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ABSTRACT 

The problem of delay-dependent exponential robust stabi-
lization for a class of uncertain saturating actuator systems 
with time-varying delay is investigated.  Novel exponential 
stability and stabilization criteria for the system are derived 
using the Lyapunov-Krasovskii functional combined with 
Leibniz-Newton formula.  The issue of exponential stabiliza-
tion for time-varying delay systems with saturating actua- 
tor using generalized eigenvalue problem (GEVP) approach 
remains open, which motivates this paper.  The designed con-
troller is dependent on the time-delay and its rate of change.  
All the conditions are presented in terms of linear matrix 
inequalities (LMIs), which can solved efficiently by using  
the convex optimization algorithms.  A state feedback con- 
trol law is also given such that the resultant closed-loop sys- 
tem is stable for admissible uncertainties.  Two numerical 
examples are given to demonstrate the efficiency of the ob-
tained results. 

I. INTRODUCTION 

Both time-delay and saturating controls are commonly en- 
countered in various engineering systems and are frequently  
a source of instability.  Time delays are frequently encountered 
in various areas, including physical and chemical processes, 
economics, engineering, communication, networks and bio-
logical systems, etc.  The existence of a time delay is often a 
source of oscillations, instability and poor performance in a 

system.  Many methods to check the stability of time delay 
systems [1-26].  Nearly all physical systems are subject to 
saturation constraints, such as actuator saturation and/or sen-
sor saturation.  It is known that actuator saturation may have 
adverse effects on the performance and stability of a closed- 
loop system if the controller is designed without considering 
this kind of nonlinearity.  Consequently, a great deal of atten-
tion has been focused on the stability analysis and controller 
design for systems with a saturating actuator [3-6, 9, 10, 12- 
15, 17-19, 21, 23-25] and references therein.  Furthermore, the 
problem of the stabilization of uncertain systems with state 
delay has attracted an important amount of interest in recent 
years [4, 8, 10, 11, 15, 17, 18, 20, 21, 23-25].  The problem of 
uncertain systems stabilization with saturating control has 
recently motivated an important effort of research due to its 
practical importance [4, 10, 15, 17, 18, 21, 23-25] and refer-
ences therein.  The use of Lyapunov functionals is certainly 
the main approach for deriving sufficient conditions for as-
ymptotic stability.  In fact, some of the results are indeed 
equivalent to the LMIs formulations in view of the Schur 
complement.  Instead of applying the Lyapunov function, 
properties of comparison theorem and matrix measure with 
model transformation technique are employed to investigate 
the problems [4, 13, 19, 21]. 

Since delay is usually time-varying in many practical sys-
tems, many approaches have been developed to derive the 
delay-dependent stability criteria for saturating actuator sys-
tems with time-varying delays, for example, Razumikhin 
theorem [9, 16, 17], the improved Riccati equation [10, 22, 25], 
integral inequality matrices [12], and the properly chosen 
Lyapunov-Krasovskii functionals [12, 14, 15].  Control satu-
ration constraint comes from the impossibility of actuators to 
drive signal with unlimited amplitude or energy to the plants.  
However, only few works have dealt with stability analysis 
and the stabilization of time-varying systems in the presence 
of actuator saturation [14].  For linear systems with time- 
varying delays, the reported results are generally based on the 
assumption that the derivative of time-varying delays is less 
than one, which is, 0 ≤ hd < 1 [14].  Such restriction is very 
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conservative and of no practical signification.  In the present 
paper we fill the gap between the case of the delay derivative 
not greater than 1 and the fast-varying delay by deriving a new 
integral operator bound.  This bound is an increasing and 
continuous function of the delay derivative bound hd ≥ 1.  In 
the limit case (where hd → ∞) which corresponds to the 
fast-varying delay, the new bound improves the existing one.  
As a result, improved frequency domain and time domain 
stability criteria are derived for systems with the delay de-
rivative bound greater than 1. 

On the other hand, the decay rates (i.e. convergent rates or 
convergence rates) are important indices of practical sys- 
tems, and the exponential stability analysis of time-delay 
systems has been a popular topic in the past decades; see for 
examples [11, 14] and their references.  Via strict LMI opti-
mization approaches, Liu provides an easy-to-check condi- 
tion for a delayed system without uncertainties [11, 14].  By 
similar methodologies as in [14], the exponential stability of 
saturating actuator systems containing time-varying state 
delays is discussed.  However, to the best of the authors’ 
knowledge, the issue of robust exponential stabilization for 
saturating actuator systems with time-varying delays remains 
open, which motivates this paper. 

