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ABSTRACT 

In this paper, an analytical solution for linear long wave 
reflection by two rectangular breakwaters is explored.  A 
closed-form expression of wave reflection coefficient is ob-
tained which finds two well-known analytical solutions to be 
its special cases, including wave reflection by a rectangular 
breakwater given by Mei in 1989 and wave reflection by an 
infinite step given by Lamb in 1932.  It is found that the  
periodicity of the reflection coefficient as a function of kh 
existed for a single rectangular breakwater disappears for a 
pair of breakwaters, and zero reflection phenomenon mostly 
occurs for symmetrical breakwater structure.  It is also shown 
that the total reflection effect will be enhanced when a new 
breakwater is added into an existing one or when a single 
breakwater is decomposed into a pair of breakwaters even if 
the resulting total sectional area is reduced.  Finally, the in-
fluence of the width of twin breakwaters to the peak Bragg 
reflection is studied. 

I. INTRODUCTION 

The study of the problem of wave field modification by 
abrupt bathymetric changes was originated from analytical 
approaches in the early days [5].  By using the linear long 
wave approximation, Lamb [5] derived the analytical solution 
for the wave reflection and transmission coefficients over an 
infinitely long step.  The recent study [6] showed that Lamb’s 
solution gives a good agreement to the numerical results based 
on the full Navier-Stokes equations even for weakly nonlinear 
dispersive waves, although the transmission coefficient is al- 

ways overestimated in [5] due to the exclusion of the energy 
dissipation.  After the work by Lamb [5], Jeffreys [3] studied  
a rectangular breakwater and found that the reflection coef- 
ficient is periodical to the ratio of the wavelength and the 
breakwater length.  The rectangular breakwater was also 
studied by Mei [9], who gave an analytical solution of the 
wave reflection and transmission coefficients.  The perio- 
dicity of the reflection coefficient [3] and the complete trans-
mission for some lengths of breakwater [11] can be easily 
recovered from Mei’s theoretical formulas. 

For a continuously varying water depth, Kajiura [4] ob-
tained an analytical solution for the case of a continental shelf 
joint with a parabolic slope, Dean [1] considered the case of  
a continental shelf joined with a linear slope (both of them can 
be found in [2]).  In Kajiura’s and Dean’s studies, the water 
depth within the slope region was assumed to satisfy the  
power law. 

Very recently, Lin and Liu [7] and Liu and Lin [8] obtained 
two analytical solutions in closed-form of reflection coeffi-
cients for linear long waves reflected by a breakwater or a 
trench of general trapezoidal shape, respectively.  Their solu-
tions include the analytical solutions of Lamb [5], Mei [9] and 
Dean [1] as special cases. 

It is worth indicating that, all above mentioned analytical 
solutions are restricted in one breakwater or trench only.  In 
this paper, we study the reflection of linear long waves by  
two rectangular breakwaters.  A closed-form solution in terms 
of Bessel functions for reflection coefficient will be given in 
Section 2.  Then in Section 3, two classical analytical solu- 
tions for long wave reflection by one rectangular breakwater 
and by an infinite step respectively are derived by using the 
present solution.  In Section 4, using the present analytical 
solution, the changing trend of the reflection coefficient is 
investigated when a new breakwater is added into an existing 
one or when a single breakwater is decomposed into a pair of 
breakwaters.  Further, the influence of the width of twin 
breakwaters to the peak Bragg reflection is also analyzed. 

II. PROBLEM AND SOLUTION TECHNIQUE 

Consider a linear wave train propagating over two sub- 
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Fig. 1.  A sketch of two submerged rectangular breakwaters. 

 
 

merged rectangular breakwaters and an otherwise flat bot- 
tom.  The water depths in front of and behind the two break-
waters, however, can be different.  See Fig. 1 for a sketch of 
the system considered.  As shown in Fig. 1, the depth h(x) is 
defined as follows 
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where x0 = 0. 
In this paper, we focus on linear long-wave reflection by 

these two submerged rectangular breakwaters and the water 
surface elevation η(x) satisfies the following linear long-wave 
equation: 
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It is clear that Eq. (2) will degenerate into the Helmholtz 
equation in any region with constant water depth and the 
general solution can be expressed as a linear combination of 

two particular solutions iik xe and iik xe− with /i ik ghω= being 

the wave number related to water depth hi, i = 0, 1, 2, 3, 4.  
Hence if we assume that the incident waves come from the  
left, then we can take 
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in which, AI is the amplitude of incident wave, and Ar and At 
represent the complex amplitudes of the reflected waves and 

of the transmitted waves, respectively, which together with  
Ai, i = 1, 2, …, 6, are to be determined. 

