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ABSTRACT 

This paper concerns problems of a caisson subjected to a 
breaking wave force: (1) what are the possible modes of re-
sponse and (2) the conditions initiate into these modes.  These 
two questions have not been studied.  The objective of this 
paper is to answer these two questions.  However, the actual 
response of a caisson that takes place in each mode is not 
addressed in this study. 

A caisson placed on a horizontal frictional base, subjected  
to a concentrated horizontal force of short duration, applied  
to the seaward side face of the caisson and accompanied by  
a corresponding uplift force on the bottom of the caisson, is 
modeled as a free-standing rigid body.  The conditions for  
the initiation of each mode of motion are derived using the 
equations of motion of a plane rigid body.  The results are 
given in explicit analytical form and presented graphically.  
Knowing the magnitude and location of the force, coefficient 
of friction and the aspect ratio of the body, the mode of mo- 
tion may be identified easily from the graphs. 

I. INTRODUCTION 
In coastal waters, caissons are used as breakwaters.  Under 

the action of breaking waves, caissons are initiated into  
various modes of motion.  In this paper, the behavior of a 
caisson is examined in a different way from the works that 
have hitherto been carried out.  Instead of trying to find the 
actual response of a caisson to a breaking wave force, this 
study seeks to determine the various possible modes (such as 
rest, slide, rock and slide-rock) of motion that might take  

place and, more importantly, the criteria for the initiation of 
these modes.  In an effort to obtain explicit analytical so-
lutions, the models for the caisson and the breaking wave 
force are made simple.  Thus, a caisson is modeled as a  
rigid body placed on a horizontal frictional base and a 
breaking wave force is idealized as a horizontal force of 
short duration acting on the seaward side face of the  
caisson accompanied by an uplift force on the caisson’s 
bottom.  The criterion for each mode of response is obtained 
using the three equations of motion of a two-dimensional 
rigid body. 

In a previous publication [2], the same criteria were pur-
sued without including the uplift force.  It was shown that the 
derivations of the criteria were rather involved and the be-
havior of a caisson was different depending on whether the 
force is applied above or below the center of mass of the 
caisson.  Thus, the present paper considers only the case of a 
breaking wave force applied above, but not bellow, the center 
of mass of the caisson.  Furthermore, only details of the deri-
vation of the criteria for the initiations of the rest, slide and 
rock modes are presented.  The criteria are given analytically 
and presented graphically. 

The paper begins with a section ‘models’ which describes 
the models employed for the caisson, the breaking wave 
force and the uplift force.  This is followed by sections of 
derivation of the criteria for the initiation of the three  
modes.  The rest mode (abbreviated RE) is given in Section 
III, the slide mode (abbreviated SL) in Section IV and the 
Rock about point O mode (abbreviated RO) in Section V.  
These sections are given to demonstrate what is involved  
in the derivations.  While the derivations for the rest and 
slide cases are simple, that for the rock about point O case 
 is lengthy and complex.  In addition to these three modes  
of response, there are other modes, namely, the slide-rock 
about point O mode (SRO), the rock about point O' mode 
(RO') and the slide-rock about point O' mode (SRO').  The 
derivations for these modes are understandably complex  
and lengthy, and are not included in this paper.  Those 
derivations can be found in a report [6].  The report also 
contains results when all modes (including the ones not 
covered in this paper) are combined. 

Paper submitted 05/27/11; revised 11/23/11; accepted 01/19/12.  Author for 
correspondence: Jaw-Guei Lin (e-mail: jglin@mail.ntou.edu.tw). 
1 Department of Harbor and River Engineering, National Taiwan Ocean 
University, Keelung, Taiwan, R.O.C. 

2 Department of Civil Engineering, North Carolina State University, Raleigh, 
North Carolina, USA. 
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Fig. 1.  Models. 

