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ABSTRACT 

Building large and eco-friendly ships has become a clear 
trend in the ship building industry.  Research to minimize ship 
resistance has actively been investigated for energy savings 
and environmental protection.  However, optimization of the 
full geometry, while taking into account the hydrodynamic 
performance is difficult because extensive time is needed to 
calculate the performance factors, such as the resistance and 
propulsion.  Hence we suggest an optimal design framework 
based on the neuro-response surface method (NRSM) for 
optimal shape design in consideration of hydrodynamic per-
formance.  The optimization algorithm of the constructed 
framework consists of the back-propagation neural network 
(BPN) and the non-dominated sorting genetic algorithm-II 
(NSGA-II).  Using the framework, we performed a case study 
to optimize the hull form of a 4300TEU container ship with 
consideration of wave resistance, viscous pressure resistance, 
and wake fraction. 

I. INTRODUCTION 

There is a close relationship between the shape and per-
formance of an engineering structure.  In the case of ships, 
hydrodynamic performance parameters such as resistance and 
propulsion are determined by the hull form.  The hull form is  
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Fig. 1.  Traditional design spiral. 

 
 

determined in the initial design phase, so it is very important to 
choose a hull form with good performance early on in ship 
design. 

Traditional hull form design has produced various candi-
dates which satisfy design criteria through repetitive modifi-
cation and performance evaluation processes using a  design 
spiral, as illustrated in Fig. 1.  The final decision has depended 
upon the experience of the designer.  Revising each step of the 
process in traditional hull form design is time-consuming.  
Early prediction of the optimum bow shape considering only 
wave resistance can be done using theoretical calculations.  
However, because of turbulent flow, it takes a long time to 
calculate the viscous resistance and irregular wake distribution, 
which are linked to the stern shape.  So, it is difficult to opti-
mize the hull shape with full consideration of the hydrody-
namic performance in a limited time.  Therefore a new ap-
proach is needed for hull form optimization that considers 
hydrodynamic performance in the initial design stage. 

Many researchers have tried to optimize hull forms based 
on numerical and experimental methods.  Numerical calcula-
tion has been performed for hull form design and compared 
with experimental results.  Jung [5] tried to study the predic-
tion method for maneuverability of the KVLCC1’s based  
on experimental and numerical methods.  Kim et al. [6]  
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Fig. 2.  Original and optimization design process. 

 
 

developed a framework to optimize the stern form based on 
CFD.  Choi [2] tried to optimize the hull from with a minimum 
wave resistance, and Yang et al. [11] did a wake comparison 
between model and full-scale ship using CFD.  In these studies, 
CFD calculation was just used to check the hydrodynamic 
performance of the final design.  We cannot find research 
integrating CFD calculation with viscous flow analysis into 
the process of hull form optimization. 

Major shipyards have constructed many ships worldwide 
and performed many model tests for their designs, so much 
experimental performance data for various hull forms is avail-
able.  Such data has been used for optimum hull form design.  
We can categorize many studies as data-based optimizations.  
Shin [10] employed a neuro-fuzzy algorithm to predict the 
wake distribution.  Lee and Choi [8] tried to optimize the hull 
form using the parametric design method.  and Zakerdoost et 
al. [12] tried to reduce the total drag force using evolutionary 
algorithm. 

In this study, we suggested an optimal design framework 
based on the neuro-response surface method (NRSM) for 
optimal shape design.  The optimization algorithm of the 
framework consists of the back-propagation neural network 
(BPN) [4] and the non-dominated sorting genetic algorithm-II 
(NSGA-II) [3].  The framework was used to optimize a 
4300TEU container ship while considering hydrodynamic 
performance parameters such as the wave resistance coeffi-
cient, viscous pressure resistance coefficient, and wake frac-
tion.  The results were quantitatively compared with data from 
SHIPFLOW analysis. 

II. OPTIMIZATION FRAMEWORK  
BASED ON NRSM 

The human element often causes erroneous results in the 
design of complex structures.  Thus, consideration of optimi-
zation design and minimizing human elements are needed in 
the design process (Fig. 2) [1]. 

