
Volume 21 Issue 1 Article 2 

SOLVING INHOMOGENEOUS PROBLEMS BY SINGULAR BOUNDARY SOLVING INHOMOGENEOUS PROBLEMS BY SINGULAR BOUNDARY 
METHOD METHOD 

Xing Wei 
Center for Numerical Simulation Software in Engineering and Sciences, Department of Engineering Mechanics, Hohai 
University, Nanjing, Jiangsu, P.R.China.State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian 
University of Technology, Dalian, Liaoning, P.R.China. 

Wen Chen 
Center for Numerical Simulation Software in Engineering and Sciences, Department of Engineering Mechanics, Hohai 
University, Nanjing, Jiangsu, P.R.China.State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian 
University of Technology, Dalian, Liaoning, P.R.China., chenwen@hhu.edu.cn 

Zhuo-Jia Fu 
Center for Numerical Simulation Software in Engineering and Sciences, Department of Engineering Mechanics, Hohai 
University, Nanjing, Jiangsu, P.R.China.State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian 
University of Technology, Dalian, Liaoning, P.R.China. 

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal 

 Part of the Engineering Commons 

Recommended Citation Recommended Citation 
Wei, Xing; Chen, Wen; and Fu, Zhuo-Jia (2013) "SOLVING INHOMOGENEOUS PROBLEMS BY SINGULAR BOUNDARY 
METHOD," Journal of Marine Science and Technology: Vol. 21: Iss. 1, Article 2. 
DOI: 10.6119/JMST-011-0704-1 
Available at: https://jmstt.ntou.edu.tw/journal/vol21/iss1/2 

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been 
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and 
Technology. 

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol21
https://jmstt.ntou.edu.tw/journal/vol21/iss1
https://jmstt.ntou.edu.tw/journal/vol21/iss1/2
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol21%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol21%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol21/iss1/2?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol21%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages


SOLVING INHOMOGENEOUS PROBLEMS BY SINGULAR BOUNDARY METHOD SOLVING INHOMOGENEOUS PROBLEMS BY SINGULAR BOUNDARY METHOD 

Acknowledgements Acknowledgements 
We would like to thank Prof. C. S. Chen and the anonymous reviewers of this paper for their very helpful 
comments and suggestions to improve academic quality and readability. The work described in this paper 
was supported by National Basic Research Program of China (973 Project No. 2010CB832702), and the 
R&D Special Fund for Public Welfare Industry (Hydrodynamics, Grant No. 201101014), Foundation for 
Open Project of the State Key Laboratory of Structural Analysis for Industrial Equipment (Grant No. 
GZ0902) and the Fundamental Research Funds for the Central Universities (Grant No. 2010B15214). 

This research article is available in Journal of Marine Science and Technology: https://jmstt.ntou.edu.tw/journal/
vol21/iss1/2 

https://jmstt.ntou.edu.tw/journal/vol21/iss1/2
https://jmstt.ntou.edu.tw/journal/vol21/iss1/2


8 Journal of Marine Science and Technology, Vol. 21, No. 1, pp. 8-14 (2013) 
DOI: 10.6119/JMST-011-0704-1 

 

SOLVING INHOMOGENEOUS PROBLEMS BY 
SINGULAR BOUNDARY METHOD 

 
 

Xing Wei1,2, Wen Chen1,2, and Zhuo-Jia Fu1,2 

 
 

Key words: singular boundary method, inhomogeneous equation, 
noisy boundary, meshless method. 

ABSTRACT 

This study makes the first attempt to extend the singular 
boundary method (SBM) to inhomogeneous problems in con- 
junction with the dual reciprocity method (DRM).  The SBM 
is a new boundary-type meshless method and utilizes the 
fundamental solution to calculate the homogeneous solution  
of the governing equation of interest, where the inverse  
interpolation technique is designed to evaluate the origin in-
tensity factor while overcoming the singularity of the funda-
mental solution at the origin.  In this study, the DRM is em-
ployed to evaluate the particular solution of Poisson equation 
with multiquadratic functions.  The efficiency and accuracy  
of the proposed SBM-DRM scheme are tested to the three 
benchmark inhomogeneous Poisson problems.  We also dem- 
onstrate the stability of the SBM-DRM scheme in dealing with 
noisy boundary data. 