 

II. MODELS 
Referring to Fig. 1, consider a plane rigid body, partially 

immersed in water, of uniform mass distribution, the total 
mass in water being m.  The body is rectangular in elevation 
and footprint whose height is 2H, width 2B and depth is  
equal to unity.  It rests on a horizontal frictional base.  The 
friction between the base and the body is of the Coulomb  
type with coefficient of static friction µ.  The body is initially 
at rest and is subjected to an impact pressure from breaking 
wave on the seaward side of the vertical wall.  The resultant of 
the pressures is the horizontal force F which is assumed to act 
on the body only for a short duration.  The force, for conven-
ience, is expressed in terms of the weight of the body in  
water as F = mgk where g is the gravitational acceleration  
and k = F/mg is a non-dimensional coefficient.  In this study, 
we consider only the case in which F is applied above, and at  
a distance h from the center of mass of the body where  
h = k 'H and 0 ≤ k ' ≤ 1.  The breaking wave also induces uplift 
pressures on the bottom of the body whose distribution along 
the width of the body is assumed to be triangular, decreasing 
from maximum on the seaward side to zero on the landward 
side in accordance to the wave pressure distribution from [1].  
The resultant of the uplift pressures is denoted by U = qF = 
mgkq where the quantity q = U/F is a non-dimensional coef-
ficient.  The motion of the plane body is specified by the 
horizontal and vertical displacements of the center of mass C 
of the body and its rotation, θ, considered positive in the 
counterclockwise direction from positive x-axis.  The hori-
zontal and vertical displacements of C are x and y, considered 
positive to the right and upwards, respectively as shown in Fig. 
1.  The reaction forces are fx and fy, positive to the right and 
upwards, respectively.  fy acts at a distance ξ from C.  The 
uplift force U acts at a distance B/3 from C. 

III. REST MODE (RE) 

When the body is at rest, the equations of equilibrium are: 

 xf F mgk= =  (1) 

 (1 )yf mg U mg qk= − = −  (2) 

and, by taking moment of the forces about C, 

 / 3 0x yf H f Fh UBξ+ + + =  (3) 

By substituting Eqs. (1) and (2) into Eq. (3), we get 

 
[ (1 ') / 3]

1

Bk k q

qk

γξ + += −
−

 (4) 

where γ = H/B is the aspect ratio of the body.  Several condi-
tions for the body to be at rest mode must be satisfied.  These 
are: 

 
1. The body should be in contact with the base.  That is, fy 

must be greater than or equal to zero. 
2. The body should not be sliding.  That is, fx must be smaller 

than or equal to the limiting Coulomb friction force µ fy. 
3. The resultant vertical force should remain within the base 

(OO'). 
 
For condition 1, fy ≥ 0, and from Eq. (2), we get 

 
1

k
q

≤  (5) 

For condition 2,  fx ≤ µ fy, we get 

 0 ( )
1

x

y

f k
k

f qk
µ µ≥ = ≡

−
 (6) 

Finally, for condition 3,  fy  must lie within the base (OO') of 
the body.  That is, Bξ ≤ .  From Eq. (4), the condition re-

quires  

 
1

(1 ') 4 /3 Ak k
k qγ

≤ ≡
+ +

 (7) 

It may be verified that kA ≤ 1/q. 
The above conditions of Eqs. (6) and (7), constitute the 

criteria for the body to remain at rest under the action of F and 
U.  These conditions may be conveniently presented graphi-
cally as a region using the parameters k and µ as the hori- 
zontal and the vertical axes respectively as shown in Fig. 2. 

In Fig. 2, the curve OA (or µ0(k)) and the line AH  (or k = kA) 
intersect at point A with coordinates k = kA and 

 
1

(1 ') / 3A Ak
k q

µ µ
γ

= = ≥
+ +

 (8) 

The region that represents the rest mode is shaded and de-
noted by the symbol RE in Fig. 2. 

From Eqs. (7) and (8) and Fig. 2, we can see that the larger  
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Fig. 2.  Rest region. 

 
 

the values of γ, k' and q, the closer is the line AH to the µ  
axis, the narrower is the rest region and the less likely is the 
body to remain at rest.  Also, when q = 0, the result agrees  
with those obtained earlier in [5] and [6]. 

IV. SLIDE MODE (SL) 

The equations of motion for the initiation of a slide mode 
are the same as those for a rest mode except the equation in  
the x-direction.  They are: 

 xmx f F= −��  (9) 

 (1 )yf mg U mg qk= − = −  (2) 

and,  

 / 3 0x yf H f Fh UBξ+ + + =  (3) 

Here and hereafter, over-dot denotes differentiation with 
respect to time. 

Three conditions for a slide mode to occur are 
 

1. The body should be in contact with the base, that is,  fy ≥ 0. 
2. Horizontal force should overcome the limiting Coulomb fric-

tion force µ fy when the body starts to slide.  That is,  fx = µ fy. 
3. The resultant vertical force should remain within the base 

(OO'), that is, Bξ ≤ . 