Table 1.  Main dimensions. 

LBP Beam Draft Fn 

251.7 m 32.2 m 12 m 0.234 
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Fig. 3.  NRSM based optimal design framework. 

 
 
The essence of the optimization design process is the per-

formance analysis with different structure shapes.  Generally, 
shape optimization while considering performance is difficult 
because performance analysis takes a long time for complex 
engineering structures.  We tried to accomplish this using the 
proposed optimal design framework [7].  The framework con-
sists of three parts which define the shape, generate the design 
space using the NRSM, and optimize the shape in considera-
tion of its performances (Fig. 3). 

The design space is generated using a pre-trained BPN based 
on model test results or small CFD analysis results, and the 
optimization process is done in the generated design space.  The 
NSGA-II algorithm is used for multi-objective optimization. 

II. CASE STUDY 

The applicability of the proposed framework was verified 
using a 4300TEU container ship optimization problem while 
taking into account the hydrodynamic performance (wave re-
sistance coefficient, viscous pressure resistance coefficient and 
wake fraction).  The main dimensions of the ship are shown in 
Table 1. 

The initial hull form was obtained using FRIENDSHIP 
software, which is based on a parametric design method. 

The accuracy of the constructed framework results has been 
analyzed using commercial software (SHIPFLOW). 

1. Formulation of Optimization Problem 

The formulation process of the optimization problem is 
presented in Fig. 4. 

The equation below represents the optimization formula-
tion for the hull form while considering hydrodynamic per-
formance (Eqs. (1) and (2)). 
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Table 2.  Design variables. 

No. Design variables  

  (1) Bulb length 

  (2) Bulb tip elevation 

  (3) Bulb half beam at F.P 
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Bow 

Entrance angle 

  (6) Tangent at Fwd shoulder 

  (7) Fullness of FOS at Aft 

  (8) Run angle 
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Fig. 4.  Formulation process of optimization problem. 

 
 
Find xi 
where, xi = Design variables 
 

to minimize 

 1 2 3( ) [ ( ), ( ), ( )]F x f x f x f x  (1) 

where, 
f1(x) = Wave resistance coefficient (CW) 
f2(x) = Viscous pressure resistance coefficient (CVP) 
f3(x) = Wake fraction 
 

subject to 

 min maxi i ix x x   (2) 

i = 1, 2, 3, …, 11 (number of design variables) 
 
Eleven design variables were considered, such as the shape 

of the bow, the shape of the stern, and the full geometry of the 
hull form.  Table 2 presents the selected design variables. 

This case study was considered as a side constraint opti-
mization problem.  The constraints of each design variable 
were established in a range that does not degrade the shapes as 
shown in Table 3. 

After choosing the design variables and constraints, the 
objective functions (CW, CVP, and wake fraction) to be mini-
mized were established. 

Wave resistance coefficient (CW) 

It is assumed that water is a non-viscous and incompressi-
ble fluid and that the fluid flow is irrotational.  The velocity 
component of the hull surface was obtained by calculating the  

Table 3.  Range of design variables. 

Low limit Design variable Upper limit 

7.0000 Bulb length 9.3099 

7.0500 Bulb tip elevation 8.6900 

2.2905 Bulb half beam at F.P 2.3893 

85.0000 Tangent at bulb tip 100.0000 

9.5000 Entrance angle at SAC 12.2300 

130.0000 Tangent at Fwd shoulder 140.0000 

0.6100 Fullness of FOS at Aft 0.6400 

85.0000 Run angle at DWL 95.0000 

0.6000 Fullness of FOB at Aft 0.6200 

0.6945 CP 0.6963 

123.0000 LCB 123.2386 

 
 

flow around the hull form using the Rankine source method, 
which considers the non-linearity of the free surface boundary 
condition.  The pressure coefficient (CP) was obtained from 
Bernoulli’s principle, and the wave resistance coefficient was 
calculated by integration of the pressure coefficient over the 
hull surface (Eq. (3)). 