I. INTRODUCTION 

Compared with the finite element method and the finite 
difference method, the boundary element method (BEM)  
[1, 17, 20] only requires the boundary discretization in the 
solution of homogeneous problems.  However, the BEM en-
counters two troublesome problems: 1) boundary-only dis-
cretization of inhomogeneous problems without inner nodes,  
2) mathematically complex and computationally expensive 
evaluation of singular or hyper-singular integrals.  To over-
come the second issue, a variety of novel boundary-type 
methods have been proposed in recent decades; for instance, 
the method of fundamental solutions (MFS) [11, 12], the 
boundary knot method (BKM) [6, 10], the regularized mesh-

less method (RMM) [5, 26], the modified method of funda-
mental solution (MMFS) [22, 25], the boundary collocation 
method (BCM) [2, 3], and the singular boundary method 
(SBM) [7, 9]. 

The MFS, first introduced by Kupradze and Aleksidze  
[18], has successfully been applied to a large number of en-
gineering problems [11, 13].  One necessary task when using 
the MFS is to approximate a solution by using a linear com-
bination of fundamental solutions of the given differential 
operator.  However, due to the singularity of the fundamental 
solution, the MFS requires a controversial fictitious bound- 
ary outside the physical domain, which limits its practical 
application to complex-shaped boundary or multiply con-
nected domain problems.  To avoid this drawback, Chen and 
Tanaka [10] presents an alternative method, boundary knot 
method, which replaces the singular fundamental solutions 
with nonsingular general solutions.  However, an ill-conditioning 
matrix would arise as severely as the MFS while the number of 
the boundary knots increasing.  Recently, Chen et al. [5] and 
Young et al. [26] propose a novel meshless method, called the 
regularized meshless method (RMM), to remedy the singu-
larities of the fundamental solution by employing the desin-
gularization of subtracting and adding-back technique.  In 
addition, the condition number of the RMM interpolation 
matrix does not increase as rapidly as those of the MFS and the 
BKM.  On the other hand, the original RMM requires a uni-
form distribution of nodes which severely reduces its appli-
cability.  Although Song and Chen [23] bring a weighted 
method to calculate the diagonal elements of interpolation 
matrix, its stability has yet to be proved.  Following the RMM, 
Sarler [22] developed the modified method of fundamental 
solution to solve potential flow problems, which involves a 
complex integral in the calculation of the diagonal elements. 

Inspired by the innovative RMM by Chen et al. [5] and 
Young et al. [26], Chen [7] proposes a novel singular boundary 
method, which uses the fundamental solution of the governing 
equation of interest as the basis function but collocates source 
knots in coincidence with response knots on the physical 
boundary.  The singularity of fundamental solution is elimi-
nated by a simple novel numerical desingularization technique 
called inverse interpolation technique (IIT).  Later, Chen et al. 
[9] further improve the SBM by adding a constant term in the 
approximate representation to guarantee its uniqueness and 
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stability.  Meanwhile, Chen also makes some further investi-
gations on the role of the constant for BCM in Chen et al. [4]. 

To the best of our knowledge, the SBM has not yet been 
extended to solving inhomogeneous problems.  This paper 
makes a first attempt to investigate the efficiency and sta- 
bility of the improved SBM for solving Poisson problems. 

The structure of this paper is as follows.  In Section 2 we 
introduce the SBM for solving homogeneous problems.  In 
Section 3, we present the evaluation of the particular solution 
of inhomogeneous equation through the use of the DRM.  In 
Section 4, we numerically examine the accuracy and effi-
ciency of the proposed approach for a variety of Poisson 
problems.  To show the stability of our approach, we artifi-
cially add noisy data on the boundary.  In Section 5, we con-
clude our study with some remarks. 

II. THE SBM FORMULATION OF 
HOMOGENEOUS LAPLACE EQUATION 

Without loss of generality, we consider the Laplace equa-
tion on a two-dimensional domain 

 2 0u∇ =  (1) 

with the boundary conditions 

 ( ) ( ),     ,Du x g x x= ⊂ Γ  

 
( )

( ),      ,N

u x
h x x

∂ = ⊂ Γ
∂n

 (2) 

where ∇2 denotes Laplace operator, and n is the unit outward 
normal vector, g and h are given functions, Ω denotes the 
computational domain and ∂Ω = ΓD ∪ ΓN represents the  
whole physical boundary. 