 
The condition fy ≥ 0 gives, from Eq. (2), k ≤ 1/q.  Eq. (3) 

gives 

 
( ' / 3) (1 )

1

k k H qB H qk

qk

µξ + + −= −
−

 (10) 

For k ≤ 1/q, ξ should always be smaller than or equal to zero, 
that is, ξ ≤ 0.  The condition Bξ ≤  therefore requires, 

 1

(1/ ) [ ' (4 /3 )]
( )

1

k k q
k

qk

γ γµ µ− +≤ ≡
−

 (11) 
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Fig. 3.  Slide region. 

 
 
The curve µ1(k) is sketched in Fig. 3 in the k – µ plane;  

it intersects µ0(k) at point A, and the horizontal k axis at D 
where the abscissa is 

 
1

' 4 / 3Dk
k qγ

=
+

 (12) 

Beyond kD, the curve µ1 is negative and goes to negative 
infinity as k approaches 1/q. 

The region corresponding to a slide mode is the shaded  
area OAD in Fig. 3.  The symbol SL is used to denote the slide 
mode.  In region OAM, the rest mode governs because the 
horizontal reaction force fx in a rest mode is smaller than the 
horizontal reaction force fx in the slide mode.  From Eq. (9),  
we have x��  = (1 – qk)(µ – µ0).  In the region of slide mode, 
(OAD), k ≤ 1/q and µ ≤ µ0; thus, x��  ≤ 0.  Since the body is 
originally at rest, x�  ≤ 0 and x ≤ 0.  That is, the body slides to 
the left under the action of F, as expected. 

V. ROCK MODE ABOUT POINT O (RO) 

When a body is about to rock about point O, the equations 
of motion are: 

 xmx f F= −��  (9) 

 ymy f mg U= − +��  (13) 

and, noting that fy acts at point O  (see Fig. 1) about which the 
body rotates, 

 / 3x yI f H f B Fh UBθ = − + +��  (14) 

Here, I = m(B2 + H2)/3 is mass moment of inertia of the 
body about its center of mass C. 

The accelerations x��  and y��  of point C are related to the 
angular acceleration θ��  of the body as x Hθ= − ����  and y Bθ= ���� .  
Eq. (14) gives 

 2

3
( 1)

4 (1 ) A

g k

kB
θ

γ
= −

+
��  (15) 
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where kA is given in Eq. (7). 
Eqs. (9) and (10) give respectively 

 2 ( )
4(1 )x

mg
f ak b

γ
= +

+
 (16) 

and 

 
2 ( )

4(1 )y

mg
f ck d

γ
= +

+
 (17) 

where 

 2 24 3 ' 4a k qγ γ γ= + − −  (18) 

 3b γ=  (19) 

 23 (1 ') 4c k qγ γ= + −  (20) 

and 

 21 4d γ= +  (21) 

It is noted that both fx and fy are either positive or negative 
since the quantities a and c may be positive or negative.  For 
the case of c ≥ 0, fy is always greater than or equal to zero.  For 
the case of c ≤ 0, fy = c k− + d, in which case, fy ≥ 0 for k ≤ 

d / c .  For /k d c≥ , the body is in a free-flight mode. 

For the body to rock about point O, θ��  must be greater than 
or equal to zero.  This means, from Eq. (15),  

 Ak k≥  (22) 

For a rock mode to be initiated, fx must not exceed the lim-
iting friction force.  That is, xf  ≤ µ fy, or, 

 *( )
ak b

k
ck d

µ µ
+

≥ ≡
+

 (23) 

The function µ*(k) behaves in a variety of ways depending 
on the signs of the quantities a, c and fx.  There are altogether 
six cases that must be considered.  They are: 

 
Case I: a ≥ 0, c ≥ 0, fx ≥ 0, µ* = (ak + b)/(ck + d), 0 ≤ k ≤ ∞ 
Case II: a ≥ 0, c ≤ 0, fx ≥ 0, µ* = (ak + b)/( c k− + d), 0 ≤ k ≤ 

d / c ; for d / c  ≤ k ≤ ∞, the body is in a free-flight 

mode 
Case III: a ≤ 0, c ≥ 0, fx ≥ 0, µ* = ( a k− + b)/(ck + d), 0 ≤ k ≤ 

b / a  

Case IV: a ≤ 0, c ≤ 0, fx ≥ 0, µ* = ( a k− + b)/( c k− + d), 0 ≤  

A

D kO 1/q

μ0

μ μ*

μ1

RO

(a)

(b)

H

H

A

D kO 1/q

μ0 μ*

μ

μ1

RO

 
Fig. 4. (a) Region of rock about point O mode , case I1 (e ≥ 0) and (b) 

Region of rock about point O mode, case I2 (e ≤ 0). 
 