The continuity of wave elevations and flow fluxes across 
the common boundaries x = xi, i = 0, 1, 2, 3, requires 

 ,
i ix x x x
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=  (4) 
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Eqs. (4)-(5) are equivalent to the following system 

 1 2 ,r IA A A A− − = −  (6) 

 01 1 2 01 ,r Is A A A s A+ − =  (7) 

 1 1 1 1 2 1 2 1
1 2 3 4 0,ik x ik x ik x ik xe A e A e A e A− −+ − − =  (8) 
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In matrix form, the above system can be written as 
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By solving the system (14), the reflection coefficient 

r IA A can be found to be 

 1 01 2

1 01 2

,r

I

z s zA

A z s z

−= −
+

 (15) 

where 

 ( ) ( )1 12 12cos sin cos sin ,z is P is Qφ φ φ φ= − + − −  (16) 

 ( ) ( )2 12 12cos sin cos sin ,z s i P s i Qφ φ φ φ= + − −   (17) 

with 

 23 34 23 34(1 )(1 ) (1 )(1 ) ,i iP s s e s s eα β−= − + + + −  (18) 

 23 34 23 34(1 )(1 ) (1 )(1 ) ,i iQ s s e s s eα β−= − + + + +  (19) 

 3 2 3 3 2 2 2 1,k x k x k x k xα = − + −  (20) 

 3 2 3 3 2 1 2 2 ,k x k x k x k xβ = − + −  (21) 

 1 1.k xφ =  (22) 

Let λ be the wavelength of the incident waves.  By intro-
ducting the following three variables 

 1
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which represent the wave numbers included in both the 
breakwater regions and in the middle region between the two 
breakwaters, respectively, then we have 

 01 1= 2 ,s Mφ π  (26) 

 ( )01 12 2 23 3= 2 ,s s M s Mα π −  (27) 

 ( )01 12 2 23 3= 2 .s s M s Mβ π− +  (28) 

This means that the reflection coefficient R r IK A A=  de- 

pends entirely on the three relative wave numbers M1, M2  
and M3, and on the four depth ratios s01, s12, s23 and s34 as  
well. 

III. TWO SPECIAL CASES 

In this section, we will show that the analytical solution  
(15) can reduce into two well-known special cases, namely, 
waves past a rectangular breakwater with a finite length [9] 
and a step with an infinite length [5]. 

When h1 = h2 = h3, the obstacle of two breakwaters degen-
erates into a rectangular breakwater only, which was studied 
by Mei in [9].  Since s12 = s23 = 1, we have 
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which coincides with the reflection coefficient given by Mei in 
[9] (see pp. 130-131) for this special case, where carefulness 
must be taken as there is a pen slip in Eq. (4.17). 

 Furthermore, if s01 = 1 or s43 = 1, the above expression can 
further degenerate into 
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which are the reflection coefficients for an infinite step given 
by Lamb in [5]. 
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Fig. 2. The changing trend of KR when the second new breakwater is 

added to an existing one: x1 = 45 m, x2 = 60 m, x3 = 105 m, h0 = h2 = 
h4 = 3 m, h1 = 1 m, and h3 = 0.5, 1.0, 1.5, 2.0, 2.25, 2.5, 3.0 m. 

 

IV. COMPUTATIONAL RESULTS AND 
DISCUSSION 

As stated in the Introduction, wave reflection by a single 
submerged rectangular breakwater has been intensively stud-
ied by Jeffreys [3], Mei [9] and Newman [11].  In this section, 
based on the analytical formula (15), we study the influence of 
the second breakwater to reflection coefficient. 

1. Changing Trend of KR When a New Breakwater Is 
Added 

In this subsection, we investigate the variation of the re-
flection coefficient when a new breakwater is added to an 
existing one. 

At first, we fix x1 = 45 m, x2 = 60 m, x3 = 105 m, h0 = h2 = 
 h4 = 3 m, h1 = 1 m, and let h3 take 0.5 m, 1.0 m, 1.5 m, 2.0 m, 
2.5 m and 3.0 m, respectively.  It is clear that when h3 = 3.0 m, 
the second breakwater will disappear and the structure with  
a pair of rectangular breakwaters degenerates into a single  

one.  For k0h0 varying from 0 to 10,π  computational results 
of reflection coefficient for all six cases calculated by for- 
mula (15) are displayed in Fig. 2(a)-(b). 