 /W P XC C N ds ds    (3) 

where, 

ds : wetted surface area 

NX: x component of normal vector of hull surface 

Viscous pressure resistance coefficient (CVP) 

The viscous resistance of the ship can be divided into fric-
tion resistance and viscous pressure resistance.  The viscous 
pressure resistance is the drag that results from integration of 
the component of pressure in the ship heading direction on the 
hull surface over the wetted surface area.  The resistance con-
tributes to a certain part of the 3-D flow separation related to 
the generation of bilge vortex (Eq. (4)). 

 
2( / 2)
VP

VP

R
C

V S
  (4) 

where, 
RVP: Viscous pressure resistance 
V: Ship speed 
S: Wetted surface area 
: Water density 

Wake fraction 

The fluid around a ship moves along the same direction as 
the ship, and this fluid movement is called the wake.  The wake 
increases as it moves from the bow to stern, and the relative 
velocity of water that goes into the propeller is called the wake 
fraction.  The wake fraction is calculated as follows (Eq. (5)). 
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Table 4.  Orthogonal array table. 

Column no. Trial 
no. 1 2 3 4 5 6 7 8 9 10 11

  1 1 1 1 1 1 1 1 1 1 1 1

  2 1 1 1 1 1 2 2 2 2 2 2

  3 1 1 2 2 2 1 1 1 2 2 2

  4 1 2 1 2 2 1 2 2 1 1 2

  5 1 2 2 1 2 2 1 2 1 2 1

  6 1 2 2 2 1 2 2 1 2 1 1

  7 2 1 2 2 1 1 2 2 1 2 1

  8 2 1 2 1 2 2 2 1 1 1 2

  9 2 1 1 2 2 2 1 2 2 1 1

10 2 2 2 1 1 1 1 2 2 1 2

11 2 2 1 2 1 2 1 1 1 2 2

12 2 2 1 1 2 1 2 1 2 2 1

 
 

Table 5.  Performance analysis results. 

Performance analysis results  

CW CVP Wake Fraction

Case 1 1.1710E-04 2.6960E-04 2.1522E-01 

Case 2 5.2020E-05 2.5960E-04 1.9728E-01 

Case 3 1.1870E-04 2.6160E-04 1.9619E-01 

Case 4 9.0400E-05 2.6930E-04 2.1473E-01 

Case 5 6.3400E-05 2.6760E-04 2.1379E-01 

Case 6 2.0300E-05 2.7030E-04 2.1089E-01 

Case 7 2.2490E-05 2.6770E-04 2.1516E-01 

Case 8 -6.9870E-06 2.6700E-04 2.0717E-01 

Case 9 5.1400E-05 2.6370E-04 2.0996E-01 

Case 10 1.2110E-04 2.6410E-04 2.0972E-01 

Case 11 2.7900E-06 2.6270E-04 2.0103E-01 

Case 12 9.9650E-05 2.5810E-04 1.9686E-01 
 

 
( )AV V

w
V


  (5) 

where, 
VA: Propeller forward speed 
V: Ship speed 
(V – VA): Wake speed 

2. Definition of Hull Form 

The geometries of a 4300TEU container ship were defined 
by parameterization (Table 2).  The generated geometries were 
used for constructing the approximate design space.  Twelve 
sets of design alternatives were generated using an orthogonal 
array table (OA (12, 211)) [9], as shown in Table 4.  The “1” 
and “2” values in this table are the same as the low limits and 
high limits of Table 3.  Case number 1 is the base design case. 

Table 5 shows the results of the performance analysis for 
the wave resistance coefficient (CW), viscous pressure resis- 
tance coefficient (CVP), and wake fraction using commercial  

Table 6.  Training dataset. 