In this paper, we are interested in designing a state- 
feedback controller for a class of linear time-varying delay 
systems with actuator saturation.  Firstly, an appropriate 
Lyapunov-Krasovskii functional is constructed and its posi- 
tive definiteness is proved, by which the constraints on some 
functional parameters are relaxed.  Then, the Leibniz-Newton 
formula and the convex combination condition of time- 
varying delay are used to get the new delay-dependent crite- 
ria.  Through constructing augmented Lyapunov-Krasovskii 
functionals and using integral inequality matrix, delay- 
dependent robust exponential stability and stabilization crite-
ria are achieved in terms of linear matrix inequalities (LMIs), 
which can be solved by various convex optimization algo-
rithms.  The obtained results are presented in terms of linear 
matrix inequalities and are less conservative than some ex-
isting stability conditions.  To the best of the authors’ knowl-
edge, the issue of robust exponential stabilization for time- 
varying delay systems with saturating actuator using general-
ized eigenvalue problem (GEVP) approach is a new and open 
problem in the literatures.  Finally, numerical examples are 
given to illustrate the effectiveness and the benefits of the 
proposed method. 

II. MAIN RESULT 

Consider the following time-varying delay system with 
saturating actuator described by 

 0 0 1 1( ) [ ( )] ( ) [ ( )] ( ( ))x t A A t x t A A t x t h t= + ∆ + + ∆ −�  

[ ( )] ( ( ))B B t Sat u t+ + ∆  (1a) 

 ( ) ( ), [ , 0]x t  t t hφ= ∀ ∈ −  (1b) 

where x(t) ∈ Rn is the state vector; u(t) ∈ Rm is the control 
input vector; xt is the state at time t denoted by xt(s) :=  
x(t + s).  A0, A1 and B are known constant matrices with ap-
propriate dimensions.  φ(t) is a smooth vector-valued initial 
function. 

The time-varying parameter uncertainties ∆A0(t), ∆A1(t) 
and ∆B(t) are assumed to be in the form of 

 0 1 0 1( ) ( ) ( ) ( ) bA t A t B t DF t E E E ∆ ∆ ∆ =      (2) 

where D, E0, E1, and Eb are known real constant matrices  
with appropriate dimensions, and F(t) is an unknown, real, and 
possibly time-varying matrix with Lebesgue-measurable ele- 
ments satisfying  

 ( ) ( ) , .TF t F t I t≤ ∀  (3) 

Time delay, h(t), is a time-varying continuous function that 
satisfies 

 0 ( ) and ( ) dh t h h t h≤ ≤ ≤�  (4) 

where h and hd are constants. 
The saturating function is defined as follows: 

 T
1 2( ( )) [ ( ( ), ( ( )), ... ( ( ))]mSat u t Sat u t Sat u t Sat u t=  (5) 

The operation of Sat(ui(t)) is linear for −Ui ≤ ui ≤ Ui as 

 

 0

( ( ))

 0

i i i

i i i i i

i i i

U if u U

Sat u t u if U u U

U if u U

− < − <
= − ≤ ≤
 > >

 (6) 

Throughout this paper we will use the following concept  
of stabilization for the time-varying delay system with satu-
rating actuator (1). 

 
Definition 1: The time-varying delay system with saturating 
actuator (1) is said to stable in closed-loop via memoryless 
state feedback control law if there exists a control law u(t) = 
Kx(t), K ∈ Rm×n such that the trivial solution ( ) 0x t ≅  of the 
functional differential equation associated to the closed-loop 
system is uniformly asymptotically stable. 

 
In order to develop our result, by considering a state feed-

back controls law u(t) = Kx(t) the saturating term Sat(Kx(t)) 
can be written in an equivalent form: 

 ( ( )) ( ( )) ( ),  ( ( )) m nSat Kx t G x Kx t G x Rβ β ×= ∈  (7) 
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where G(β(x)) is a diagonal matrix for which the diagonal 
elements βi(x) satisfy for i = 1, 2, …, m. 

 

( ) 0
( )

( ) 1 ( )

( ) 0
( )

i
i i

i

i i i i

i
i i

i

U
if Kx U

Kx

x if U Kx U

U
if Kx U

Kx

β

− < − <
= − ≤ ≤

 > >


 (8) 

and therefore  

 0 ( ) 1i xβ≤ ≤  (9) 

The main objective is to find the range of h and guarantee 
stabilization for the time-varying delay system with saturating 
actuator (1).  When the time delay is unknown, how long time 
delay can be tolerated to keep the system stable.  To do this, 
two fundamental lemmas are reviewed. 

