwy k x k w k= +C D   (1b) 

or 

( ) ( )( ) ( ) ( ) ( ){
r

i i i i
i 1

1 u wx k h x k x k u k w k
=

+ = + +∑ A B B  

( ) ( ) ( )( ) ( )}i i iu wx k u k w k kβ+ + +A B B� � �  (2a) 

 ( ) ( )( ) ( ) ( ){ }
r

i i i
i 1

wy k h x k x k w k
=

= +∑ C D  (2b) 

where ( )( )
( )( )

( )( )

p

ij j
j 1

 i pr

ij j
i 1 j 1

M x k

h x k

M x k

=

= =

=
∏

∑∏
 and ( )( )ij jM x k  is the 

grade of membership function of the xj(k) in Mij, Mij is the 

fuzzy set; p is the premise variable number; Ai, Bui, Bwi, i ,A�  

i ,uB�  i ,wB�  Ci and Dwi are constant matrices with the compati-

ble dimensions, n( ) xx k ∈ℜ  is the state vector, n( ) uu k ∈ℜ  is 

the input vector, r  is the number of fuzzy rules; n( ) yw k ∈ℜ  is 

the external disturbance input vector and the noise β(k) is a 
scalar zero mean Gaussian white noise process with the co-
variance α and α > 0.  The noise β(k) is assumed to satisfy  
the following properties E{β(k)} = 0, E{β(k)β(k)} = α and 
E{x(k)β(k)} = E{u(k)β(k)} = E{w(k)β(k)} = 0. 

Applying the concept of PDC, the fuzzy controller is de-
signed to share the same IF part of the T-S fuzzy model (1).  
Hence, the fuzzy controller can be represented as follows. 

 
Rule i: 
IF x1(k) is Mi1 and x2(k) is Mi2 and … and xp(k) is Mip  
THEN 

 ( ) ( )iu k x k= −F  (3) 

or 

 ( ) ( )( ) ( )( )
r

i i
i 1

u k h x k x k
=

= −∑ F  (4) 

Substituting (4) into (2), the closed-loop T-S fuzzy model 
can be obtained such as 

( )1x k + =  

( )( ) ( )( ) ( ) ( ) ( ){
r r

i j i i j i
i 1 j 1

    u wh x k h x k x k w k
= =

− +∑∑ A B F B  

( ) ( ) ( )( ) ( )}i i j i    u wx k w k kβ+ − +A B F B� � �  

( )( ) ( )( )
r r

i j
i 1 j 1

h x k h x k
= =

=∑∑  

( ) ( ) ( ) ( )( ) ( ){ }ij ij ij ij     w wx k w k x k w k kβ× + + +G B G B� �  (5) 

where  

i i j j j i i i j j j i
ij ij

i j i j
ij ij

, ,
2 2

and .
2 2

u u u u

w w w w
w w

− + − − + −
= =

+ +
= =

A B F A B F A B F A B F
G G

B B B B
B B

� �� �
�

� �
�
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For attenuating external disturbance, the passivity theory 
provides a useful and effective tool to design the controller to 
achieve the energy constraints for the closed-loop systems.  In 
the passivity theory, the supply rate is an important role to 
determine kind of energy change.  In order to constrain the 
disturbance energy, a strict input passivity is chosen in this 
paper.  The strict input passivity can be introduced in the fol-
lowing definition. 

 
Definition 1 

The system (5) with external disturbance w(t) and output  
y(t) is called strictly input passive if there exist a scalar γ > 0 
such that 

 ( ) ( ) ( ) ( )
q q

T T

0 0

2    
k k

k k

E y k w k E w k w kγ
= =

      >   
      
∑ ∑  (6) 

for all kq ≥ 0.  The kq is the terminal time of control and it is 
positive. # 

 
Applying the Definition 1, the following section provides 

sufficient conditions for the T-S fuzzy model with multiplica-
tive noises to be strictly input passive and mean square stable. 