Training data 
 

CW CVP Wake Fraction

Case 1 1.1710E-04 2.6960E-04 2.1522E-01 

Case 2 5.2020E-05 2.5960E-04 1.9728E-01 

Case 4 9.0400E-05 2.6930E-04 2.1473E-01 

Case 5 6.3400E-05 2.6760E-04 2.1379E-01 

Case 6 2.0300E-05 2.7030E-04 2.1089E-01 

Case 8 -6.9870E-06 2.6700E-04 2.0717E-01 

Case 10 1.2110E-04 2.6410E-04 2.0972E-01 

Case 11 2.7900E-06 2.6270E-04 2.0103E-01 

Case 12 9.9650E-05 2.5810E-04 1.9686E-01 
 
 

Table 7.  Test dataset. 

Test data 
 

CW CVP Wake Fraction

Case 3 1.1870E-04 2.6160E-04 1.9619E-01 

Case 7 2.2490E-05 2.6770E-04 2.1516E-01 

Case 9 5.1400E-05 2.6370E-04 2.0996E-01 
 
 

Table 8.  Structure of the BPN. 

Back-propagation neural network 

Input node (ni) Hidden node Output node (no) 

11 i on n  3 

 
 

code (SHIPFLOW). 
After analysis of the generated design cases, we constructed 

the design space using NRSM.  Then, we predicted the per-
formance of the design cases in a continuous design space 
without direct computing.  It is important to generate the de-
sign space because the optimization process progresses in the 
generated design space.  Therefore, the generated design al-
ternatives were divided into 2 sets: 

 
- Training data (Table 6): to generate the design surface 
- Test data (Table 7): to check the prediction accuracy 

3. Generation of Design Space Using NRSM 

The multi-layer perceptron (MLP) was used to construct the 
design space.  It has three layers: an input layer, a hidden layer, 
and an output layer.  The back-propagation algorithm was used 
for training the neural network.  We tried to find the best struc- 
ture and number of learning cycles for the neural network.  The 
number of hidden nodes was defined using the relationships 
between the input node (ni and output node (no) (Table 8).  The 
final array of neurons and the number of learning cycles were 
11-5-3 and 15000, respectively.  Fig. 5 shows the error con-
vergence in the learning process of the network.  The error 
convergence is about 0.05 below after 12000 iterations using 
the constructed framework. 
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Table 9.  Results for BPN training. 

Original values 
 

CW CVP Wake Fraction

Case 1  1.1710E-04 2.6960E-04 2.1522E-01 

Case 2  5.2020E-05 2.5960E-04 1.9728E-01 

Case 4  9.0400E-05 2.6930E-04 2.1473E-01 

Case 5  6.3400E-05 2.6760E-04 2.1379E-01 

Case 6  2.0300E-05 2.7030E-04 2.1089E-01 

Case 8 -6.9870E-06 2.6700E-04 2.0717E-01 

Case 10  1.2110E-04 2.6410E-04 2.0972E-01 

Case 11  2.7900E-06 2.6270E-04 2.0103E-01 

Case 12  9.9650E-05 2.5810E-04 1.9686E-01 

Prediction values 
 

CW CVP Wake Fraction

Case 1 1.1069E-04 2.6778E-04 2.1153E-01 

Case 2 6.4261E-05 2.5936E-04 1.9464E-01 

Case 4 8.8277E-05 2.6824E-04 2.1451E-01 

Case 5 4.4247E-05 2.6923E-04 2.1688E-01 

Case 6 2.1837E-06 2.6343E-04 2.0273E-01 

Case 8 -1.4992E-05 2.6381E-04 2.0761E-01 

Case 10 7.8671E-05 2.6709E-04 2.1486E-01 

Case 11 1.1790E-05 2.6207E-04 2.0606E-01 

Case 12 1.211E-04 2.6016E-04 1.9464E-01 
 
 

Error

150001000050000
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2
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12
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Fig. 5.  Error convergence 

 
 
The error is defined in Eqs. (5) and (6), where “y” and “d” 

mean the output of the network and the original value.  “L” 
means the number of output neurons and “E(n)” is the measure 
of error. 