It can be seen from Fig. 2(a)-(b) that when h3 = 3.0 m, the 
reflection coefficient KR coincides with the analytical solution 
by Mei [9] which is periodic with respect to k0h0.  However, 
when h3 takes 0.5 m, 1.0 m, 1.5 m, 2.0 m, 2.5 m respec- 
tively, the periodicity of the reflection coefficient cannot be 
observed, this means that the periodicity of the reflection 
coefficient for a single breakwater no longer remains if an-
other new breakwater is added to an existing one, no matter  
the size of the new breakwater is small or big.  In addition,  
the phenomenon of zero reflection coefficient is observed  
only for two cases with h3 = 3.0 m and h3 = 1.0 m in which the 
breakwater structure is symmetrical, which is similar to the 
finding revealed by Xie et al. [12] for a rectangular break- 
water with two scour trenches.  It is also found that as h3  
decreases from 3.0 m to 0.5 m, both the maximal reflection 
coefficient and the total reflection (i.e., the area under the 
reflection coefficient curve) for 0 < k0h0 < π /10 increase since 
the size of the second new breakwater becomes larger and 
larger. 

Secondly, we fix x1 = 30 m, x2 = 60 m, h0 = h2 = h4 = 4 m,  
h1 = h3 = 2 m, and let x3 − x2 take 0 m, 2 m, 4 m, 6 m, 8 m, 10 m, 
15 m, 30 m and 60 m, respectively.  For k0h0 varying from 0  
to π /10, computational results of reflection coefficient for  
all nine cases calculated by formula (15) are displayed in  
Fig. 3(a)-(b) together with Mei’s result [9] for x3 – x2 = 0.  As 
expected, the present analytical model reproduces Mei’s  
results [9] with periodicity of the reflection coefficient.  When 
x3 – x2 takes 2 m, 4 m, 6 m, 8 m, 10 m, 15 m, 30 m and  
60 m, respectively, the periodicity of the reflection coeffi- 
cient does not appear anymore due to the existence of the 
second breakwater.  Again, the phenomenon of zero reflection 
appears only for symmetrical structure with x3 – x2 = 0 m  
and 30 m.  Further, the total reflections for all cases with  
x3 – x2 ≠ 0 exceed the total reflection produced by the single 
breakwater with x3 – x2 = 0.  As x3 – x2 increases from 2 m to  
60 m, the size of the second breakwater becomes larger and 
larger, thus the total reflection becomes more and more 
significant. 

2. Changing Trend of KR When One Breakwater Is  
Divided Into Two 

In this subsection, we investigate the changing trend of  
the reflection coefficient when one breakwater is divided  
into two under the assumption that the total sectional area of 
the composite breakwaters keeps a fixed value. 

Firstly, we fix h0 = h2 = h4 = 4 m, h1 = h3 = 2 m, x3 = 90 m 
and x2 – x1 = 30 m, then let x1 take 0 m, 1 m, 2 m, 3 m, 4 m,  
5 m, 10 m, 15 m, 20 m, 25 m and 30 m, respectively.  The 
condition x2 – x1 = 30 m means that the total sectional area  
of one or two breakwaters keeps the same value 120 m2.   
When x1 = 0, the structure with two breakwaters degener- 
ates into a single breakwater, so the result of the reflection  
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Fig. 3. Influence of the width of the second breakwater to KR: x1 = 30 m, 

x2 = 60 m, h1 = h3 = 2 m, h0 = h2 = h4 = 4 m, and x3 – x2 = 2, 4, 6, 8, 
10, 15, 30, 45, 60 m. 

 
 

coefficient KR by the present model agrees with Mei’s result 
[9], see Fig. 4(a).  For all other cases with x1 = 0 m, i.e., when 
the single rectangular breakwater is divided into two,  
the corresponding total reflection by composite breakwaters 
exceeds the total reflection by the single breakwater, see  
Fig. 4(a)-(b), though the total sectional area of the composite 
breakwaters equals to that of the single breakwater. 

3. Changing Trend of KR When One Breakwater Is  
Excavated Into Two 

In this subsection, we further investigate the changing trend 
of reflection coefficient when one breakwater is decomposed 
into two by excavating some part in the middle of the original 
breakwater. 

We fix x1 = 30 m, x2 = 60 m, x3 = 90 m, h0 = h4 = 4 m,  
h1 = h3 = 2 m, and let h2 take 2.0 m, 2.5 m, 3.0 m and 4.0 m, 
then we obtain four composite breakwaters as shown in  
Fig. 5(a).  Using the analytical formula (15), the reflection 
coefficient for all four cases are calculated and plotted in  
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Fig. 4. Changing trend of KR when one breakwater is divided into two:  

h0 = h2 = h4 = 4 m, h1 = h3 = 2 m, x3 = 90 m, x2 – x1 = 30 m, and x1 = 
0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30 m. 