The SBM approximates the solution u(x) by a linear com-
bination of basis functions 

 *

1,

( ) ( , ) ,
N

j i ii D
j i j

u u uα α
= ≠

= + ∈Γ∑i i jx x x x , (3) 

 
*

1,

( , )( )
( ) ,

N

j i ii N
j i j

uu
q q

n n
α α

= ≠

∂∂= = + ∈Γ
∂ ∂∑

i i

i ji
i

x x

x xx
x x , (4) 

where N is the number of the source points, 1{ }N
j jx =  are the 

source points on the boundary, and 1{ }N
j jα =  are the unknown 

coefficients to be determined.  u* is the fundamental solution 
of the Laplace operator 

 ( ) 2

2

1
( , ) ln        

2j ju x s x s x R
π

∗ = − − ∈  (5) 

In the SBM, we assume that there exists an origin intensity 

factor, uii and qii in Eqs. (3) and (4), when the collocation  
point coincides with source points.  The origin intensity factor 
is numerically determined by the so-called inverse interpo- 
lation technique (IIT), where a sample solution ut satisfying 
the governing equation are imperative, and some sample 

points t
kx  are located inside the physical domain.  It follows 

that the uii and qii can be respectively calculated by 

 1,
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,      
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in which 1{ }N
j jβ =  can be obtained by the following system of 

linear equations 

 { }{ } { }( , ) ( )t t
k j j t kG x s u xβ = , (8) 

where t
kx  is the sample points inside.  And it should be noted 

that the number of the sample points should be larger than N. 
Based on our extensive numerical experiments, we ob- 

serve that when the physical domain is circular centered at the 
origin with the source points uniformly distributed, the origin 
intensity factor in the Eqs. (3) and (4) evaluated by the IIT is 
similar to the one attained from the following expression 
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N

ii i j i D
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u u x x x
= ≠
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However, the SBM may obtain incorrect solutions in some 
potential problems, especially for those with a constant po-
tential [9].  Hence, a constant term is added into the solution 
expression to warrant the uniqueness of the approximate so-
lution.  As a result, the expression of the SBM with an aug-
mented constant term can be written as  

 *
1

1,

( ) ( , )
N

j i ii N
j i j

u u uα α α +
= ≠

= + +∑i i jx x x  (11) 

with the constraint condition 
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III. THE SBM-DRM FOR INHOMOGENEOUS 
EQUATIONS 

For inhomogeneous problems, such as Poisson problem, 
the solution is generally divided into two parts, namely, the 
homogeneous solution and the particular solution.  The ho-
mogeneous solution can be approximated by the SBM, while 
the approximate particular solution can be evaluated by the 
DRM, which is introduced by Nardini and Brebbia [19].  
Golberg [14], Golberg and Chen [15], and Chen and Tanaka 
[10], respectively couple the DRM with the MFS and the 
BKM to solve inhomogeneous problems.  On the other hand, 
Wen and Chen [24] proposes the method of particular solution 
to eliminate the superposition by assembling the homogeneous 
and inhomogeneous interpolation matrices. 

In general, we consider the following Poisson equation 

 2 ( , ),u f x y∇ =  (12) 

subjected to the following boundary conditions 

( ) ( ),     ,Du x g x x= ⊂ Γ  

 
( )

( ),      .N

u x
h x x

∂ = ⊂ Γ
∂n

 (13) 

The solution of the problem can be split into homogeneous 
solution uh and particular solutions up 

 h pu u u= + . (14) 

The particular solution up is acquired from the governing 
equation only 

 2 ( , )pu f x y∇ =  (15) 

without satisfying the boundary conditions.  Approximate 
particular solution ûp in (15) can be obtained by a series of 
radial basis function φ 

 
1

ˆ ( ),
N L

p p j j
j

u u rβ ϕ
+

=

≈ = ∑  (16) 

where βj are unknown coefficients to be determined, L denotes 

the number of the interior nodes, and j jr x x= −  represents 

the Euclidean distance.  Then the Eq. (15) can be recast as 

 2

1

( ) ( , )
N L

j j
j

r f x yβ ϕ
+

=

∇ =∑ . (17) 

In this study, we select the multiquadric (MQ) as radial 
basis function φ 

 
1

2 2( ) ,    0,r c cϕ = + >  (18) 

where c is the shape parameter in the MQ function. 
After the approximate particular solution is obtained, the 

approximate homogeneous solution ûh has to satisfy the fol-
lowing governing and boundary condition equations 

2 ˆ 0hu∇ =  

ˆ ˆ( ) ( ) ( ),     ,h p Du x g x u x x= − ⊂ Γ  

 
ˆ ( )ˆ ( )

( ) ,      .ph
N

u xu x
h x x

∂∂ = − ⊂ Γ
∂ ∂n n

 (19) 

The solution of Eq. (19) can be obtained by the SBM de-
tailed in Section 2.  The efficiency and accuracy of the pro-
posed SBM-DRM technique for solving Poisson problems 
will be examined in the following section. 