 

 k ≤ b / a , 0 ≤ k ≤ d / c ; for d / c ≤ k ≤ ∞, the body is 

in a free-flight mode 
Case V: a ≤ 0, c ≥ 0, fx ≤ 0, µ* = a k b− + /(ck + d), b / a ≤ k 

≤ ∞ 
Case VI: a ≤ 0, c ≤ 0, fx ≤ 0, µ* = a k b− + /( ),c k d− +  

b / a ≤ k ≤ ∞, k ≤ d / c ; for d / c ≤ k ≤ ∞, the body is 

in a free-flight mode 
 
Properties of µ*(k) are examined for each of the above six 

cases. 

Case I: 

The curve µ*(k) = (ak + b)/(ck + d) passes point A (see Fig. 
2).  As k approaches to infinity, µ* = (a/c) ≥ 0.  The slope of 
µ*(k) is dµ*/dk = (ad – bc)/(ck + d)2 where ad – bc = 4(1 + γ 2)e 
is independent of k; here  

 2 21 3 'e k qγ γ γ= + − −  (24) 

which may be greater or smaller than zero.  Thus the slope of 
µ*(k) is a decreasing function of k  and approaches zero as  
k approaches infinity.  Also, the slope of µ*(k) at point A is 
equal to e/4(1 + γ 2).  Since the quantity e may be greater or 
smaller than zero, distinction must be made between two 
sub-cases: sub-case 1 is for e ≥ 0, denoted by case I1 and 
sub-case 2 is for e ≤ 0 denoted by case I2.  Figs. 4(a) and 4(b)  
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Fig. 5.  Region of rock about point O mode, case II (e ≥ 0). 

 
 
show, from Eqs. (22) and (23), the regions for rock mode to 
occur for cases I1 and I2, respectively. 

For values of γ, k' and q, if k (force) and µ (coefficient of 
friction) correspond to a point in the k – µ plane that falls in  
the region to the right of the vertical line AH and above the 
curve µ = µ*(k) in Figs. 4(a) and 4(b), a rock mode would 
ensue.  Here the region corresponding to a rock (about point  
O) mode is shaded and the symbol RO is used to denote the 
case of rock (about point O) mode. 

Case II: 

In this case, µ* = (ak + b)/( c k− + d) passes the point A  

and the expression of its slope is the same as that in case I.   
For k ≤ /d c , µ* is greater than or equal to zero and  ap-

proaches infinity at k = /d c .  Thus, the slope of µ* is greater 

than or equal to zero and consequently the quantity e is either 
greater than or equal to zero.  It may be verified that /d c  ≥ 

1/q.  The region corresponding to a rock mode is identified  
in Fig. 5 as that to the right of AH above µ* and to the left of 
the line PQ (k ≤ /d c ), shaded and denoted by RO.  For k ≥ 

/d c , the body would be lifted off the base in a free-flight 

mode denoted by the symbol FF. 

Case III: 

In this case, µ* = ( a k− + b)/(ck + d), 0 ≤ k ≤ /b a .  Again, 

µ*(k) passes point A and is equal to zero at k = /b a ; the 

expression of its slope is the same as that in case I and hence  
e ≤ 0.  It may be verified that ( / ) (1/ ) '/b a q e a q− =  where  

 2 2' 3 4 3 'e e k qγ γ γ= + = + − −  (25) 

which may be greater or smaller than zero.  Thus, case III is 
sub-divided into two cases: case III1 is for e' ≥ 0 and case III2 
is for e' ≤ 0.  The regions corresponding to these two sub- 
cases are shown respectively in Figs. 6(a) and 6(b) to the right 
of line AH, left of line NL and above the curve µ = µ*(k).  
These regions are shaded as shown.  The symbol E is used to 
mean that the region is ‘empty’, not covered by the cases III1 
and III2. 

L

E

N
k

1/qb/|a |

H

O

μ

μ*

A

D
μ0 μ1

RO

H L

E

A

D N kO 1/q b/|a |

μ

μ*μ0
μ1

RO

(a)

(b)  
Fig. 6. (a) Region of rock about point O mode, case III1 (e ≤ 0, e' ≥ 0) and 

(b) Region of rock about point O mode, case III2 (e ≤ 0, e' ≤ 0). 
 