 
Lemma 1 [11]: For any positive semi-definite matrices 

 
11 12 13

12 22 23

13 23 33

0T

T T

X X X

X X X X

X X X

 
 = ≥ 
  

 (10) 

Then, we obtain 

33( ) ( )
( ) ( ) ( ) ( ( )) ( )

t tT T T T

t h t t h t
x s X x s ds x t x t h t x s

− −
 − ≤ − ∫ ∫� � �  

11 12 13

12 22 23

13 23

( )

( ( ))

0 ( )

T

T T

X X X x t

X X X x t h t ds

X X x s

   
   × −   
      �

 (11) 

Lemma 2 [1]: The following matrix inequality 

 
( ) ( )

0
( ) ( )T

Q x S x

S x R x

 
< 

 
 (12) 

where Q(x) = QT(x), R(x) = RT(x) and S(x) depend on affine on 
x, is equivalent to 

 ( ) 0R x < , (13a) 

 ( ) 0Q x < , (13b) 

and 

 1( ) ( ) ( ) ( ) 0.TQ x S x R x S x−− <  (13c) 

Lemma 3 [1]: Given symmetric matrices Ω and D, E, of ap-
propriate dimensions, 

 ( ) ( ) 0T T TDF t E E F t DΩ + + <  (14a) 

for all F satisfying FT(t)F(t) ≤ I, if and only if there exists some 
ε > 0 such that 

 1 0T TDD E Eε ε −Ω + + <  (14b) 

The nominal unforced time-varying delay saturating ac-
tuator system (1) can be written as 

 0 1( ) ( ) ( ( ))x t A x t A x t h t= + −�  (15) 

Now, we describe our method for determining the stabili-
zation of time-varying delay system (15) in the following 
Theorem. 

 
Theorem 1: For given positive scalars h, hd, and α, the 
nominal time-varying delay unforced system (15) is expo-
nentially if there exist symmetry positive-definite matrices  
P = PT > 0, Q = QT > 0, R = RT > 0, Z = ZT > 0 and positive 
semi-definite matrices  

 
11 12 13

12 22 23

13 23 33

0,T

T T

X X X

X X X X

X X X

 
 = ≥ 
  

 
11 12 13

12 22 23

13 23 33

0,T

T T

Y Y Y

Y Y Y Y

Y Y Y

 
 = ≥ 
  

 

which satisfy the following inequalities: 

 

11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 44

< 0  
T

T T

T T T

Ω Ω Ω Ω 
 Ω Ω Ω Ω Ω =
 Ω Ω Ω Ω
 Ω Ω Ω Ω 

 (16a) 

and 

 33 0Z X− ≥  (16b) 

 33 0Z Y− ≥  (16c) 

where 

11 0 0( 0.5 ) ( 0.5 )TA I P P A I Q Rα αΩ = + + + + +  

11 13 13( ),h Te hX X Xα−+ + +  

12 1 12 13 23 14 0( ), ,h T TPA e hX X X hA Zα−Ω = + − + Ω =  

22 22 23 23 11 13 13[ (1 ) ],h T T
de hX X X hY Y Y h Qα−Ω = − − + + + − −  

23 12 13 23 24 1( ), ,h T Te hY Y Y hA Zα−Ω = − + Ω =  

33 22 23 23 44 13 34( ), , 0.h Te hY Y Y R hZα−Ω = − − − Ω = − Ω = Ω =  
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Proof: Consider the following Lyapunov-Kravoskii functional 

1 2 3 4( ) ( , ( )) ( , ( )) ( , ( )) ( , ( ))tV x V t x t V t x t V t x t V t x t= + + +  (17) 

where 

1( , ( )) ( ) ( )t TV t x t e x t Px tα=  

2 ( )
( , ( )) ( ) ( )

t s T

t h t
V t x t e x s Qx s dsα

−
= ∫  

3 ( , ( )) ( ) ( )
t s T

t h
V t x t e x s Rx s dsα

−
= ∫  

0

4 ( , ( )) ( ) ( )
t s T

h t
V t x t e x s Zx s dsdα

θ
θ

− +
= ∫ ∫ � �  

Then, the time derivative of V(xt) with respect to t along  
the system (15) is 

1 2 3 4( ) ( , ( )) ( , ( )) ( , ( )) ( , ( ))tV x V t x t V t x t V t x t V t x t= + + +� � � � �  (18) 

where 

1( , ( )) { ( ) ( ) ( ) ( ) ( ) ( )}t T T TV t x t e x t Px t x t Px t x t Px tα α= + +� � �  

