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ABSTRACT 

Substantial damage may occur when a rotary actuator fails 
during operation.  Therefore, effective fault diagnosis of a 
rotary actuator is crucial to ensuring the safety of the device.  
However, only a few studies on fault detection, fault isolation, 
and performance assessment have focused on rotary actuators.  
In this study, fault detection and fault isolation processes were 
implemented by designing two observers based on a neural 
network, and a method that assesses the performance of the 
rotary actuator is proposed.  First, two observers are established 
according to the structure of the rotary actuator.  Data in their 
normal state are used to train the neural networks.  Second, a 
radial basis function (RBF) neural network is employed to 
estimate the expected output of the system to generate re-
siduals, and self-adaptive thresholds are obtained through an-
other RBF neural network in each observer.  The information 
on the observers is applied for fault isolation.  Third, the re-
sidual is input into the self-organizing mapping neural network 
trained by the residual values in their normal state to normalize 
the performance of the rotary actuator into confidence values 
between 0 and 1.  Finally, the detection and assessment of two 
typical faults in a rotary actuator were simulated.  The results 
demonstrate that the proposed method is able to assess the 
performance of rotary actuator and detect faults suitably. 

I. INTRODUCTION 

A rotary actuator for which hydraulic oil is the source of 
power has a direct rotary structure [8].  Hydraulic rotary ac-
tuator with the advantages of a large torque/quality ratio, 

simple compact structure, and fast dynamic response, has  
been widely implemented in ships, tanks, and, specifically, the 
wing flaps and door actuating devices of aircraft.  An abnor-
mality in the structure of a rotary actuator may result in a dis-
aster if an equipment shutdown occurs during operation.  
Therefore, ensuring the reliable operation of the rotary actuator 
is crucial. 

Fault detection, isolation, and performance assessment based 
on data driving have attracted increasing attention.  Zhang  
et al. [11] established failure models by analyzing the fault 
characteristics of induction motor stator winding and rotor 
winding and by designing a robust observer using the state- 
space mathematical model of an induction motor d-q coordi-
nate system.  Song et al. [6] proposed a method for diagnosing 
faults in flight control systems by using a radial basis function 
(RBF) neural network observer, which resolved the fault di-
agnosis difficulties of nonlinear system by analytical methods.  
Lu [5] proposed an approach for assessing the conditions of 
bearings according to chaotic characteristics.  Jayakumar and 
Das [3] proposed a method for fault detection, isolation, and 
reconfiguration for flight control systems based on a single 
Luenberger observer.  Liu et al. [4] proposed a method for 
isolating and reconfiguring faults in flight control systems by 
establishing a set of robust adaptive observers. 

Data-driven methods have been widely used in numerous 
fields.  However, few studies of fault detection and perform-
ance assessment have focused on rotary actuators.  Further-
more, interference has also been ignored in fault detection and 
assessment.  To solve these problems, a fault detection and 
performance assessment method based on an RBF neural 
network that focuses on rotary actuators was proposed in this 
paper. 

II. STRUCTURE OF A ROTARY ACTUATOR 

A rotary actuator consists of a control module, a servo valve, 
a hydraulic motor, a transmission mechanism, and an execu-
tion mechanism.  As shown in Fig. 1, two angular displace-
ment feedback loops in the control loop help the execution 
mechanism reach the correct angle.  The system feeds the 
angle signal back to the control module when the execution  
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Fig. 1.  Structure of rotary actuator. 
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Fig. 2.  RBF neural network. 

 
 

mechanism reaches the expected angle; the control instruction 
is then changed to the brake mechanism (red line in Fig. 1) and 
brakes the hydraulic motor to ensure that the motor maintains 
the execution mechanism at an appropriate angle. 

Obtaining the parameter values of the servo value and hy-
draulic motor is difficult in practice.  However, the data that 
can be obtained are the control signals and the feedback of the 
transmission mechanism during simulation. 

III. SELF-ADAPTIVE FAULT DETECTION  
FOR ROTARY ACTUATOR  

1. Radial Basis Function Neural Network 

A neural network with the capability to approximate any 
nonlinear function can be used to provide a general recogni-
tion mode for nonlinear systems.  Establishing a recognition 
format based on mathematic models of systems is unnecessary.  
Therefore, as the recognition model of a system, a neural 
network can be used to realize condition estimates. 

