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ABSTRACT 

Taiwan’s special climate and landforms are affected by 
summer typhoons, with 78% of its rainfall occurring during 
the summer and autumn months.  The range and the severity of 
disasters has increased in recent years, thanks in part to cli-
mate change, which has caused an unstable rainfall.  Accurate 
rainfall predictions help to forecast rivers’ water levels.  This 
study proposes a new rainfall prediction model based on  
features of the rainfall system. 

In order to overcome the drawbacks found in the original 
grey model, a few corrections have been made to the new 
model.  First, the dynamic index transformation is used to 
generate an exponentially smooth sequence.  When the new 
model was applied to data from eight different typhoons, the 
results revealed that the mean peak rainfall error, compared  
to the original sequences, is close to 0.  This technique can  
also effectively increase the accuracy of maximum rainfall 
predictions.  Next, the grey model’s background value was 
improved through integration.  This technique can correct  
any delay in the peak rainfall as predicted by the conventional 
model, and make the predicted and actual values closer.   
Finally, we used the Fourier series and the exponential 
smoothing technique to correct periodical and random errors.  
The new model is called the Dynamic index Exponential 
Fourier Grey Model (DEFGM (1,1)).  By examining different 
indicators, the mean coefficient of efficiency of the DEFGM 
(1,1) was found to be close to 1, which is indicative of a rela-
tively good overall performance.  With this tool, the predict-
ability of rainfall systems during typhoons is more accurate, 
and disaster prevention measures can be made in advance. 

I. INTRODUCTION 

Climate change has intensified the rainfalls due to stronger 
typhoons, lengthened their duration, and increased the total 
amount of rainfall.  As a result, the possibility of floods is 
increasing.  Therefore, a new strategy for flood-prevention is 
needed.  A real-time, high-resolution, rainfall prediction model 
is necessary to support any decision-making. 

Generally, short-term rainfall is predicted through the sto-
chastic mathematical model [2, 11].  However, a large amount 
of explanatory variables as well as a great deal of data is  
required, and obtaining this is a rather difficult task.  The 
general prediction model must be constructed under such con- 
ditions where the explanatory variables are definite values, 
both random and normally distributed, as well as complying 
with the statistical hypothesis testing.  Also, it is impossible  
to build a good prediction model without collecting the com-
plete historical and statistical data.  Therefore, information 
obtained by the system often fails to cover the required data 
completely, and the grey system is the only theory generated  
to handle such conditions.  The grey model can get a satis-
factory prediction result, despite having obtained little data.  
Even with inadequate data and information, the grey model 
analyzes, predicts and determines the system [6].  This model 
can be built through generating more than 4 data points [4, 5].  
Some studies have proven that the grey model can be built  
by using only 3 data points [12].  Not only can this model 
predict equal-interval time sequences but it can also be ap- 
plied in a non-equal-interval series, or a negative numbered 
series, etc., given its good applicability.  It uses little data and 
applies the data generation method to reduce the possible 
influence by each factor.  Yang [21] estimated the throughput 
volume of sea-air transport cargo using the grey prediction 
model, and Kayacan et al. [10] predicted a time sequence 
using the grey model, and obtained good results in both fit  
and predictions. 

Yu et al. [22] presented the rainfall prediction model based 
on the Grey model.  Kang et al. [9] predicted the volume of 
real-time flood discharge by applying the hydrologic grey 
model in combination with the global search method pro- 
posed via Lin [14] based on the Chaos Theory.  Bedient et al. 
[1] and Kang et al. [8] observed rainfall through a radar rain-
storm system.  Each method had its own characteristics.  
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However, the grey forecasting model is constructed, based on 
the exponential function, which has adverse results in pre-
dicting a wavy sequence.  The most commonly used grey 
forecasting model is the GM (1,1).  The rainfall intensity using 
hourly rainfall data is unstable because it is affected by many 
factors that fluctuate instead of developing at a certain rate.  
Xiang [20] adopted the dynamic index to convert the river’s 
chemical oxygen demand (COD) to a monotonic incremental 
sequence, which is applicable to the grey forecasting model.  
The converted sequence is in line with the system’s behaviors, 
thus solving the fluctuation problem and making prediction 
more reliable and feasible. 

The development coefficient and the grey input of the grey 
model were estimated by Yu et al. [22] using the fuzzy re-
gression technology instead of the least square method and 
applied it to rainfall predictions for disaster prevention.  The 
basis for the grey model is the exponential function, so using it 
to predict center-symmetry curves or a random time series  
is not ideal [12].  In order to obtain desirable results, any 
model must be built according to the problem’s characteristics.  
Thus different problems should apply different models.  Cheng 
et al. [3] extracted the feature signals by combining the grey 
forecasting model and the wavelet transformation technique, 
and applied it in the failure prediction of hydraulic and elec-
trical machineries; which improved prediction accuracy.   
Guo et al. [7], Lin et al. [13], and Su et al. [19] adopted the 
Fourier series to correct the cyclic residual difference of the 
grey forecasting model and to improve its prediction accuracy, 
as well as expand the model’s scope of applications.  Other 
studies constructed a high-precision prediction model by 
combining the grey model and the Fourier series, etc. [13, 15].  
They compared the simulated data of this model, the fuzzy 
prediction model, and the back propagation artificial neural 
network model with actual data.  The results proved that the 
model had better prediction accuracy than others. 