0 1{ ( ) ( ) [ ( ) ( ( ))] ( )t T Te x t Px t A x t A x t h t Px tα α= + + −  

0 1( )[ ( ) ( ( ))]}Tx t A x t A x t h t+ + −  

2 ( , ( )) [ ( ) ( ) (1 ) ( ( )) ( ( ))]t T h T
dV t x t e x t Qx t h e x t h t Qx t h tα α−= − − − −�  

3 ( , ( )) [ ( ) ( ) ( ) ( )]t T T hV t x t e x t Rx t x t h e Rx t hα α−= − − −�  

and 

 ( )
4 ( , ( )) ( ) ( ) ( ) ( )

tt T s t T

t h
V t x t e x t hZx t e x s Zx s dsα α −

−
 = −
  ∫� � � � �  

Obviously, for any a scalar [ , ],s t h t∈ − we have he α− ≤  
( ) 1,s teα − ≤  and 

 ( ) ( ) ( ) ( ) ( )
t ts t T h T

t h t h
e x s Zx s ds e x s Zx s dsα α− −

− −
− ≤ −∫ ∫� � � �  (19) 

Alternatively, the following equations are true: 

( )

( )
( ) ( ) ( ) ( ) ( ) ( )

t t t h tT T T

t h t h t t h
x s Zx s ds x s Zx s ds x s Zx s ds

−

− − −
− = − −∫ ∫ ∫� � � � � �  

33 33( ) ( )
= ( )( ) ( ) ( ) ( )

t tT T

t h t t h t
x s Z X x s ds x s X x s ds

− −
− − −∫ ∫� � � �  

( ) ( )

33 33( )( ) ( ) ( ) ( )
t h t t h tT T

t h t h
x s Z Y x s ds x s Y x s ds

− −

− −
− − −∫ ∫� � � �  (20) 

Applying Lemma 1, it can be written that  

33( ) ( )
( ) ( ) ( ) ( ( )) ( )

t tT T T T

t h t t h t
x s X x s ds x t x t h t x s

− −
 − ≤ − ∫ ∫� � �  

11 12 13

12 22 23

13 23

( )

( ( ))

0 ( )

T

T T

X X X x t

X X X x t h t ds

X X x s

   
   × −   
      �

 

11 13 13( )[ ] ( )T Tx t hX X X x t= + +  

12 13 23( )[ ] ( ( ))T Tx t hX X X x t h t+ − + −  

12 13 23( ( ))[ ] ( )T T Tx t h t hX X X x t+ − − +  

22 23 23( )[ ] ( ( ))T Tx t h hX X X x t h t+ − − − −  (21) 

Similarly, we have 

( )

33 11 13 13( ) ( ) ( ( ))[ ] ( ( ))
t h t T T T

t h
x s Y x s ds x t h t hY Y Y x t h t

−

−
− ≤ − + + −∫ � �  

12 13 23( ( ))[ ] ( )T Tx t h t hY Y Y x t h+ − − + −  

12 13 23( )[ ] ( ( ))T T Tx t h hY Y Y x t h t+ − − + −  

22 23 23( )[ ] ( )T Tx t h hY Y Y x t h+ − − − −  (22) 

with the operator for the term ( ) ( )Tx t hZx t� � as follows: 

( ) ( )Tx t hZx t� �  

0 0 1[ ( ) ( ( ))] [ ( ) ( ( ))]T
dA x t A x t h t hZ A x t A x t h t= + − + −  

0 0 0 1( ) ( ) ( ) ( ( ))T T T Tx t hA ZA x t x t hA ZA x t h t= + −  

1 0 1 1( ( )) ( ) ( ( )) ( ( ))T T T Tx t h t hA ZA x t x t h t hA ZA x t h t+ − + − −  

  (23) 

Substituting the above Eqs. (19)-(23) into (18), we obtain 

33( )
( ) { ( ) ( ) ( )( ) ( )

tt T h T
t t h t

V x e t t e x s Z X x s dsα αξ ξ −

−
≤ Ξ − −∫� � �  

( )