An RBF neural network is a type of feed forward network 
comprising an input layer, a hidden layer, and an output layer, 
as shown in Fig. 2.  X = [x1, x2, …, xn] is the input, F = [f1, 
f2, …, fm] is the function of the hidden layer, W = [w1, w2, …, 
wm] is the weight from the hidden layer to the output layer, and 

ym is the output.  The input layer consists of several source 
nodes, such as sensor units that connect to the outside envi-
ronment.  This architecture has only one hidden layer that uses 
nonlinear transformation from input space to hidden space, 
namely [1]. 

Different from a general BP neural network, RBF neural 
networks have fewer neurons, a higher rate of convergence,  
a shorter training time, and a higher predictive accuracy.  
Therefore, we built a system model by using an RBF neural 
network in this study. 

2. Observer Design 

Residuals represent the difference between the actual and 
expected output signals of a rotary actuator; the residuals are 
defined in [7]: 

 ˆi i iu u    (1) 

where  i is the value of a residual, ui is the actual output of a 
rotary actuator, and ˆiu  is the expected output. 

When a rotary actuator is abnormal, the deviation between 
the actual output and the expected output and, thus, the values 
of the residuals, increases.  When a rotary actuator malfunc-
tions, the residuals reach a value that cannot be afforded.  A 
fault is detected when the residuals exceed a specific threshold; 
it can be used to detect whether a system has a fault by com-
paring data with a given threshold. 

The output of a system does not depend only on the input 
signal in an analysis of the operating principle of rotary ac-
tuators.  Random disturbance, the condition of the system, and 
variable operating conditions can also substantially affect re-
sidual generation.  A high false alarm rate or low fault detection 
rate (FDR) may occur if changes caused by nonfault factors are 
ignored.  To solve these problems, in this study, a self-adaptive 
threshold was introduced into detection to eliminate the effects 
of nonfault factors on the values of the residuals. 

Each observer contains two neural networks.  One RBF 
neural network is employed to estimate the expected output of 
the system to generate the residuals, and the other neural 
network is used to obtain the self-adaptive thresholds. 

3. Residual and Threshold Generation 

A rotary actuator is a closed-loop control system in which 
the values of the parameters of the inner parts are difficult to 
obtain; however, input and output signals can be obtained.  In 
the proposed detection method, the control signals, the pre-
vious-moment output signals in their normal state and time are 
used as input (X = [ci(k); ui(k-1); ti] i = 1, 2, …, n) for the RBF 
neural network, and the output signals are used as target values 
(y = [ui(k)] i = 1, 2, …, n) for training the RBF neural network.  
After training, the observer based on the RBF is created.  
When test data are inputted, the observer estimates the values 
of normal output signals, and the residuals of the test data are 
obtained by calculating the difference between the actual 
output signal and the expected output signal. 
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Fig. 3.  Observer design. 

 
 
The self-adaptive threshold, which is defined as a threshold 

change in the input order and system condition, can be ob-
tained through the trained RBF neural network.  During train-
ing of the RBF neural network, the control order and output 
estimate in a normal condition are the inputs for the network, 
and the expected threshold is the target value.  The expected 
threshold is defined as follows: 

 ˆ
ith b   (2) 

where ˆth  is the expected threshold,  i is the residual, and b is 
the correction coefficient. 

After the training of the RBF neural network, the self- 
adaptive threshold is established.  The observer, based on two 
RBF neural networks, is created for fault detection.  First, the 
test data are input into one of the RBF neural network ob-
servers that has been trained to generate the residual.  Second, 
the output estimate and control order are regarded as the inputs 
of the second network for obtaining the self-adaptive threshold.  
The residual and self-adaptive threshold are compared to 
confirm whether the residual is higher than the threshold, 
indicating that the rotary actuator system has a fault.  Fig. 3 
shows the entire process of self-adaptive fault detection. 

IV. FAULT ISOLATION FOR ROTARY 
ACTUATOR  

1. Fault Isolation 

Fault isolation, which is defined as the insulation of a faulty 
subsystem or component in a system, is crucial for maintain-
ing a rotary actuator.  A strategy for isolating faults in a rotary  
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Fig. 4.  Strategy of fault isolation. 
 
 

actuator, based on the information provided by observers, is 
presented here according to the structural analysis of a rotary 
actuator. 

2. Strategy for Fault Isolation 

As shown in Fig. 1, the control loop consists of two loops.  
Two RVDTs feed the angular displacement back to the control 
module.  The servo valve, hydraulic motor, and 1#RVDT are 
in the 1# loop.  The servo valve, hydraulic motor, transmission 
mechanism, and 2#RVDT are in the 2# loop. 