III. FUZZY CONTROLLER DESIGN FOR  
T-S FUZZY MODELS WITH  
MULTIPLICATIVE NOISES  

The fuzzy controller design for T-S fuzzy models with 
multiplicative noises is developed in this section.  The suffi-
cient conditions for guaranteeing the stability and passivity of 
closed-loop T-S fuzzy models are derived based on the 
Lyapunov theory and passivity theory.  According to the T-S 
fuzzy model (5) with multiplicative noises, the stability con-
ditions are derived in the following theorem. 

 
Theorem 1 

If there exists a positive definite matrix P > 0, feedback 
gains Fi and dissipative rate γ  > 0 satisfy the following con-
dition, then the closed-loop T-S fuzzy system (5) is strictly 
input passive and mean square stable.  

 
T
i

T
i i

0
0

* γ
 −

+ < − − 

C
Λ

I D D
 (7) 

where 

T 2 T T 2 T
ij ij ij ij ij wij ij wij

T 2 T
wij wij wij wij*

σ σ
σ

 − + +
=  

+  

G PG P G PG G PB G PB
Λ

B PB B PB

� � � �

� �
 (8) 

Proof: 
Let us choose a Lyapunov function as V(x(k)) = xT(k)Px(k) 

with P > 0.  By evaluating the first forward difference of 

V(x(k)) along the trajectory of (5), one can obtain 

( ){ } { }T T( ) ( 1) ( 1) ( ) ( )E V x k E x k x k x k x k∆ = + + −P P  

( ) ( ){
r r

i j ij wij
i 1 j 1

( ) ( ) ( ) ( )E h x k h x k x k w k
= =

= +

∑∑ G B  

}T

ij wij( ) ( ) ( )x k w k kβ + + G B� �  

{ }ij wij ij wij( ) ( ) ( ) ( ) ( )x k w k x k w k kβ × + + + P G B G B� �  

}T ( ) ( )x k x k− P   (9) 

Obviously, Eq. (9) can be rewritten as follows. 

( )( ){ } ( )( ) ( )( )
r r

i j
i 1 j 1

E V x k E h x k h x k
= =

∆ = 

∑∑  

( )( ) ( )T T 2 T
ij ij ij ijx k x kσ× − +


G PG P G PG� �  

( )( ) ( )T T 2 T
ij wij ij wijx k w kσ+ +G PB G PB� �  

( )( ) ( )T T 2 T
wij ij wij ijw k x kσ+ +B PG B PG��  

( )( ) ( ) }T T 2 T
wij wij wij wijw k w kσ + +


B PB B PB� �  

( ) ( ) ( ) ( )T T T T
ij ij ij wijx k x k x k w k= +G PG G PB  

( ) ( ) ( ) ( )T T T T
wij ij wij wijw k x k w k w k+ +B PG B PB  

( ) ( ) ( ) ( )2 T T 2 T T
ij ij ij wijx k x k x k w kσ σ+ +G PG G PB� � � �  

( ) ( ) ( ) ( )2 T T 2 T T
wij ij wij wijw k x k w k w kσ σ+ +B PG B PB�� � �  

( ) ( )Tx k x k− P   (10) 

Arranging the Eq. (10), one has  

( )( ){ }E V x k∆  

( )( ) ( )( ) ( )
( )

( )
( )

T
r r

i j
i 1 j 1

x t x t
E h x k h x k

w t w t= =

     =     
        

∑∑ Λ  (11) 

where Λ is defined in (8).  Integrating both side of (11) form 0  
to kq with zero initial condition, then one has 

 ( )( ){ } ( )( )
q

0

k

q
k

E V x k E V x k
=

  = ∆ 
  
∑  (12) 
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For nonzero external disturbance, i.e., w(t) ≠ 0, one can 
define a performance function such as 

( ) ( ) ( ) ( )( ) ( )( )T T

0

2
qk

D
k

J E w k w k y k w k V x kγ
=

  ≤ − + 
  
∑  

( ) ( ) ( ) ( ) ( )( )( )T T

0

2
qk

k

E w k w k y k w k V x kγ
=

  = − + ∆ 
  
∑  

( )
0

, ,
qk

k

E L x w k
=

  ≡  
  
∑   (13) 

where 

( ) ( ) ( ) ( ) ( ) ( )( )T T ,  , 2L x w k w k w k y k w k V x kγ= − + ∆  (14) 