33( )( ) ( ) }
t h t h T

t h
e x s Z Y x s dsα− −

−
− −∫ � �  (24) 

where 

 ( ) ( ) ( ( )) ( )T T T Tt x t x t h t x t hξ  = − −    

and 

 
11 12 13

12 22 23

13 23 33

T

T T

Ξ Ξ Ξ 
 Ξ = Ξ Ξ Ξ 
 Ξ Ξ Ξ 
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and 

11 0 0( 0.5 ) ( 0.5 )TA I P P A I Q Rα αΞ = + + + + +  

11 13 13 0 0( ) ,h T Te hX X X hA ZAα−+ + + +  

12 1 12 13 23 0 1( ) ,h T TPA e hX X X hA ZAα−Ξ = + − + +  

22 22 23 23 11 13 13[ (1 ) ]h T T
de hX X X hY Y Y h Qα−Ξ = − − + + + − −  

1 1,ThA ZA+  

23 12 13 23( ),h Te hY Y Yα−Ξ = − +  

33 22 23 23( ),h Te hY Y Y Rα−Ξ = − − −  

13 0.Ξ =  

Finally, using the Schur complements, with some effort we 

can show that (24) guarantees of ( )tV x� < 0.  It is clear that if  

Ξ < 0, Z – X33 ≥ 0, and Z – Y33 ≥ 0 then, ( ) 0tV x <�  for any  

ξ(t) ≠ 0.  So the nominal time-varying delay unforced sys- 
tems (15) is exponential stable with decay rate α if linear 
matrix inequalities (16) are true.  This completes the proof. 

� 

III. EXTENSION TO EXPONENTIAL 
STABILIZATION FOR TIME DELAY 

SATURATING ACTUATOR SYSTEMS  

According to the Theorem 1, we describe our method for 
determining the stabilization of time-varying delay system 
with saturating actuator (1).  The main aim of this paper is to 
develop delay-dependent conditions for stabilization of the 
time-varying delay saturating actuator system (1) under the 
state feedback control law u(t) = Kx(t).  More specifically, our 
objective is to determine bounds for the delay time by using 
Lyapunov-Krasovskii functional and LMI methods with 
Leibniz-Newton formula.  The following Theorem gives an 
LMI-based computational procedure to determine state feed-
back controller.  Then we have the following result.  

 
Theorem 2: For any given positive scalars h > 0, hd > 0, α > 0 
and 0 ≤ β i(x) ≤ 1.  There exists a state feedback controller of 
the form u(t) = Kx(t) such that the closed-loop system (1) is 
exponentially stable with decay rate and different values of 
saturated range, if there exist symmetry positive-definite ma-
trices W = WT > 0, U = UT > 0, V = VT > 0, S = ST > 0, ε > 0, and 
positive semi-defined matrices 

11 12 13

12 22 23

13 23 33

0,T

T T

M M M

M M M M

M M M

 
 = ≥ 
  

 
11 12 13

12 22 23

13 23 33

0T

T T

N N N

N N N N

N N N

 
 = ≥ 
  

 

and a matrix J with appropriate dimension such that the fol-
lowing set of coupled LMIs holds 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

0

T

T T

T T T

T T T T

T T T T T

 Ψ Ψ Ψ Ψ Ψ Ψ
 
Ψ Ψ Ψ Ψ Ψ Ψ 
 
Ψ Ψ Ψ Ψ Ψ Ψ Ψ = < Ψ Ψ Ψ Ψ Ψ Ψ 
 Ψ Ψ Ψ Ψ Ψ Ψ
 
 Ψ Ψ Ψ Ψ Ψ Ψ 

 (25a) 

and 

 33 0W M− ≥  (25b) 

 33 0W N− ≥  (25c) 

where 

11 0 0( 0.5 ) ( 0.5 ) ( ( ))TW A I A I W BG x Jα α βΨ = + + + +  

11 13 13( ( )) ( ),T T T h TJ G x B U V e hM M Mαβ −+ + + + + +  

12 1 12 13 23( ),h TA W e hM M Mα−Ψ = + − +  

14 0 ( ( )) ,T T T ThWA J G x BβΨ = +  

15 0 16( ( )) , ,T T T T
bWE J G x E Dβ εΨ = + Ψ =  

22 (1 ) h
dh e Uα−Ψ = − −  

22 23 23 11 13 13( ),h T Te hM M M hN N Nα−+ − − + + +  

23 12 13 23( ),h Te hN N Nα−Ψ = − +  

24 1 25 1, ,T ThA W WEΨ = Ψ =  

33 22 23 23( ),h Te hN N N Vα−Ψ = − − −  

44 46 55 66, , , ,hS h D I Iε ε εΨ = − Ψ = Ψ = − Ψ = −  

13 26 34 35 36 45 56 0.Ψ = Ψ = Ψ = Ψ = Ψ = Ψ = Ψ =  

The stabilizing memoryless controller gain is given by  
K = JW −1. 