Therefore, two observers can be built to monitor the two 
loops.  Because various loops consist of various components, 
the fault localization is confirmed according to the results of 
fault detection.  Fig. 4 shows the fault isolation strategy for a 
rotary actuator. 

If detection results from both observers are normal, the 
rotary actuator is in a normal condition.  When the 1# and 2# 
observers detect a fault, the fault is in the servo valve or hy-
draulic motor, respectively.  A fault in 1#RVDT can be de-
tected only when the detection result of the 1# observer ex-
presses “fault,” and the detection result of the 2# observer is 
normal.  The fault location can be identified in the transmis-
sion mechanism or in 2#RVDT when the result of the 1# ob-
server is normal and that of the 2# observer is not.  Table 1 
shows the algorithm for fault isolation. 

V. PERFORMANCE ASSESSMENT OF  
ROTARY ACTUAOR 

1. Confidence Values and Self-Organizing Map Neural 
Networks 

As an evaluation parameter of the operating condition of a 
device, confidence values (CVs) can effectively represent the 
performance assessment results of a rotary actuator. 

CVs are generated by normalizing the performance of the 
rotary actuator to values between 0 and 1.  When a device 
operates normally, CV is close to 1; if the device is going to 
fail, CV is approaching 0 correspondingly.  This method can 
be used to determine the health condition, subhealth condition, 
or fault condition of a rotary actuator. 

A self-organizing map (SOM) network is a type of com-
petitive artificial neural network that can be used to project 
multivariate data as well as perform density approximation  
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and clustering.  A SOM network combines an input layer with 
a competitive layer of processing neurons, which are typically 
organized in a two-dimensional grid.  The SOM network is an 
array of M = m  n processing neurons and maps high- 
dimensional input vectors onto a two-dimensional surface on 
which each neuron is represented by a one-dimensional weight 
vector.  Fig. 5 shows the SOM neural network [9]. 

2. Performance Assessment Based on Residual Analysis 

Each neuron of the SOM neural network is represented by 
a dimensional weight vector.  The map neurons are connected 
to adjacent neurons by a neighborhood relation, which de-
termines the map topology [2].  For example, during training 
with vector X, the distances between this vector and all of the 
SOM weight vectors are computed by using a distance meas-
ure.  The closest neuron to X is called the best matching unit 
(BMU) [10].  The weight vector of the BMU, as well as that 
of its neighbors, is enhanced by the learning rule written as 
follows: 

 ,( 1) ( ) ( ) ( )( ( ) ( ))i i BMU i iw t w t t h t x t w t      (3) 

where wi(t) is the weight vector, (t) is the learning rate for 
the range 0 < (t) < 1, and hBMU,i(t) is the neighborhood func-
tion determined by the distance between the BMU and its 
neighbor.  After the training of the SOM neural network by a 
residual in the normal state, the residual of test data is input  

Table 2.  Fault mode. 

Fault Fault mode 

1
Reduction in magnetic field strength 
of servo valve 

Flow decrease 

2 internal leakage of hydro-motor 
Efficiency reduction of 
driven device 

3
Stiffness degradation of transmission 
shaft 

Stiffness degradation 

4 Precision abnormal of 2# RVDT Output abnormal 
 
 

Table 3.  Fault injection. 

Fault Fault injection 

1
Reduction in magnetic field strength  
of servo valve 

Q = Q0  0.7 

2 Internal leakage of hydro-motor 
Ctm = 10e – 12 
eta-Vm = eta-Vm  0.7

3
Stiffness degradation of transmission 
shaft 

 =   0.7 

4 Precision abnormal of 2# RVDT  = 0.32 
 
 
into the trained SOM neural network.  The MQE is then ob-
tained and defined as follows: 

 input bmuMQE X w   (4) 

where Xinput is the input data vector, and wbmu is the weight 
vector of the BMU.  The value of MQE is normalized to 0 and 
1 by using the following function formula: 

 MQE aCV e  (5) 

where a is a scale parameter that is determined according to 
the MQE in a normal state and the predetermined CV. 

VI. CASE STUDY 

1. Fault Injection 

A simulation model was used to evaluate the proposed 
method.  Five typical types of faults was injected, namely a 
reduction in the magnetic field strength of the servo valve, 
internal leakage of the hydromotor, stiffness degradation of the 
transmission shaft, and precision abnormality in 2#RVDT, as 
shown in Table 2.  Table 3 shows the method for inputting the 
faults.  Q0 represents the flow of the servo valve; Ctm and 
eta-Vm represent the leakage coefficient and volume efficiency, 
respectively;  indicates the stiffness of the transmission shaft; 
and  is the coefficient of the precision of 2#RVDT. 