Case IV: 

In this case, * ( ) /( )a k b c k dµ = − + − +  for /k d c≤  and 

/k b a≤ .  By comparing /d c , /b a  and 1/q, we see that 
2/ / [4(1 ) ]/ ,d c b a e acγ− = − + / 1/ '/( )b a q e a q− = and 

/ 1/ [ 3 (1 ')] /( )d c q q k c qγ− = + + which is always greater 

than zero.  Thus, case IV has three sub-cases: sub-case IV1 is 
for e ≥ 0, e' ≥ 0 in which case / /b a d c≥  and /b a ≥ 1/q; 

sub-case IV2 is for e ≤ 0, e' ≥ 0 in which case / /b a d c≤ and 

/ 1/b a q≥ ; finally, sub-case IV3 is for e ≤ 0, e' ≤ 0 in which 

case / /b a d c≤  and / 1/b a q≤ . 

In case IV1, the characteristics of µ* are the same as those 
in case II.  In cases IV2 and IV3, µ* passes point A; since for 
these cases, e ≤ 0, the slope of µ* decreases as k increases.  
Also, at /k b a= , µ* = 0. 

The shaded regions shown in Figs. 7(a), 7(b) and 7(c) cor-
respond respectively to a rock mode for these cases. 

Case V: 

In this case, 0, 0, 0, * /(xa c f a k b ckµ≤ ≥ ≤ = − + + d) 

and ∞≤≤ kab / .  The characteristics of µ* are: at abk /= , 

µ* = 0; as k approaches infinity, µ* = / 0a c ≥ , and its slope 

approaches zero.  Since µ* ≥ 0, its slope must be greater than 
or equal to zero as well.  Thus the quantity e must be less than  
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Fig. 7. (a) Region of rock about point O mode, case IV1 (e ≥ 0, e' ≥ 0, 

/b a ≥ /d c , /b a ≥ 1/q), (b) Region of rock about point O mode, 

case IV2 (e ≤ 0, e' ≥ 0, /b a  ≤ /d c , /b a  ≥ 1/q), and (c) Region 

of rock about point O mode, case IV3 (e ≤ 0, e' ≤ 0, /b a  ≤ /d c , 

/b a  ≤ 1/q). 

 
 

zero.  Since )/('/1/ qaeqab =−  which may be greater or 

smaller than zero, two sub-cases must be considered.  In case 
V1, e' ≥ 0, qab /1/ ≥  and in case V2, e' ≤ 0, qab /1/ ≤ .  

The curves µ* are sketched in Figs. 8(a) and 8(b) respec- 
tively and a rock mode is marked as the shaded regions above 
the curve µ* for abk /≥  to the right of line NL. 

Case VI: 

In this case, a ≤ 0, c ≤ 0, fx ≤ 0, * /( )a k b c k dµ = − + − + ,  

ND
kb/|a |1/q

|a |/c

O

μ*

μ H L

A

μ1μ0

RO

ND
k

|a |/c

b/|a | 1/qO

μ

μ*

H L

A

μ0 μ1

RO

(a)

(b)  

Fig. 8. (a) Region of rock about point O mode, case V1 (e ≤ 0, e' ≥ 0, /b a  ≥ 

1/q) and (b) Region of rock about point O mode, case V2 (e ≤ 0,  

e' ≤ 0, /b a  ≤ 1/q). 

 

/ ,b a k≤ ≤ ∞ and /k d c≤ .  It is seen that at /k b a= , µ* = 

0, and µ* approaches infinity at /k d c= .  Since the slope of  

µ* is equal to 2 2* / 4(1 ) /( )d dk e c k dµ γ= − + − +  and must 

be greater than or equal to zero, we conclude that e ≤ 0 indi-
cating that / /b a d c≤ ; however, since /b a  may be greater 

or smaller than 1/q, two sub-cases arise.  The characteristics of 
µ* are such that µ* starts at zero at /k b a=  and slopes up 

and approaches infinity at /k d c=  as shown in Figs. 9(a) 

and 9(b) for /b a ≥ 1/q and /b a ≤ 1/q, respectively.  In both 

Figs. 9(a) and 9(b), the shaded regions to the right of the line 
NL and above µ* correspond to a rock mode.  For k ≥ /d c  

the body is in a free-flight mode. 
The six cases are divided based on the sign of a and c and 

that of fx.  In the analysis, it is seen that the sub-cases also 
depend on the sign of the quantities e and e'.  Since these 
quantities are all functions of γ, k', and q, we identify these 
cases in a k'–q plane with γ as the parameter as shown in  
Fig. 10.  The lines a = 0, c = 0, e = 0, and e' = 0 are indicated. 