Substituting (2b) and (11) into (14), one has  

( ) ( )( ) ( )( )
r r

i j
i 1 j 1

 ,  ,L x w k h x k h x k
= =

≤∑∑  

( )
( )

( )
( )

T
T
i

T
i i

0

*

x k x k

w k w kγ
     −

× +      − −        

C
Λ

I D D
 (15) 

If the condition (7) of Theorem 1 is satisfied, then one can 

deduce that 
T
i

T
i i

0
0

* γ
 −

+ < − − 

C
Λ

I D D
 and L(x, w, k) < 0.  

From (13), the inequality L(x, w, k) < 0 implies 

 0DJ <  (16) 

or  

 ( ) ( ) ( ) ( )T T

0 0

2
q qk k

k k

E y k w k E w k w kγ
= =

      >   
      
∑ ∑  (17) 

for all nonzero external disturbance.  Since (17) is equivalent 
to (6), the system is strictly input passive. 

Next, it is necessary to show that the system is mean square 
stable.  According to (15), if the condition (7) is held, i.e., 

T
i

T
i i

0
0

* γ
 −

+ < − − 

C
Λ

I D D
, thus one has L(x, w, k) < 0.  By 

assuming w(k) = 0, one can find ∆V(x(k)) < 0 from (14) due to 
L(x, w, k) < 0, one has 

 ( )( ){ } 0E V x k∆ <  (18) 

Based on the Lemma 6.1 of [7], one can find that the system 

is mean square stable driven by control law (4) under the case 
of E{∆V(x(k))} < 0.  The proof of this theorem is completed. 

# 
 
The stability condition derived in this theorem cannot be 

calculated by convex optimization algorithm directly.  So, the 
condition of Theorem 1 must be converted into LMI problems 
for finding the solutions of fuzzy controllers.  For this reason, 
the Schur complement [1] is employed to convert the above 
condition into the LMI form in the following theorem. 

 
Theorem 2 

If there exists a positive definite matrix P > 0, feedback 
gains Fi and dissipative rate γ  > 0 satisfy the following con-
ditions, then the T-S fuzzy system (5) is strictly input passive 
and mean square stable. 

 

i

i

T T T
ij ij

T T T
i ij ij*

0
* * 0

* * *

w w

σ
γ σ

 − −
 

− −  < − 
 − 

X XC R R

I D D B B

X

X

�

�

 (19) 

where  

 i i j j j i

2
u u

ij

− + − 
=  
 

A X B Y A X B Y
R  

 i i j j j i

2
u u

ij

 − + −
=  
 
 

A X B Y A X B Y
R

� �� �
�  

1
i i,−= =X P Y F X  (20) 

Proof: 
Using the Schur complement [1], the inequality (19) can be 

written as follows. 

T 1 2 T 1
ij ij ij ij

*

σ− −− + +



X R X R R X R� �

 

i

T 1 T 2 T 1
ij ij i ij ij
T T 1 2 T 1

i ij ij ij ij

0w w

w w w w

σ
γ σ

− −

− −

− +
<

− − + + 

R X B XC R X B

I D D B X B B X B

� �

� �
 (21) 

By setting P = X−1 and Yi = FiX, the inequality (21) can be 
arranged in the following form. 

1 T 1 1 2 1 T 1
ij ij ij ij

*

σ− − − − − − +



P G PG P P P G PG P� �

 

i

i

1 T 1 T 2 1 T
ij ij ij ij

T T 2 T
i ij ij ij ij

0
w w

w w w w

σ
γ σ

− − − − +
 <

− − + + 

P G PB P C P G PB

I D D B PB B PB

� �

� �
 (22) 
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Pre- and post-multiplying the inequality (22) by diag{P, I}, 
one can obtain the following inequality. 