 
Proof: If A0 and A1 in (16) are replaced with A0 + BG(β(x))K + 
DF(t)(E0 + EbG(β(x))K), and A1 + DF(t)E1, then (16) for un-
certain system (1) is equivalent to the following condition: 

 ( ) ( )  < 0T T
d e e dF t F tΩ + Γ Γ + Γ Γ  (26) 
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where 

12 1311 14

12 22 23 24

13 23 33 34

24 34 4414

,
T

T T

T T T

 Ω ΩΩ Ω
 
Ω Ω Ω Ω Ω =
 Ω Ω Ω Ω
 
 Ω Ω ΩΩ 

 Ωij(i, j = 1, 2, 3, 4, i ≤ j)  

are defined in (16), and 

11 0[ ( ( )) 0.5 ]TA BG x K I Pβ αΩ = + +  

0[ ( ( )) 0.5 ]P A BG x K Iβ α+ + +  

11 13 13( ),h TQ R e hX X Xα−+ + + + +  

14 0[ ( ( )) ] ,Th A BG x K ZβΩ = +  

[ ]0 0
T

d PD hZDΓ = and 

0 1( ( )) 0 0 .e bE E G x K EβΓ = +    

By lemma 3, a necessary and sufficient condition for (26) 
for system (1) is that there exists a positive number ε > 0 such 
that 

 1 0T T
d d e eε ε−Ω + Γ Γ + Γ Γ <  (27) 

Applying the Schur complements, we find that (27) is equi- 
valent to the following condition: 

 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

0

T

T T

T T T

T T T T

T T T T T

 Φ Φ Φ Φ Φ Φ
 
Φ Φ Φ Φ Φ Φ 
 Φ Φ Φ Φ Φ Φ
 Φ = <
Φ Φ Φ Φ Φ Φ 
 Φ Φ Φ Φ Φ Φ 
 Φ Φ Φ Φ Φ Φ 

 (28) 

where 

11 0[ ( ( )) 0.5 ]TA BG x K I Pβ αΦ = + +  

0[ ( ( )) 0.5 ]P A BG x K I Q Rβ α+ + + + +  

11 13 13( ),h Te hX X Xα−+ + +  

12 1 12 13 23( ),h TPA e hX X Xα−Φ = + − +  

14 0[ ( ( )) ] ,Th A BG x K ZβΦ = +  

15 0 16( ( )) , ,T T T T
bE K G x E PDβΦ = + Φ =  

22 22 23 23(1 ) ( )h h T
de h Q e hX X Xα α− −Φ = − − + − −  

11 13 13( ),h Te hY Y Yα−+ + +  

23 12 13 23( ),h Te hY Y Yα−Φ = − +  

24 1 25 1, ,T ThA Z EΦ = Φ =  

33 22 23 23( ),h Te hY Y Y Rα−Φ = − − −  

44 46, ,hZ h ZDεΦ = − Φ =  

55 66 ,IεΦ = Φ = −  

13 26 34 35 36 45 56 0.Φ = Φ = Φ = Φ = Φ = Φ = Φ =  

Setting the change of variables such that W = P−1, U = 
P−1QP−1, V = P−1RP−1, Mij = P−1XijP

−1, Nij = P−1YijP
−1, S = Z−1, 

J = KW.  Then, pre- and post-multiplying both sides of (28)  

by 1 1 1 1{ , , , , , }diag P P P Z I I− − − − leads to (25a).  Applying  

1 1 1
33

33

,
Z

Z P P W M
X

− − − 
  = −   − 

 

1 1 1
33

33

Z
Z P P W N

Y
− − − 

  = −   − 
 

yields (25b) and (25c).  This completes the proof. 
 

Remark 1: As in the stabilization problem, the maximum 
allowable delay bound (MADB) h  which ensures that time- 
varying delay system with saturating actuator (1) is stabiliz-
able for ,h  decay rate α and the operation range of saturated 
range βi(x) can be determined by solving the following quasi- 
convex optimization problem when the other bound of decay 
rate α and the operation range of saturated range βi(x) are 
known. 