However, the randomness and uncertainty of the wavy se-
quence does not change with the exponential law.  It is possi-
ble to fully use the information from the data series to greatly 
reduce the randomness, if the single exponential smoothing  
of the time sequence is introduced into the grey prediction 
model.  Therefore, the original data series is reconstructed 
through exponential smoothing to improve calculations of the 
grey model’s background value.  As a result, the original se-
quence is transformed into an exponential series with stronger 
regularity [16, 18]. 

This study mainly adopts the dynamic index transforma- 
tion model to transform the original data sequence into an 
exponential smoothing function sequence.  In other words, it 
converts the rainfall system with an unstable development into 
a stable system.  The background value of the grey model is 
integrated to improve the accuracy of predictions.  This com-
bined with modification of the exponential smoothing and  
the Fourier series to correct its residual is called an EFGM  
(1,1) to predict rainfall.  The rainfall prediction accuracy of  
the GM (1,1), DGM (1,1), EFGM (1,1) and DEFGM (1,1) is 

also evaluated, based on different indicators.  The results in-
dicate that the DEFGM (1,1) is the most accurate indicator 
when compared with others [16].  Finally, the study’s conclu-
sions and recommendations are proposed. 

II. FUNDAMENTAL CONCEPTS OF  
GREY THEORY 

This section introduces the concepts of the grey prediction 
model and the dynamic index, which form the basis of con-
struction of the prediction model. 

1. Grey Forecasting Model 

Owing to the variations of the internal and external envi-
ronments, the system development is usually irregular.  There- 
fore, Deng [6] recommended adopting a technique of accu-
mulation generating operation (AGO) to reveal the regular 
pattern hidden in the system development.  The grey fore-
casting model is the GM (1,1), which indicates that one vari-
able is employed in the model with the first order differential 
equation being adopted to match the data generated by the 
AGO.  The generating function of the grey systems can be 
expressed in the following equations: 

 (0) (1)( ) ( )X k aZ k b− =  (1) 

 (1) (0)

1

( ) ( )
k

m

X k X m
=

=∑  (2) 

Z(1)(k) = αX (1)(k) + (1 − α)X (1)(k – 1)] is the background 
value, where α is often set as its representative value of 0.5.  
However, to effectively resolve the prediction problem, value 
α needs to be adjusted according to the series features.  Pa-
rameter a is called the developing coefficient, and b is the  
grey input. 

The predicting series of X (0) is sorted as, X (0) = (X (0)(1), 
X (0)(2), …, X (0)( j), …, X (0)(n)), where X (0)( j) is the datum  
for the j-th time and n is the total number of modeling data.  
This equation estimates the value of X (0)(n + i), where i is a 
positive number.  The calculation steps are shown below: 

 
Step 1: The general form of X (0) = (X (0)(1), X (0)(2), …, 

X (0)( j), …, X (0)(n)) is represented as: 

 (1) (0)

1

( ) ( )
k

j

X k X j
=

=∑  (3) 

Step 2: Set the first order ordinary differential equation of  
X (1) as: 

 
(1)

(1)( )
( )

dX t
aX t b

dt
+ =  (4) 

Step 3: Use the least square method to get a and b 
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 (0) (0) (0)( (2), (3), , ( ))T
nV X X X n= …  (7) 

Step 4: By using the initial condition of X (1)(1), a and b are 
put into the grey differential equation to get the spe-
cific solution shown below: 

 (1) (0)ˆ ( 1) ( (1) ) akb b
X k X e

a a
−+ = − +  (8) 

where, (1)ˆ ( 1)X k + is the predicted value of X (1)(k + 1).  There- 

fore, the original sequence can be expressed in the following 
equation: 

 (0) (1) (1)ˆ ˆ ˆ( 1) ( 1) ( )X k X k X k+ = + −  (9) 

As the rainfall records are all positive numbers (X (0)( j) ≥  
0, for j = 1, 2, …, n, …), they do not defy the basic principle  
of the GM (1,1) model.  In accordance with this logic, only a 
small amount of data is needed to construct the GM (1,1),  
and there are only two parameters to be estimated in Eq. (5).  
In view of this, the GM (1,1) model is often used to predict 
short-term flows, and rainfall caused by typhoons. 

2. Dynamic Index 

Whether or not the original sequence of the grey forecasting 
model meets the exponential is an important fact that affects 
the grey model’s predictive accuracy.  The AGO is certainly 
one of the methods that can be applied but, fundamentally, it 
cannot improve the smoothness of the series.  Specifically, the 
bigger restoration error controls the scope of the application.  
Xiang [20] pointed out that the dynamic index transformation 
was a better method.  It not only enabled the generated series 
to have a better smoothness but also made no amplification of 
the restoration error.  This study adopts Xiang’s dynamic index 
conversion formula in order to improve the smoothness of  
the original data and reduce the grey model’s prediction error.  
It is called the DGM (1,1), and is expressed below: 

 1 ( 1)( )
( ( )) nx t

D x t t
γ ξβ

α
−=  (10) 

α, n, β, γ, and ξ are the assigned dynamic index transfer  

parameters, where α > 0, n > 0, β > 0, γ > 0, and ξ > 0.  After 
investigating the values of γ and α in Eq. (10), Xiang [20] 
found that these two parameters are affected by the trend of  
the original sequence. 