 
 

Fig. 5(b).  When h2 = 2.0 m, the submerged structure is only a 
single breakwater, the result of the reflection coefficient cal-
culated by the present analytical model coincides with the 
solution by Mei [9].  When h2 = 2.5 m, 3.0 m and 4.0 m, the 
single breakwater has been decomposed into two with some 
part of the original breakwater being excavated, as a result,  
the periodicity of the reflection coefficient for a single break- 
water now disappears.  The phenomenon of zero reflection 
happens in all four cases may due to the symmetricalness of 
the breakwater structure.  It can be seen that not only the 
maximal reflection coefficient but also the total reflection 
produced by each of composite breakwaters has been greatly 
enhanced although the total sectional area of each of com- 
posite breakwaters in all three cases is even less than the sec-
tional area of the original single breakwater. 

4. Influence of Width of Breakwaters to Bragg Resonance 

In this subsection, we always assume that h0 = h2 = h4,  
h1 = h3 and x3 – x2 = x1, then the composite breakwaters  
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Fig. 5. Changing trend of reflection coefficient when one breakwater is 

excavated into two: h0 = h4 = 4 m, h1 = h3 = 2 m, x1 = 30 m, x2 = 60 
m, x3 = 90 m, and h2 = 2.0, 2.5, 3.0, 4.0 m. 

 
 

becomes twin breakwaters with same size which can be re-
garded as an artificial periodic sandbars with the wavelength 
(or distance) being x2.  According to the original Bragg law  
in optics and Miles’ theory [10] for wave Bragg reflection, the 
peak Bragg reflection occurs at 2x2/L being positive integers, 
where L is the wavelength of incident waves.  It is clear that 
the magnitude of the peak Bragg reflection will be affected  
by the width of the twin breakwaters, i.e., x1 or x3 – x2. 

To see the changing trend of the magnitude of the peak 
Bragg reflection against the width of the twin breakwaters, we 
fix h0 = h2 = h4 = 4 m, h1 = h3 = 3 m, k0h0 = 0.2 (i.e., L = 40π), 
then we let x1 and x3 – x2 vary from L/50 to L/2.  By using the 
analytical solution (15), reflection coefficients against L/2x2  
in (0.25, 2.5) for 10 cases with x1 = x3 – x2 ranged from L/50  
to L/2 are calculated and the results are presented in Fig. 
6(a)-(b).  It can be seen that for all 10 cases, as expected, the 
peak Bragg reflections do occur at 2x2/L = 1, 1/2, 1/3 and  
1/4, i.e., 2x2/L = 1, 2, 3 and 4.  When x1 = x3 – x2 = L/50, the 
magnitude of the peak Bragg reflection is 0.0417.  Then as  
the width of the twin breakwaters increases to x1 = x3 – x2 = 
L/4.5, the magnitude of the peak Bragg reflection reaches its 
maximal value 0.28.  As the width of the twin breakwaters 
further increases, the magnitude of the peak Bragg reflection  
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Fig. 6. Changing trend of the peak Bragg reflection: h1 = h3 = 2 m, h0 =  

h2 = h4 = 4 m, k0h0 = 0.2, i.e., L = 40π, x1 = x3 – x2 = L/50, L/40, …, 
L/2. 

 
 

begins to decline.  By the way, because all the twin breakwa-
ters are symmetrical, the phenomenon of zero reflection can be 
always observed. 

V. CONCLUSIONS 

In this paper, the reflection of linear long waves by two 
rectangular breakwaters is studied analytically.  An explicit 
expression of the reflection coefficient in a closed-form is 
obtained.  The new solution is simple but can be reduced into 
two well-known analytical solutions [5] and [9] for special 
cases. 

Based on the present analytical solution, the variation of re- 
flection coefficient is firstly investigated when a new break-
water is added to an existing one.  It is found that, once the 
second breakwater is present, the periodicity of the reflection 
coefficient existing for a single breakwater disappears, and  
the total reflection produced by the composite breakwaters 
exceeds that produced by the single breakwater.  Secondly, the 
changing trend of reflection coefficient is investigated when  
a single breakwater is decomposed into two breakwaters, it is 
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found that the total reflection will be enhanced after the single 
breakwater is decomposed even if the sectional area of the 
resulting composite breakwaters is less than the area of the 
original breakwater.  Finally, by comparing the computing 
results of the peak Bragg reflection, it is found that the width 
of breakwaters will affect the magnitude of the peak Bragg 
reflection. 
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