 
Maximize    

  
Subject to (25)

h



 (29) 

Inequality (29) is a quasi-convex optimization problem and 
can be obtained efficiently using MATLAB LMI Toolbox.  
Then, the controller 1K JW −=  stabilizes system (1).  The 
determination of the upper bound of the delay for which 
time-varying delay system with saturating actuator (1) will 
remain exponential stable can be cast into a generalized ei-
genvalue minimization problem (GEVP). 

To show usefulness of our result, let us consider the fol-
lowing numerical examples. 

IV. EXAMPLES 

In this section, two numerical examples are presented to 
compare with the proposed stabilization method with previous 
results. 
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Example1: Consider the time-varying delay system with an 
actuator saturated at level ±1 described as the follows 

0 0 1 1( ) [ ( )] ( ) [ ( )] ( ( )) ( ( ))x t A A t x t A A t x t h t BSat u t= + ∆ + + ∆ − +�  

  (30) 

where 0 1

2 0 1 0 0
, , ,

1 3 0.8 1 1
A A B

− −     
= = =     − − −     

 and ∆A0(t) 

and ∆A1(t) are of the form of (4) wit D = I, E0 = E1 = diag{0.2, 
0.2}. 

Assume the operation range βi(x) is inside the sector [0.1, 
1].  The problem is to design a state feedback controller to 
estimate the delay time h such that the above system to be 
exponentially stable. 

 
Solution: By taking α = 0, hd = 0.1 and βi = 0.1, we get the 
Theorem 2 remains feasible for any delay time h ≤ 5.8995.  In 
case of 5.8995,h =  solving Theorem 2 yields the following 
set of feasible solutions: 

 

11

16.8121   -6.4328 31.5576   -1.4853
, ,

-6.4328   10.3395 -1.4853   36.5608

1.9906    0.4628 283.0926  -37.9065
, ,

0.4628    3.9238 -37.9065  431.2342

2.1567    0.6247

0.6247  

W U

V S

M

   
= =   
   

   
= =   
   

= 12

13 22

23 33

 0.9634    1.7847
, ,

  2.1465 -0.5345    1.0269

 0.3863    1.1696 1.9004    0.6820
, ,

-1.6688    1.0070 0.6820    2.4718

 3.9680   -1.1845 13.
,

-0.0106    1.9439

M

M M

M M

   
=   

   

   
= =   
   

 
= = 
 

11 12

13 22

3790   -5.4092
,

-5.4092    6.9862

 0.8714   -0.1236 -0.5428    0.2092
, ,

-0.1236    0.9793  0.2005   -0.3245

-2.1082    0.8032  0.5425   -0.2067
,

 0.8020   -1.2962 -0.206

N N

N N

 
 
 

   
= =   
   

 
= = 
 

[ ]

23 33

,
7    0.3352

 2.1126   -0.8044 12.5048   -4.7650
, ,

-0.8044    1.3015 -4.7650    7.6997

-394.7479  -401.6903 , 1.7024,

N N

J ε

 
 
 

   
= =   
   

= =  

the corresponding state feedback 

 [ ]1 -50.3256  -70.1607 .K YW −= =  

The result obtained, system (30) would be stable if the de-
lay time h is less than 5.8995.  Bound of delay time h for 
various decay rates α and the change of time varying delay hd 
(saturated range βi(x) = 0.1) is shown in Table 1.  From the  

Table 1. Bound of delay time h for various decay rate α 
and hd (the operation range of saturated range 
βi(x) = 0.1). 

hd 

α 
0.1 0.3 0.5 0.7 0.9 

0.1 5.8995 5.2625 5.0345 4.5299 2.9960 

0.2 3.8685 3.7436 3.6506 3.3376 2.0560 

0.3 3.4645 3.4155 3.2011 2.6568 1.8482 

0.4 2.9565 2.9019 2.6618 2.0751 1.6359 

0.5 2.6999 2.5011 2.4018 2.0306 1.4498 

0.6 2.1904 2.1190 2.0025 1.7061 1.3228 

0.7 1.9841 1.9291 1.8026 1.5099 1.2767 

0.8 1.7899 1.7219 1.6108 1.4215 1.1920 

0.9 1.7629 1.6560 1.4819 1.2780 1.1001 
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Fig. 1.  The simulation of the example 1 for h = 9.5 sec. 