When x(2)/x(1) > 1 and x(3)/x(2) < 1, this is called the grey 
left-wobbly sequence, with the following restriction:  

 1tγ = −  (11) 

 1 2( 1)α β= −  (12) 

when x(2)/x(1) < 1 and x(3)/x(2) > 1, this is called the grey 
right-wobbly sequence, with the following restriction: 

 tγ =  (13) 

 1α β= +  (14) 

And, the values of β, n, and ξ are calculated by Eqs. (15), 
(16), and (17): 

 10β ξ=  (15) 

 
2 ( ) 3 ( 1)

(1) (2)

x m x m
n

x x

−≤ ≤  (16) 

 2
( ) 3 ( 1)

0.9 0.9
(1) (2)

m m
x m x m

x x
ξ −

−− ≤ ≤ −  (17) 

To meet conditions n > 0, ξ > 0, in Eqs. (16) and (17), m ≥ 4.  
The grey prediction model is the only one that needs more than 
4 data points for model construction [4].  Thus, if m is set as 
the minimum value within the given constraint, it may extend 
the prediction period. 

III. INTEGRATED INNOVATIVE GREY  
MODEL WITH DYNAMIC INDEX 

The GM (1,1) improves the prediction accuracy by ad-
justing the value of α and correcting its residual by using the 
exponential smoothing and the Fourier series called EFGM 
(1,1) or this study’s innovative grey model.  The innovative 
grey model with the pre-processing of the dynamic index is 
called the DEFGM (1,1).  The flowchart of the study’s analysis 
is presented in Fig. 1. 

1. Improve the Background Value of Grey Model 

It’s known from Eq. (8) that the forecasting accuracy de-
pends on parameters a and b, and their solution depends on the 
structural form of the background value of GM (1,1), z(1)(k).  
Therefore, z(1)(k) becomes the key factor that directly influ-
ences the accuracy and adaptability of the GM (1,1) model.  
Having Z (1)(k) = αX (1)(k) + (1 – α)X (1)(k – 1) as the smoothing  
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Fig. 1.  Flow Diagram of Analysis. 

 
 

α is the key parameter of the background value.  When the 
data sequence changes greatly, the longer time lag error will 
cause a larger error. 

In order to increase the accuracy of the GM (1,1), literature 
shows that α is an important parameter in the accuracy of  
the GM (1,1).  For this reason, this study improves the back-
ground value by integrating as: 

 (1) (1) (1) (1)

1
( ) ( ) (1 ) ( 1) ( )k

k
z k x k x k x t dtα α

−
= + − − ≈ ∫  (18) 

In order to avoid problems resulting from a continuous 
adjustment of value α, this study deals with the background 
value of Eq. (18) directly, instead of estimating α to improve 
the precision of the GM (1,1). 

The grey differential equation is a kind of exponential 
function.  In this study, x(1)(t) is represented as 

 (1) ( ) tx t eωλ θ= +  (19) 

It is substituted in Eq. (18), and t is substituted in Eq. (19)  
by k, k-1, and k-2, respectively.  Finally, values ω and θ are 
substituted to get the improved background value as shown 
below: 

(0)
(1)

1

( )
( ) ( )

k t

k

x k
z k eωλ θ θ

ω−
= + = +∫  

(0) (0) 2
(1)

(0) (0) (0)

(0)

( ) ( ( ))
( )

( ) ( ) ( 1)
ln

( 1)

x k x k
x k

x k x k x k

x k

= + −
− −

−

 (20) 
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The possible region of forecasted

t

n + 1n

X(1)(1)

1
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X(1)(1)

n n + 1

t

1

GM (1,1)

The possible region of forecasted

 
Fig. 2.  Conceptaual Diagram of GM (1,1) and GM (1,1)new. 

 
 
The new grey prediction model GM (1,1)new is based on a 

minimum deviation of the model.  Data can be obtained by 
using the above calculations.  Detailed illustrations of the 
operations are shown in Fig. 2. 

2. Error Correction Model 

System characteristics include periodicity, randomness, and 
tendency.  In order to get the tendency of the series and the 
context of development of the system effectively, this study, 
apart from improving the background value by integrating,  
has improved the accuracy by correcting the model’s peri-
odical errors through the Fourier series and correcting the 
residual, random errors through an exponential smoothing 
method.  When using the GM (1,1)new to calculate the one-step 

predicted value (0)ˆ ( 1)X n +  of X (0), the first residual error 

series δ ′(0) is: 

 (0) (0) (0) (0)( (1), (2), ..., ( ))nδ δ δ δ′ ′ ′ ′=   

where (0) (0) (0)ˆ( ) ( ) ( )k X k X kδ ′ = −  (21) 

1) Periodic Correction Model 

This study adopts the Fourier series to extract the periodical 
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feature hidden in the first series δ ′(0) of the residual sequences.  
Utilizing the Fourier series, this residual sequence is shown 
below: 

 (0)
0

1

1 2 2ˆ ( ) ( cos( ) sin( ))
2

ak

i i
i

i i
k a a k b k

T T

π πδ
=

= + +∑  

for 2, 3, ,k n= …  (22) 

where T = (n – 1) is the interval length of the finite residual 
error series.  Additionally, the integral part of ka = [((n – 1)/2) – 
1] is the lower limit of the reasonable expanded degrees for the 
finite series.  Parameter a0 is estimated by the least square 
method, and a0 and bi (for i = 1, 2, …, n) are expanded as 
follows: 