IV. NUMERICAL RESULTS AND  
DISCUSSIONS 

In this section, the efficiency and accuracy of the SBM- 
DRM are demonstrated by the three benchmark Poisson 
problems with various inhomogeneous terms and boundary 
conditions. 

The average relative error, Rerr, and the maximum rel- 
tive error, Mrerr, are defined by 

 
2

1

1 ( ) ( )
( ) ,

( )

NT

i

u i u i
Rerr u

NT u i=

−= ∑  (20) 

 
1

( ) ( )
( ) max

( )i NT

u i u i
Mrerr u

u i≤ ≤

−= , (21) 

where ( )u i  and ( )u i  are the analytical and numerical solu-

tions at xi, respectively, and NT is the total number of test 
points in the domain.  When ( )u i  is smaller than 1e-6, we take 

the value of ( ) ( )u i u i−  instead of 
( ) ( )

( )

u i u i

u i

−
 to avoid the 

divergence induced by the small value of ( )u i .  Unless oth-

erwise specified, we choose shape parameter c = 1 in MQ 
radial basis function. 

 
Example 1:  We consider the Poisson problem in an irregular 
subjected to the Dirichlet boundary conditions  

2 ( , ) 1,             ( , ) ,u x y x y∇ = ∈Ω  

 
2 2

( , ) ,      ( , ) ,
4

x y
u x y x y

+= ∈∂Ω  (22) 
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Fig. 1.  The shape of irregular domain for Example 1. 
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Fig. 2. The Rerr and Mrerr versus the numbers of the boundary nodes in 

Example 1. 

 
 
and the exact solution is  

 
2 2

( , ) ,      ( , ) .
4

x y
u x y x y

+= ∈Ω ∪ ∂Ω  (23) 

In this example we choose the uniform testing nodes (NT = 
1322) in the computational domain which is shown in Fig. 1. 

Fig. 2 presents Rerr and Mrerr in terms of the number of 
boundary nodes for solving Poisson problem in an irregular 
domain.  In Fig. 2, we can see that the numerical solution 
becomes more accurate as the number of boundary nodes 
increases and the curves only oscillate slightly which indi- 
cates the stability of the solution is quite good.  We also ob-
serve that the accuracy is improved rapidly for N < 80 and 
improved very little for N > 80.  This may be largely due  
to the severely ill-conditioned interpolation matrix of the 
DRM using MQ radial basis function when a large number  
of boundary nodes are employed as shown in Fig. 3.  The  
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Fig. 3. Condition numbers of the interpolation matrices in the SBM and 

the DRM with MQ radial basis function versus the number of the 
boundary nodes in Example 1. 

 
 

interpolation matrix of the SBM for the homogeneous solu- 
tion has far smaller condition number than that of the DRM. 

We also note that the average and maximum relative errors 
have very similar varying trend regarding the number of 
boundary nodes.  It is found that the SBM-DRM can suc-
cessfully solve this Poisson problem with the irregular do-
main. 

 
Example 2:  Consider the following Poisson equation  

 2 ( , ) 2 sin sinu x y x y∇ = −  (24) 

in a unit square domain [0,1] × [0,1] with the mixed boundary 
conditions 

( , 0) sin ,   ( ,1) sin cos1,y yu x x u x x= =  

 (0, ) 1,   (1, ) sin 1sin 1.u y u y y= = +  (25) 

The exact solution is given by 

 ( , ) sin sin 1u x y x y= + . (26) 

The number of test points is evenly distributed as 50*50 in 
the domain of interest.  

Fig. 4 illustrates the average relative error and the maxi-
mum relative error versus the numbers of boundary knots.  
The approximate result of the SBM-DRM is remarkable in this 
problem.  It is seen from Fig. 4 that the accuracy of the method 
converges very fast and has little oscillation due to its small 
condition number.  Similar to the example 1, the accuracy also 
has some enhancement after a certain number of boundary 
nodes are used. 
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Fig. 4. The errors Rerr and Mrerr versus the numbers of the boundary 

nodes in Example 2. 

 
 
In the finial example, the superior stability of the SBM will 

be exhibited in comparison with the MFS with different ficti-
tious boundaries and the BKM by adding the noise into the 
boundary conditions, at the same time, the influence from 
parameter c and the number of the boundary nodes will be 
largely reduced when approximated by the SBM. 