2. Neural Network Training 

The control signal and the previous-moment output were 
input into the neural network. 

Figs. 6 and 7 (the red curve represents the self-adaptive 
threshold and the blue curve is the residual) show that the  
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Fig. 6.  Residual and threshold in normal state of 1# observer. 
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Fig. 7.  Residual and threshold in normal state of 2# observer. 
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Fig. 8.  Reduction in magnetic field strength of servo valve of 1# observer. 

 
 

threshold was higher than the corresponding residual when the 
rotary actuator was in a normal state. 

3. Reduction in Magnetic Field Strength of Servo Valve 

A fault reducing the magnetic field strength of the servo 
valve was input into the simulation.  Figs. 8 and 9 show the 
detection results of the 1# and 2# observers.  A fault was 
clearly detected by both observers.  The faulty component 
could be located at the servo valve or the hydraulic motor, as 
shown in Table 1. 

1600140012001000800
time

R
es

id
ua

l

6004002000
-0.01

-0.005

0

0.005

0.01

0.015

residual

threshold 

 
Fig. 9.  Reduction in magnetic field strength of servo valve of 2# observer. 
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Fig. 10.  Internal leakage of hydro-motor of 1# observer. 
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Fig. 11.  Internal leakage of hydro-motor of 2# observer. 

 

4. Internal Leakage of Hydromotor 

Internal leakage of the hydromotor was input into the simu-
lation.  Figs. 10 and 11 show the detection results of the 1# and 
2# observers.  A fault was clearly detected by both observers.  
The faulty component could be located at the servo valve or 
the hydraulic motor, as shown in Table 1. 

5. Stiffness Degradation of Transmission Shaft 

Stiffness degradation of the transmission shaft was input 
into the simulation.  Figs. 12 and 13 show the detection results 
of the 1# and 2# observers.  The detection result of the 1# 
observer was normal, and the 2# observer detected the fault,  
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Fig. 12.  Stiffness degradation of transmission shaft of 1# observer. 
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Fig. 13.  Stiffness degradation of transmission shaft of 2# observer. 
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Fig. 14.  Precision abnormal of 2# RVDT of 1# observer. 

 
 

indicating that the faulty component was 2#RVDT or the 
transmission mechanism, as shown in Table 1. 

6. Precision Abnormality in 2#RVDT 

Precision abnormality in 2#RVDT was input into the simu-
lation.  Figs. 14 and 15 show the detection results of the 1# and 
2# observers.  Only the 2# observer detected the fault, indi-
cating that the faulty component was 2#RVDT or the trans-
mission mechanism, as shown in Table 1. 
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Fig. 15.  Precision abnormal of 2# RVDT of 2# observer. 
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Fig. 16.  Performance assessment of normal state. 
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Fig. 17. Performance assessment of reduction in magnetic field strength 

of servo valve. 

 

7. Results of Performance Assessment 

The residual was used in the normal state to train a SOM 
neural network, and the fault data were input into the trained 
neural network. 
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Fig. 18. Performance assessment of stiffness degradation of transmission 

shaft. 
 
 
The performance CVs calculated using the proposed 

method are shown in Figs. 16-18.  These values indicate the 
performance of the rotary actuator and show that the assess-
ment value was lower than 0.6 when a fault occurred. 

VII. CONCLUSION 

This paper offers a solution for fault detection, isolation, 
and performance assessment for use in rotary actuators.  Two 
RBF neural networks are used in each observer to generate the 
residual and a self-adaptive threshold.  Two fault observers 
execute detection and isolation according to the structure of 
the control loop of the rotary actuator.  The residual is input 
into a SOM neural network, and the performance of the rotary 
actuator is normalized to CVs between 0 and 1.  Several faults 
were input into a simulation after the fault mode of the rotary 
actuator was analyzed.  The results indicated that the method 
can accurately detect the faults of the rotary actuator and de-
termine the faulty component.  The results of a performance 
assessment verified the efficiency of the method. 

The proposed method could be extended to wider applica-
tions.  Considering variable load conditions, which are an 
input of observers, can facilitate suppressing the interference 
from variable load conditions.  Furthermore, new signals can 
be obtained by adding sensors, such as acceleration sensors, to 

build additional observers, which can increase the FDR and 
fault isolation rate.  These aspects are expected to be examined 
in future study on rotary actuators. 
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