 1 (0)( )T TC δ−= Γ Γ Γ  (23) 

where 0 1 1 2 2[ , , , , , , , ]
a a

T
k kC a a b a b a b= …  and 

2 22 1 2 1
1/2 cos( 2) sin( 2) cos( 2) sin( 2)

2 22 1 2 1
1/2 cos( 3) sin( 3) cos( 3) sin( 3)

Γ

2 22 1 2 1
1/2 cos( n) sin( n) cos( ) sin( )

a a

a a

a a

π k π kπ π

T T T T
π k π kπ π

T T T T

π k π kπ π

n n
T T T T

× ×× × 
 
 

× ×× × 
 =
 
 
 × ×× ×
 
 

… … …

… … …

… … … … … … … …

… … …

 

  (24) 

By substituting the Eq. (24) result for Eq. (23), it can be 

observed that simulated sequence (0)δ̂ ′  of δ (0) is 

 (0) (0) (0) (0)ˆ ˆ ˆ ˆ( (2), (3), , ( ))nδ δ δ δ′ ′ ′ ′= …  (25) 

The one-step estimated periodicity value (0)ˆ ( 1)nδ +  in the 

original data, which can be obtained by substituting k = (n + 1) 
in Eq. (22). 

2) Random Correction Model 

The exponential smoothing technique only needs a few data 
points, and the correction randomness residual can be handled 
by it.  However, the 2nd residual series needs to be shifted to a 
non-negative series and the shifted back after the prediction 
process is completed [13].  An exponential smoothing tech-
nique is a method that predicts and analyzes a time sequence 
trend.  It is generally used in the prediction of short and 
mid-term trends of economic behaviours. 

With regard to system randomness, this study adopts the 
exponential smoothing for the 2nd residual correction.  The 2nd 
residual sequence (0)δ ′′  is represented as: 

 (0) (0) (0) (0)( (2), (3), , ( ))Tnδ δ δ δ′′ ′′ ′′ ′′= …  

where (0) (0) (0)ˆ( ) ( ) ( )k k kδ δ δ′′ ′ ′= −  (26) 

By applying the exponential smoothing technique to extract 
the random characteristics hidden in the 2nd residual se-
quence (0)δ ′′ , the following formula is the best fit for the 2nd 
residual sequence (0) :δ ′′  

(0) (0) (0)ˆ ˆ( ) ( 1) (1 ) ( 1), 2, 3, ,k k k k nδ δ δ′′ ′′ ′′= ϕ − + − ϕ − = …  (27) 

where φ is the smoothing coefficient, and 0 < φ < 1.  Eq. (27) 

means that the predicted 2nd residual value (0)ˆ ( )kδ ′′  for point k 

is composed of the actual 2nd residual value (0)ˆ ( 1)kδ ′′ − , and 

the predicted 2nd residual value (0)ˆ ( 1)kδ ′′ −  for point (k-1).  

Wherein (0) (1)δ ′′  has no predicted value, while the predicted 

value of (0) (2)δ ′′  is (0) (1)δ ′′ , namely (0) (0)ˆ ˆ(2) (1).δ δ′′ ′′=  

For an exponential smoothing technique, smoothing coef-
ficient φ has an impact on the simulation and prediction ac-
curacy of the 2nd residual series.  Generally speaking, smaller 
smoothing coefficient values can be adopted in case of a sta- 
ble 2nd residual sequence while larger smoothing coefficient 
values can be applied in a heavily fluctuated 2nd residual se-
quence.  Similarly, an optimized smoothing coefficient is 
difficult to obtain in case of stronger subjective judgement 
factors.  Therefore, this study chooses a smoothing coefficient 
value that has a minimum deviation with the 2nd residual se-
quence through an optimum technique, i.e. solving the fol-
lowing formula’s minimum value. 

 (0) 2 (0) (0) 2

2 2

ˆ( ) ( ( ) ( ))
n n

k k

SSE k k kδ δ δ
= =

′′′ ′′ ′′= = −∑ ∑  (28) 

where (0)ˆ ( )kδ ′′  can be further derived as: 

(0) 1 (0) 1 (0)

1

ˆ ( ) ( (1 ) ( ) (1 ) (1))
k

kk kτ

τ
δ φ φ δ τ φ δ− −

=

′′ ′′ ′′= − − − −∑  (29) 

Thus, the optimization equation is:  

(0) 1 (0) 1 (0) 2

2
1

min [ ( ) ( (1 ) ( ) (1 ) (1))]

. . 0 1

k
n k

k
SSE k k

s t

τ

τ
δ φ φ δ τ φ δ

ϕ

− −
=

=

 ′′ ′′ ′′= − − − − −

 < <

∑ ∑  

  (30) 

After getting the optimum φ value, the one-step predicted 
value of the 2nd residual series (0)δ ′′  is derived as follows: 

 (0) (0) (0)ˆ ˆ( 1) ( ) (1 ) ( )n n nδ φδ φ δ′′ ′′ ′′+ = + −  (31) 

Finally, through a combination of previously corrected 
values, the one-step predicted value (0) ( 1)X n +  of original 
sequence X (0), can be derived as follows: 