 
T
i

T
i i

0
0

* γ
 −

+ < − − 

C
Λ

I D D
 (23) 

It is easy to find that (23) is equivalent to (7).  One can 
conclude that if the condition (19) of Theorem 2 is satisfied 
then the condition (7) of Theorem 1 is also held.  Thus, if the 
condition (19) is satisfied then the closed-loop T-S fuzzy sys-
tem (5) is strictly input passive and mean square stable. # 

 
Based on the condition of Theorem 2, the feasible solutions 

can be obtained via LMI technique by using MATLAB LMI- 
Toolbox.  And then, the fuzzy controller can be designed via 
PDC technique with state feedback gains.  Hence, the pro-
posed fuzzy controller design for T-S fuzzy models with 
multiplicative noises can be achieved by solving the LMI 
conditions (19).  In the following section, the proposed design 
method is applied to design a passive fuzzy controller for the 
nonlinear ship steering system. 

IV. FUZZY CONTROLLER DESIGN FOR 
DISCRETE NONLINEAR SHIP  

STEERING SYSTEM 

In this section, the proposed technique for T-S fuzzy model 
with multiplicative noise is employed to design the fuzzy 
controller to achieve stability and passivity performances.  In 
the late 1950s, Nomoto has established the response ship 
steering movement mathematical model from control theory’s 
viewpoint [18].  Furthermore, referring to [22], the second 
order Nomoto model in [18] can be simplified into first order 
model.  The simplified Nomoto model can describe the great 
rudder angle ship steering characteristic and express the un-
stable degree of ship.  The Nomoto’s first-order ship steering 
system can be expressed such as 

 ( )T H Kψ ψ δ+ =�� �  (24) 

where  

 ( ) 2 3
0 1 2 3H ψ α α ψ α ψ α ψ= + + +� � � �  (25) 

and α i(i = 0, 1, 2, 3) is the coefficients of Norrbin.  The 
mathematical model (24) describes that the rudder angle δ (s) 
is the system input and the heading angle ψ(s) is the system 
output of dynamic systems.  For ship hull with symmetrical, 
one has α 0 = α 2 = 0.  Besides, α 1 = 1 expresses the ships for 
the heading stabilization, α 1 = −1 expresses the ships for the 
heading instability; and α 3 can be determined by the spiral test 
[22].  Using the characteristics ( )H ψ�  (25) to replace the non- 
linear term ψ�  of (24), the corresponding nonlinear ship motion 
model can be obtained as follows. 

 3
1 3T Kψ α ψ α ψ δ+ + =�� � �  (26) 

Referring to [31], the discrete type of (26) can be obtained 
with simple definition.  Using the same definitions, let define 

( 1)r kψ = +��  and ( )r kψ =� , where ψ is the heading angle.  
Then, one can directly find the discrete model of (26) as fol-
lows. 

 ( ) ( ) ( )3
3 11Tr k r k r k Kα α δ+ + + =  (27) 

where r is the yaw angular velocity.  Selecting δ  = u, x1(k) = ψ 
and x2(k) = r, the Eq. (27) can be rewritten as state space 
equation.  In addition, let us consider the external disturbance 
effect on the ship and stochastic behaviors of system.  Thus, 
the discrete ship steering model (27) can be rewritten with as 
follows.  

( ) ( ) ( ) ( ) ( )( ) ( )1 2 21 0.1 0.033 0.01x k x k w k x k w k kβ+ = + + +  

  (28a) 

( ) ( ) ( )( ) ( )3
2 1 2 3 2

1
1

K
x k x k x k u k

T T
α α−+ = + +  

( ) ( )( ) ( )20.0001 0.00016x k u k kβ+ − +  (28b) 

In this example, it is assumed that the length of the ship is 
126 m, the width of the ship is 20.8 m, the loaded draft is  
8.0 m, square coefficient is 0.681, the ship speed is 7.2 m/s and 
the parameters of state Eq. (28) are given as T = 261.73s,  
K = 0.42s−1, α 1 = 1, α 3 = 30.  In this example, the max angle 
and max change rate of rudder angle have been considered in 
the revised paper.  The working range of max angle is con-
strained between ±90°.  And the max change rate of rudder 
angle is constrained between 2± .  Thus, employing the fuzzy 
modeling technique expressed in [20], the T-S fuzzy model 
with multiplicative noise for the ship steering system (28) can 
be described as follows with three fuzzy rules. 