 
Example 3:  Consider a Dirichlet problem with noisy bound-
ary condition in a unit square domain [-0.5,0.5] × [-0.5,0.5], 
whose governing equation is given by  

 2 (sin sin )u x y∇ = − + , (27) 

and the exact solution and the boundary condition are given by 

 sin sinu x y= + . (28) 

In order to compare the stability of the SBM, the MFS with 
different fictitious boundaries and the BKM, the boundary 
data of this case have ±1%, ±2% noise, respectively.  The 
noisy data is added to boundary conditions in the following 
way. 

 u� = ((rand(1,1)-rand(1,1))*p + 1)*u (29) 

where rand(M, N) returns an M-by-N matrix containing 
pseudo-random values drawn from a uniform distribution on 
the unit interval in the MATLAB programming, and p is the 
noise level of the boundary data, namely, 1%, and 2%. 

In comparison, the BKM employs the nonsingular har-
monic solution as the basis function, introduced by Hon and 
Wu [16] and further improved by Chen et al. [8], which out-
performs the traditional Bessel function. 

 
2 2( )( , ) cos(2 )x y

jH e xyγ γ− −=x y  (30) 
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Fig. 5. The average relative error, Rerr, versus the parameter c in MQ 

function with ±1% (a) and ±2% (b) noisy data by using 60 bound- 
ary nodes in Example 3. 

 
 

where γ  is a parameter chosen as 0.2 in this example, and x = 
xi – xj, y = yi – yj, xi = (xi, yi) denotes the collocation point, yj = 
(xj, yj) the source point. 

On the other hand, in order to test the stability of the MFS, 
we take different fictitious boundaries into account.  We col-
locate the fictitious boundary on a circle with radius R which 
is variable, that is, 2, 3 and 4 in this example.  

This example examines the accuracy through 2500 uni-
formly distributed testing nodes in computational domain. 

Figs. 5 and 6 present respectively the average relative errors 
(Rerr) versus MQ function’s parameter c and the number of 
boundary nodes with the same noise level. 

Fig. 5 shows that both the BKM-DRM and the MFS-DRM 
with different fictitious boundaries are very sensitive to the 
parameter c in dealing with Poisson problems with noisy data.   
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Fig. 6. The average relative error, Rerr, against the numbers of the bound- 

ary nodes with ±1% (a) and ±2% (b) noisy data in Example 3. 

 
 

These curves oscillate so dramatically that it is very difficult to 
find the appropriate parameter c to get accurate results, while 
the SBM-DRM performs much better than the other two 
methods in term of stability.  Furthermore, the accuracy almost 
remains in the same level with varying parameter c. 

It is obvious from Fig. 6 that the results of the BKM and the 
MFS are rapidly deteriorated with the increasing boundary 
nodes.  In contrast, the SBM performs far more stable than the 
other two approaches. 

Fig. 7 displays condition number curves of the SBM, the 
BKM and the MFS.  The SBM has much smaller condition 
number than the BKM and the MFS.  Thus, the SBM has the 
best computational stability. 

Fig. 8 shows that the accuracy of the SBM, the MFS and the 
BKM are in the same level when there is no noisy data in the 
boundary.  However, as the noisy level increases, all the  
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Fig. 7. The condition number of the interpolation matrices in different 

methods versus the number of the boundary nodes in Example 3. 
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Fig. 8. The average relative error, Rerr, with respect to the different noise 

level by using 60 boundary nodes in Example 3. 
 
 

results of the BKM, the MFS and the SBM are deteriorating in 
some extent, but the SBM is much less sensitive to the noisy 
boundary data than the other two methods due to relatively 
much smaller condition number of its interpolation matrix as 
shown in Fig. 7.  It is worthy of noting that the condition 
number of the interpolation matrix of the DRM has little in-
fluence on the sensitivity of the resulting solution regarding 
the noisy boundary data, since the evaluation of the particular 
solution of the inhomogeneous problem does not involve 
boundary conditions at all. 

V. CONCLUSION 

This study extends the SBM in conjunction with the DRM 
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to solve inhomogeneous problems.  Though the first two 
examples, the feasibility of the method has been demonstrated 
in problems with various irregular domains and different 
boundary conditions.  In the third example we focus on the 
stability which would be affected by the shape parameter of 
the MQ, the number of boundary knots and the boundary data 
from measurement.  The SBM notably performs much better 
and stable than the MFS and the BKM, largely due to the 
relatively much smaller condition number of its interpolation 
matrix. 
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