 (0) (0) (0) (0)ˆ ˆˆ( 1) ( 1) ( 1) ( 1)X n X n n nδ δ′ ′′+ = + + + + +  (32) 
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3. Innovative Grey Model through Integration of the  
Dynamic Index 

A new series is obtained through transforming original 

sequence (1) (0)

1

( ) ( )
k

j

x k x j
=

=∑  and by using dynamic index 

formula 1 ( 1)( )
( ( )) nx t

D x t t
γ ξβ

α
−= : 

 (1) (0)

1

( ) ( )
k

j

D k D j
=

=∑  (33) 

Then, the following equation is obtained through the 
EFGM (1,1): 

 (0) (0) (0) (0)ˆ ˆ ˆ( 1) ( 1) ( 1) ( 1)D n D n n nε ε′ ′′+ = + + + + +  (34) 

Eq. (34) is substituted by the reductive formula of Eq. (10) 
to get the predicted value of the original sequence shown 
below: 

 
(0)

(0)

1 ( 1)

( )
( )

n

D t
x t

t
γ ξ

α
β −

=  (35) 

Using the dynamic index to smooth the original sequence 
allows the series to have the monotonic series with the grey 
exponential law.  By using the EFGM (1,1), Eq. (35) is 
adopted to get the prediction series, which has better predic-
tion accuracy.  This model is known as the DEFGM (1,1). 

IV. CASE STUDY 

1. Background 

There are over 7 million people in northern Taiwan’s  
Taipei Basin.  It has a flat centre surrounded by high moun-
tains and hills, along with low-lying areas below sea level.  
The Danshui River is the main river system, crossing the area 
to form a kettle shape.  This kettle-shaped basin and the 
winding Danshui River, causes damage to lives and proper- 
ties during the flood season, with the low-lying areas bearing 
the brunt since the floodwaters cannot be discharged suc-
cessfully.  It is easily affected by tidal backwaters if a flood 
and huge tide coincide.  Part of the population in this basin  
is concentrated on the western side, which is located in the 
Dahan River Watershed, upstream of the Danshui River.  The 
elevation of this watershed is between 0.5 m and 15 m.  Due  
to heavy water flows along the dike, river blockages caused  
by mud-flows and rocks, or sediment accumulation in the  
river, and poor drainage systems, a large body of water can 
accumulates upstream, especially during heavy rainstorms.  
Furthermore, abnormal weather conditions, due to global 
climate change, have led to an increase in the amount of an-
nual rainfall in Taiwan.  While the number of rainy days has  
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Fig. 3.  Layout of Tanshui River and Dabao Rainfall Guage Station. 
 
 

decreased, rainfall is more concentrated, and there are in- 
adequate preventive measures to withstand dangerous flood-
ing.  Obviously, the accuracy of predicting rainfall and flood 
peaks is extremely important for flood prevention.  Therefore, 
this study used rainfall records from the Dabao rain-gauge 
station in the Dahan River Watershed on the Danshui River  
as raw data.  The layout of the Danshui River showing the 
location of the Dabao rain-gauge station is shown in Fig. 3. 

2. Case Analysis 

This study first constructed a model based on the data ob-
tained from the original sequence, which was then converted 
by the dynamic index technique, and the converted sequence 
was calculated by using the GM (1,1).  The constructed model 
was called the DGM (1,1).  To generate the model, there is a 
need to set parameters: α, n, β, γ, and ξ.  Using records from 
the Dabao rain gauge, the amount of rain from Typhoon 
KROSA was taken as an example.  As shown in Fig. 4, the  
first three data points display a “∨” shape, and this sequence is 
the grey right-wobbly sequence of x(2)/x(1) < 1, x(3)/x(2) > 1.  
Therefore, γ  = t, α = β  + 1, and β  = 10ξ. 

This sequence meets the restrictions of α > 0, n > 0, β > 0,  
γ > 0, ξ > 0, and m ≥ 4.  Since the foundation of the GM (1,1)  
is the exponential function, the predicting of centre-symmetry 
curves or random time series is not ideally done by the GM 
(1,1), and causes an undesirable effect in predicting the se-
quences with wavy patterns [12].  Similarly, this dynamic 
index is a function of time t1/n and ( 1) .

γ ξβ −  When m = 4, 1.89 ≤ 
n ≤ 10.5, 0.09 ≤ ξ ≤ 2.34 can be obtained for later parameter 
calibration.  For n = 10, ξ = 1.2, and n = 2, ξ = 0.2 in Table 1, it 
can be observed that the waving equation is larger than the 
sequence of the actual value.  By calibration from conditions  
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Table 1.  Parameters of Dynamic Index of Typhoon KROSA. 

m n α β ξ 2
( ) 3 ( 1)

0.9 0.9
(1) (2)

m m
x m x m

x x
ξ −

−− ≤ ≤ −  
2 ( ) 3 ( 1)

(1) (2)

x m x m
n

x x

−≤ ≤  

4 10 3 2 0.2 0.09 2.34 1.89 10.5 
 
 

Table 2.  Parameters of Dynamic Index of Typhoon SINLAKU. 

m n α β ξ 2
( ) 3 ( 1)

0.9 0.9
(1) (2)

m m
x m x m

x x
ξ −

−− ≤ ≤ −  
2 ( ) 3 ( 1)