( ) ( ) ( ) ( ){
3

i i i i
i 1

1 u wx k h x k u k w k
=

+ = + +∑ A B B  

( ) ( ) ( )( ) ( )}i i iu wx k u k w k kβ+ + +A B B� � �  (29a) 

 ( ) ( ) ( ){ }
3

i i i
i 1

wy k h x k w k
=

= +∑ C D  (29b) 

where 

1 3 2

0 1 0 1
, ,

0 0.4623 0 0.0038

   
= = =   − −   

A A A  
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Fig. 1.  The membership function of state x2(k). 
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0
, 1 0 ,
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 
= = = = = = 

 
B B B C C C� � �  

and 

1 2 3 1= = =D D D . 

The membership functions of the T-S fuzzy system are 
presented in Fig. 1.  Through applying the proposed design 
technique, the fuzzy controller can be obtained to guarantee 
the considered system achieving mean square stability and the 
passivity performance.  For starting analyzing and designing, 
one can first select the supply rate γ = 1.1985 and σ = 1.  
Solving the sufficient condition (19) via MATLAB LMI- 
Toolbox, the solution of common positive definite matrix P 
can be obtained as follows. 

 
0.8565 0.0764

0.0764 0.9374

− 
=  − 

P  (30) 

And then the fuzzy controller can be stated as 

 ( ) ( )( ) ( )
3

i i
i 1

u t h x k x k
=

= −∑ F  (31) 

where F1 = [−5.1125  338.9103], F2 = [−5.2045  56.036] and 
F3 = [−5.2048  338.9234]. 

For emphasizing the important as considering the distur-
bance and stochastic behaviors effect on system, the fuzzy 
controller designed by [31] is applied to stabilize the system 
(28).  The fuzzy controller in [31] was designed with nine 
fuzzy rules for system (28) without external disturbance and 
multiplicative noise.  In this example, the external disturbance  
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Fig. 2.  Responses of the state x1(k). 
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Fig. 3.  Responses of the state x2(k).  

 
 

w(k) is chosen as a zero mean white noise with variance 0.1 
and initial condition is chosen as x(0) = [88°  1.4]T.  From the 
simulation results, in Figs. 2 and 3, one can find that both of 
controllers designed by this paper and [31] can stabilize the 
system (28).  The controller in [31] has great robustness in 
stabilizing the system that is caused by nine fuzzy rules.  
However, from [4], the difficulty in stability analysis and 
synthesis of fuzzy model is increasing with raising fuzzy  
rules.  Besides, from the simulation results, the over shoot of 
states in (28) with fuzzy controller designed by [31] are  
bigger than that driven by (31).  Hence, one can find that the 
proposed design technique can provide improvement for pre-
vious works.  And, the discrete nonlinear ship steering system 
(28) can be stabilized by the passive fuzzy controller (31). 

V. CONCLUSIONS 

The attenuation of the external disturbance energy and the 
controller design problems for the discrete T-S fuzzy model 
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with multiplicative noises have been studied in this paper.  For 
attenuation performance, the passivity theory was employed to 
derive stability condition based on the Lyapunov function.  
The stochastic behavior of control system was discussed by 
considering the multiplicative noise term which can be ana-
lyzed in sense of mean square stability.  In order to apply 
convex optimal programming algorithm to solve the prop- 
osed fuzzy controllers, the stability conditions must be con-
verted into the LMI forms.  By solving the derived LMI sta-
bility conditions, the fuzzy controller can be carried out by the 
concept of PDC.  Finally, the simulation results showed that 
the discrete nonlinear ship steering system can be controlled to 
be strictly input passive and mean square stable via the de-
signed fuzzy controllers. 
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