 
 

results of Table 1, if the decay rate α or the change of time 
varying delay hd increases the delay time length decreases.   
We claim that the sharpness of the upper bound of the delay 
time h various with the chosen decay α or the change of time 
varying delay hd. 

Fixing α = 0, hd = 0, βi = 0.1, Eq. (30) reduces to the system 
discussed in [10, 17, 21].  Solving the quasi-convex optimi-
zation problem (29), according to the Theorem 1, using the 
soft-ware package LMI Toolbox, we obtain the controller 

( ) [-28.0202  -26.3012] ( )u t x t=  and the corresponding maxi- 
mum allowed delay h = 9.5899.  The simulation of the above 
closed system for h = 9.5 is depicted in Fig. 1.  An upper bound 
given by [21] is h < 0.2841.  On the other hand, the delay 
bound for guaranteeing asymptotic stability of the system  
(30) given [10, 17] is h < 0.3781 and h < 0.5522, respectively.  
Hence, for this example, the robust stability criterion of this 
paper is less conservative than the existing results of [10, 17, 
21]. 
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Table 2. Maximum allowable delay bounds (MADB) h  
for the operation range of saturated range βi(x) 
for (hd = 0.5, δ = σ = 0.9). 

β i(x) 0.1 0.3 0.5 0.7 0.9 
[15] 0.5971 0.6941 0.9949 1.4002 2.9698 

Theorem 2 1.4871 1.6551 1.7465 1.8027 3.0506 
 
 

Example 2: This case considers the time-varying delay uncer- 
tain system with an actuator saturated at level ±1 of the form 

0 0 1 1( ) ( ( )) ( ) ( ( )) ( ( )) ( ( ))x t A A t x t A A t x t h t BSat u t= + ∆ + + ∆ − +�  

  (31) 

where 

0 1

0 1

2 0 1 0 1 2
, , ,

1 3 0.8 1 1 4

1 0 0 0
, , .

0 1 0 0

A A B

D E E
δ σ

δ σ

− −     
= = =     − − − −     

     
= = =     
     

 

The problem is to design a state feedback controller to es-
timate the delay time h such that the system (31) to be expo-
nentially stable. 

 
Solution: To begin with, for hd = σ = δ = 0 and βi(x) = 0.5,  
Eq. (31) reduces to the system discussed in [15, 18, 21].  Using 
Theorem 2, the maximum value of delay time for the nominal 
system to be asymptotically stable is h < 14.4088.  By the 
criterion in [15, 18, 21], the nominal system is asymptotically 
stable for any h that satisfies h < 4.3949, h < 0.3819 and h < 
0.6153, respectively.  Hence, for this example, the criteria 
proposed here significantly improve the estimate of the sta-
bility limit compared for the result of [15, 18, 21].  If hd = 0 
and σ = δ = 0.9 then by solving the quasi-convex optimiza- 
tion problem (31), the maximum upper bound, h, for which  
the system is h < 6.2298.  Therefore, we can get the stabiliz- 
ing state feedback controller for the system (31) is 

-237.6015  116.9965
.

  -62.9404  -61.5236
K

 
=  
 

  Finally, the allowable time de-

lay obtained by the operation range of saturated range βi(x) at 
fixed hd = 0.5 and δ = σ = 0.9 is listed in Table 2.  Table 2 
shows that our results are less conservative than the ones in 
[15].  It is worth pointing out that our criteria carried out more 
efficiently for computation.  This table also shows that if the 
βi(x) increases then the delay time length increases. 

V. CONCLUSION 

In this paper, the problem of robust exponential stability 
and stabilization criteria for a class of time-varying delay  
systems with saturating actuator has been considered.  A satu-

rating control law is designed and a region is specified in 
which the stability of the closed-loop system is ensured.  A 
major innovation of the approach adopted here is that the 
stabilizing control design is made dependent on both the value 
of the time-delay as well as on its rate of change.  A controller 
design method to enlarge the estimates is then formulated and 
solved as an optimization problem with linear matrix ine-
quality (LMI) constraints.  The results are obtained based on 
the Lyapunov-Krasovskii theory in combination with gener-
alized eigenvalue problem (GEVP).  Different from the ex-
isting ones, our results can overcome the conservatism by 
choosing suitable scalars for the given exponential decay rate 
or delays.  Numerical examples have also been given to dem-
onstrate the effectiveness of the proposed approach. 
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