(1) (2)

x m x m
n

x x

−≤ ≤  

4 - - - - -0.9 -0.21 0 0.47 
5 - - - - -0.9 -0.9 0 0 
6 - - - - -0.9 -0.9 0 0 
7 - - - - 0.1 -0.9 2 0 
8 - - - - 0.32 -0.16 10 0.16 
9 - - - - 0.36 0.07 16 0.79 
10 1.2 0.71 1.5 0.15 -0.9 0.13 0 1.26 
 
 

0 10 20 30 40 50
Time (hr)

0

20

40

60

R
ai

nf
al

l D
ep

th
 (m

m
)

n = 10 & = 0.2
n = 10 & = 1.2
n = 2 & = 0.2
n = 5 & = 0.2
Actual

KROSA (2007)

 
Fig. 4. Oringial Sequence and the Dynamic Index Converted Sequence 

of different parameters of Typhoon KROSA (2007). 
 
 

n = 5, ξ = 0.2, it can be found that the waving equation has 
decreased significantly.  In order to lower the influence of  
t1/n which may reduce the wavy equation of this sequence, n 
needs to be set to a larger value.  To reduce interference by ξ, 
and ensure the smooth and stable development of this se-
quence ξ needs to be set to a smaller value.  Thus, this study 
adopts the n = 10, ξ = 0.2 to get β = 2, α = 3, γ = t, as shown  
in Table 1.  Finally, the dynamic index conversion function  

can be obtained as 1/10 ( 1) 0.2( )
( ( )) 2 .

3

tx t
D x t t −=  

Taking the amount of rainfall from typhoon SINLAKU as 
another example, the first three data points shown in Fig. 5 
display a “∧” shape, which is the grey left-wobbly sequence  
of x(2)/x(1) > 1 and x(3)/x(2) < 1.  The conditions are γ  = t – 1,  
α  = (β − 1)1/2, β = 10ξ, α > 0, n > 0, β > 0, γ > 0, ξ > 0, and  
m ≥ 4. 
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Fig. 5.  Rainfall Trend of Typhoon SINLAKU (2008). 

 
 
When m = 4~8, it does not meet the condition of ξ > 0.  

When m = 9, it gets the contradictory conditions of n ≥ 16  
and n ≥ 0.79.  Therefore 0 ≤ n ≤ 1.26, −0.9 ≤ ξ ≤ 0.13 was 
selected when m = 10 for parameter calibration.  This study 
adopts n = 1.2, ξ = 0.15 to get β = 1.5, α = 0.71, γ = t – 1, 
shown in Table 2.  Finally, a dynamic index conversion func-

tion of 
11/1.2 ( 1) 0.15( )

( ( )) 1.5
0.71

tx t
D x t t

−−=  can be obtained. 

By comparing the GM (1,1) with the DGM (1,1), it shows 
that the GM (1,1) prediction is affected by the previous data.  It 
is somewhat concentrated, and unable to display the extreme 
value of the flood peak, plus there is a prediction delay.  After 
converting the dynamic index into an exponential function, 
calculation of the prediction value approximates the actual 
value, and the fitting level becomes relatively high.  However, 
it is still unable to improve the prediction value for the extreme 
value, as shown in Figs. 6(a)-6(h). 
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Fig. 6.  Comparison of Rainfall Depth of Actual Data, GM, and DGM (8 typhoons). 
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Since the prediction value of the GM (1,1) is somewhat 
concentrated, the extreme value cannot be displayed, or there 
is a time delay for the prediction.  For this reason, the EFGM 
(1,1) improves the background value of the grey model by 
integration, while combining it with the Fourier series and 
exponential smoothing for error correction.  This would fi-
nally achieve better accuracy, and reflect the actual situation 
[16].  This study converts the exponential function sequence 
by a dynamic index to generate prediction model DEFGM 
(1,1), which can obtain a higher prediction accuracy than the 
EFGM (1,1), which is shown in Figs. 7 and 8. 

As shown in Figs. 7(a)-7(h), based on the rainfalls produced 
by the eight typhoons, it can be seen that, the EFGM (1,1) and 
DEFGM (1,1) have significantly improved the time delay 
problems with the typhoons’ extreme values, when compared 
to the GM (1,1).  The Peak rainfall simulated by the DEFGM 
(1,1) is closer to the actual value.  

As shown in Fig. 8(a)-8(h), based on the accumulative 
rainfall prediction for the eight typhoons, it can be seen that 
the DEFGM (1,1) is more accurate than either the EFGM (1,1) 
or the GM (1,1) when dealing with the extreme value’s turn- 
ing point.  This proves that after applying the dynamic index 
conversion, DEFGM (1,1) has relatively improved the accu-
racy of prediction of the extreme value for the event.  It can be 
observed that the DEFGM (1,1) and EFGM (1,1) perform 
better than the GM (1,1).  This proves that periodical and 
random residual correction can significantly solve the prob- 
lem of the delayed peak value commonly seen in the GM (1,1). 

3. Statistics for Indicators of Different Models  

Based on eight other typhoons, this study analyzes the fol- 
lowing four models: GM (1,1), DGM (1,1), EFGM (1,1), and 
DEFGM (1,1).  Six indicators have been used to evaluate the 
performance of each model.  Among these, the EFGM (1,1) 
and DEFGM (1,1) can get better prediction performance.  The 
good performance by the DEFGM (1,1) is then verified by the 
mean value of indicators from the eight typhoons. 