VI. DISCUSSIONS AND CONCLUDING 
REMARKS 

1. If we let q = 0, the results of the present paper which  



 J. G. Lin and C. C. David Tung: Initiation Criteria of Response Modes of a Caisson 93 

 

H L Q

FF

PND
kd/|c |b/|a | 1/qO

μ μ*

A

μ1μ0

RO

H L Q

FF

PND

A

O d/|c | kb/|a |1/q

μ μ*

μ1μ0

RO

(a)

(b)  

Fig. 9. (a) Region of rock about point O mode, case VI1 (e ≤ 0, e' ≥ 0, 

/b a  ≥ 1/q) and (b) Region of rock about point O mode, case VI2 

(e ≤ 0, e' ≤ 0, /b a  ≤ 1/q). 

 
 

 includes uplift force, reduce to those in [2] and [5] where 
uplift force is not considered. 

2. Since the caisson being considered is rectangular in its 
elevation and of uniform mass distribution, k' can not ex-
ceed unity. 

3. The present study of the behavior of a caisson considering 
uplift force should be extended to cover the case of force F 
applied below the center of mass of the caisson. 

4. The results of this study contribute to a better understanding 
of the behavior of a caisson under the action of an impact 
force.  The study is not concerned with the problem of de-
termining the actual response of the caisson.  For example, 
the study does not address the issue of the amount of sliding 
or rocking a caisson would undergo.  The study, however, 
provides information based on which the engineer can 
make design decisions.  For example, the configurations of 
the caisson may be adjusted to avoid it being initiated into a 
mode of response that is not considered desirable.  More 
significantly, given the magnitude and location of the force  

q
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e = 0 c = 0

a = 0
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IV1
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Fig. 10. Regions in k'−q plane for the six cases of rock about point O 

mode. 
 
 
 F, the uplift force, and the coefficient of friction between 

the caisson and the base, one may, based on the region of 
rest (in the k − µ plane), determine the dimensions of the 
caisson (See [3] and [4]). 

ACKNOWLEDGMENTS 

The study is suggested and supported in part by the Harbor 
and Marine Technology Center, Institute of Transportation 
under the project entitled ‘A Study of Harbor Resonance of 
Hwa-Lien Harbor’. 

REFERENCES 

1. Goda, Y., Random Seas and Design of Maritime Structures, University of 
Tokyo Press, Tokyo, Japan (1985). 

2. Tung, C. C., “Behavior of a caisson subjected to a horizontal Breaking 
wave force,” Journal of Engineering Mechanics, Vol. 133, No. 12, pp. 
1302-1310 (2007). 

3. Tung, C. C. and Lin, J. G., “On the selection of width of a caisson,” No. 
OMAE 2009-79046, Proceedings of the ASME 28th International Con-
ference on Ocean, Offshore and Arctic Engineering, OMAE 2009, Hono-
lulu, Hawaii (2009). 

4. Tung, C. C. and Lin, J. G., “Selection of the width of a caisson,” Journal of 
Marine Science and Technology, Vol. 19, No. 1, pp. 52-57 (2011). 

5. Tung, C. C., Lin, J. G., and Chiu, Y. F., Behavior of a Freestanding Rigid 
Body Subjected to a Horizontal Force, Publication No. 95-73-7210 (ISBN 
986-00-4971-8), Institute of Transportation, Ministry of Transportation, 
Taiwan, R.O.C., p. 116 (2005). 

6. Tung, C. C., Lin, J. G., and Chiu, Y. F., Criteria for the Initiation of Modes 
of a Caisson Subjected to a Breaking Wave Force, Publication No. 98- 
69-7423 (ISBN 978-986-01-8721-2), Institute of Transportation, Ministry 
of Transportation, Taiwan, R.O.C., p. 96 (2008). 

 

 


	CRITERIA FOR THE INITIATION OF MODES OF RESPONSE OF A CAISSON SUBJECTED TO A BREAKING WAVE FORCE
	Recommended Citation

	CRITERIA FOR THE INITIATION OF MODES OF RESPONSE OF A CAISSON SUBJECTED TO A BREAKING WAVE FORCE
	Acknowledgements

	tmp.1627949522.pdf.15QHU