The mean absolute error (MAE) is a kind of valid error 
measurement used in sequences with the same unit.  The mean 
absolute percentage (MAPE) is a good evaluation criterion 
often used to compare prediction performances.  The root 
mean square error (RMSE) can present the discrete degree 
between the actual and predicted values.  The closer the cor-
relation coefficient (CC) is to 1, the better the prediction, with 
MCC as the mean correlation coefficient.  The closer the co-
efficient of efficiency (CE) is to 1, the more the prediction 
matches the actual situation.  MCE is the mean coefficient of 
efficiency.  Then, the error of peak rainfall (ERP) evaluates the 
errors between the predicted maximum rainfall and the actual 
maximum rainfall.  MERP is the mean error of peak rainfalls, 
and the indicators are stated as follows: 
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where X(k) is the actual value for time point k, then ˆ ( )X k  is 

the predicted value for it.  The equation ˆ ( )X k  is the mean 

value for n predicted values, ( )PX k  is the actual maximum 

rainfall, while ˆ ( )PX k  is the predicted maximum rainfall, and 

n is the number of all predicted points.  This can be shown by 

1

1 N

k
k

MCE CE
n =

= ∑ where kCE  is event k’s CE value, and 

1

1 N

P Pk
k

MER ER
N =

= ∑  where PkER  is k’s PER  value. 

It can be observed in Table 3 that all the MAE values of the 
DEFGM (1,1) for all eight typhoons are smaller than 1, which 
indicates the best performing model.  The FEGM (1,1) comes 
in second, which indicates that the grey model can correct 
periodical and random errors through the Fourier series and 
exponential smoothing technology.  The relative accuracy of 
the DEFGM (1,1) is improved after the original sequence is 
smoothed by a dynamic index conversion.  Where Typhoon 
NOCK-TEN had the least number of rainfall data points, it 
also revealed that the GM (1,1) and DGM (1,1) had better 
prediction accuracy for shorter periods of time.  For events 
with larger data points, such as Typhoons SINLAKU, 
MORAKOT, and PARMA, the indicators for their EFGM  
(1,1) and DEFGM (1,1) show better results than those of both 
the GM (1,1) and DGM (1,1).  Thus, it can be said that peri-
odical and random residual correction of sequences with large 
data points can have more accurate predictions.  The DEFGM 
(1,1) has the smallest values for MAPE and RMSE, followed 
by the FEGM (1,1), which shows that the accuracy can be  
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Fig. 7.  Rainfall Depth of Actual Data, GM, EFGM, and DEFGM (8 typhoons). 
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Fig. 8.  Cumulative Rainfall Depth of Actual Data, GM, EFGM, and DEFGM (8 typhoons). 
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Table 3.  Statistics of GM, DGM, EFGM, and DEFGM Models. 

GM (1,1)  DGM (1,1) 
 

MAE MAPE RMSE CC CE ERP  MAE MAPE RMSE CC CE ERP 

NARI 2.84 30.21  4.55  0.86  0.86  0.20   2.65  27.24  4.37  0.86  0.88  0.20  

AERE 3.19  58.18  4.46  0.87  0.80  0.06   2.26  39.16  3.73  0.88  0.82  0.02  

NOCK-TEN 1.40  33.39  2.08  0.93  0.87  0.09   1.02  21.97  1.78  0.93  0.87  0.09  

WIPHA 2.5 31.36  4.43  0.83  0.70  0.28   1.70  19.90  3.68  0.85  0.73  0.29  

KROSA 2.64 42.35  4.92  0.82  0.68  0.10   1.41  17.84  2.79  0.92  0.87  0.06  

SINLAKU 2.84 47.11  5.08  0.87  0.80  0.02   2.21  29.31  4.61  0.86  0.78  0.17  

MORAKOT 2.46 44.99  4.17  0.89  0.79  0.18   1.70  29.78  3.43  0.90  0.81  0.22  

PARMA 0.87 29.89  1.57  0.88  0.83  0.03   1.22  41.44  2.52  0.58  0.43  0.10  
              

EFGM (1,1)  DEFGM (1,1) 
 

MAE MAPE RMSE CC CE ERP  MAE MAPE RMSE CC CE ERP 

NARI 0.40  3.94 0.76  1.00  1.00  0.05   0.45  5.04 0.96  1.00  0.99  0.03  

AERE 1.00  16.55 1.60  0.99  0.97  0.13   0.45  6.89 0.68  1.00  1.00  0.04  

NOCK-TEN 0.70  19.43 1.25  0.97  0.95  0.13   0.35  9.62 0.62  0.99  0.99  0.06  

WIPHA 0.88  13.12 1.70  0.99  0.96  0.16   0.44  6.40 0.85  1.00  0.99  0.08  

KROSA 0.60  11.11 1.14  0.99  0.98  0.00   0.31  5.85 0.55  1.00  1.00  0.00 

SINLAKU 1.31  26.86 2.66  0.98  0.94  0.12   0.74  19.26 1.41  0.99  0.98  0.08  

MORAKOT 0.46  7.68 0.82  0.99  0.99  0.00   0.39  7.51 0.74  0.98  0.99  0.00 

PARMA 0.25  6.87 0.50  0.99  0.98  0.10   0.19  4.34 0.37  1.00  0.99  0.09  
 
 

Table 4.  Statistics of Average Value of Indicators of Different Model. 

 GM (1,1) DGM (1,1) EFGM (1,1) DEFGM (1,1) 

MCC   0.868   0.848   0.987 0.994 
MCE   0.791   0.772   0.973 0.991 
MERP   0.119   0.144   0.086 0.048 
MMAE   2.340   1.770   0.699 0.414 

MMAPE 39.685 28.330 13.196 8.112 
MRMSE   3.909   3.365   1.304 0.773 

Note: Bold indicates the best accuracy. 
 
 

greatly improved after periodical and random residual correc-
tion of the sequence.  Moreover, the values for MAPE and 
RMSE obtained by the DEFGM (1,1) and EFGM (1,1) are 
smaller than that of the GM (1,1), which means that modeling 
through sequence smoothing by the dynamic index conversion 
can help increase prediction accuracy.  Furthermore, the CC 
values for the DEFGM (1,1) and FEGM (1,1) are closer to 1, 
indicating that these two models have the better performance.  
Their CE’s are close to 1, which indicates a better overall per- 
formance than for the GM (1,1).  Finally, ERP is considered the 
most important indicator for an evacuation announcement.  
The ERR value of the DEFGM (1,1) is closest to 0 and that 
means that there is no time lag for predicting the time of the 
peak rainfall. 

In order to prevent the prediction accuracy judgment from 
being affected by features of individual typhoons, this study 
evaluated those models with the mean values of CC, CE, ERP, 
MAE, MAPE, and RMSE for eight typhoons.  As shown in 
Table 4, the MCC and MCE of the DEFGM (1,1) is 0.994 and 

0.991, respectively, and are found to be closest to 1, indicating 
its superiority.  The FEGM (1,1) comes in second, whose MCC 
and MCE are 0.987 and 0.973, respectively.  It means that  
the overall performance of the DEFGM (1,1) is better than that 
of the FEGM (1,1).  When viewing the MERP value, the error 
of peak rainfall for the DEFGM (1,1) is smaller than 0.05.  
Moreover, the MMAE, MMAPE, and MRMSE of the EFGM 
(1,1) and DEFGM (1,1) have the least deviation between the 
actual and predicted values for The DEFGM (1,1) with a 
MMAPE smaller than 10.  Obviously, modeling through a 
dynamic index conversion sequence and correcting the peri-
odical and random residual can greatly increase prediction 
accuracy. 

V. CONCLUSION 

It has been observed that the GM (1,1) cannot obtain the 
desired results for an unstable system with wavy changes.  
This study proposed a new Grey Model: the DEFGM (1,1)  



 Y.-H. Lin et al.: Rainfall Prediction Using Innovative Grey Model with the Dynamic Index 75 

 

and its process is summarized as follows.  First, the original 
rainfall system is transformed into a stable one by using the 
dynamic index transformation, which then improves the 
background value of the grey model.  After that, the residual 
random and periodical errors are corrected through the expo-
nential smoothing technique and Fourier series.  By examining 
different indicators, the DEFGM (1,1) proves its superiority to 
other models, including the GM (1,1), DGM (1,1), and EFGM 
(1,1) for the successful predicting of rainfall brought about by 
typhoons.  Conclusions are drawn below: 

 
1. The prediction of the GM (1,1) has significant trends, pe-

riodicity and randomness.  The predicted sequence is af-
fected by neighboring data points, which then results in the 
time lag for predicted extreme values when compared to 
real data.  This study improves the background value of the 
grey model by integration.  It effectively catches the se-
quence’s trend and solves the extreme value delays of the 
original grey model. 

2. The predicted rainfall of the GM (1,1) is unable to predict 
the peak rainfall accurately.  However, this problem can be 
solved when the GM (1,1) is combined with the exponential 
smoothing technique and the Fourier series, called the 
EFGM (1,1).  The MCC and MCE of the DEFGM (1,1) are 
0.994 and 0.991, respectively which are much closer to 1 
than those of the EFGM (1,1) (0.987 and 0.973).  Thus, the 
overall prediction performance for the DEFGM (1,1) is 
relatively good when compared with others.  Moreover, the 
MERP DEFGM (1,1) is closest to 0, which means that it can 
catch the timing of peak rainfalls.  It is apparent that a 
DEFGM (1,1) can really increase prediction accuracy. 

3. In order to comply with the exponential law of the grey 
system, the original sequence is converted into an expo-
nential function sequence by the dynamic index technique, 
which can reduce the wavy pattern and change it to a se-
quence with a stable pattern.  The dynamic index technique 
adopted in this study is a function of t1/n and ( 1) .

γ ξβ −   To 
decrease the effect of t1/n, the transformation parameter n is 
set to a larger value.  Through calibration of parameters, the 
wavy pattern of the original sequence is obviously de-
creased.  Furthermore, in order to reduce the interference by 
ξ and to ensure sequence stability, ξ should be set to a small 
value.  Therefore, future studies can focus on decreasing the 
effects of time, so as to increase the stability of the con-
verted system. 

4. The dynamic index adopted in this study is one of the 
methods used for smoothing the original sequence.  The 
transformation parameters α, n, β, γ, and ξ can be investi-
gated further and the focus of future studies. 
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