 ( ) ( ) ( )n i ie n d n y n   (5) 

 2

1
( ) 0.5 ( )

L

ii
E n e n


   (6) 

Table 9 shows the accuracy of the generated design space.  In 
this table, “original values” are the SHIPFLOW analysis results, 
and “prediction values” are the output of the neural network. 

Table 10.  Measure of error. 

Measure of error [E(n)] 
 

CW CVP Wake Fraction

Case 1 4.11E-11 3.31E-12 1.36E-05 

Case 2 1.50E-10 5.76E-14 6.97E-06 

Case 4 4.51E-12 1.12E-12 4.84E-08 

Case 5 3.67E-10 2.66E-12 9.55E-06 

Case 6 5.06E-10 4.72E-11 6.66E-05 

Case 8 6.41E-11 1.02E-11 1.94E-07 

Case 10 7.44E-10 1.15E-11 2.40E-05 

Case 11 2.13E-10 3.97E-13 2.53E-05 

Case 12 4.60E-10 4.24E-12 4.93E-06 

E(n) 1.27E-09 4.03E-11 7.56E-05 
 
 

Table 11.  Checking the generated design space. 

Original values 
 

CW CVP Wake Fraction

Case 3 1.1870E-04 2.6160E-04 1.9619E-01 

Case 7 2.2490E-05 2.6770E-04 2.1516E-01 

Case 9 1.2110E-04 2.6410E-04 2.0972E-01 

Prediction values 
 

CW CVP Wake Fraction

Case 3 1.3551E-04 2.6259E-04 1.9547E-01 

Case 7 2.2633E-05 2.6953E-04 2.1724E-01 

Case 9 1.2190E-04 2.6542E-04 2.0951E-01 
 
 

Table 12.  Measure of error. 

Measure of error [E(n)] 
 

CW CVP Wake Fraction

E(n) 1.42E-10 3.04E-12 2.44E-06 
 
 
Table 10 shows the prediction accuracy of the trained 

neural network for 9 cases in the training sample.  The struc-
ture of the neural network is appropriate, because the error 
values are very small (Table 10). 

Table 11 shows the prediction accuracy of the trained neural 
network, and Table 12 and Fig. 6 show the prediction error of 
the test dataset in the generated design space.  In this process, 
the accuracy of the constructed design space can be checked.  
Analysis of the results for Table 12 shows that there are still 
prediction errors.  However, in order to predict the perform-
ance in a limited time, the neural network can give reasonable 
results for the design stage. 

4. Optimization Process 

We tried to find the optimum design using NSGA-II in the 
generated design space.  Table 13 and Fig. 7 show the pa-
rameters of NSGA-II and the Pareto optimum set as the final 
result of the optimum design framework.  To select the final 
optimum design among the pareto-optimum set, we used a  
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Table 13.  Parameters of NSGA-II. 

NSGA-II 

Pop-size Generation Crossover Mutation 

100 1000 20% 1% 
 
 

1.60E-04

1.20E-04
1.40E-04

8.00E-05
1.00E-04

6.00E-05
4.00E-05
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0 1 2 3 4

CW_Original
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CW

(a) Wave resistance coefficient (CW)

2.70E-04

2.68E-04
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2.66E-04
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2.65E-04
2.64E-04
2.63E-04
2.62E-04
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CVP_Original
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(b) Viscous pressure resistance coefficient (CVP)
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Fig. 6.  Accuracy for generated design space. 
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Fig. 7.  Pareto optimum set. 

Table 14.  Design variables. 

 Base design Optimum design 

Bulb length 7.0000 8.1715 

Bulb tip at bottom 7.0500 7.6217 

Bulb half beam at F.P 2.2905 2.3465 

Tan. at bulb tip 85.0000 94.8070 

Entrance angle at SAC 9.5000 11.5094 

Tan. at Fwd shoulder 130.0000 139.3077 

Fullness of FOS at Aft 0.6100 0.6390 

Run angle at DWL 85.0000 89.1923 

Fullness of FOB at Aft 0.6000 0.6173 

CP 0.6945 0.6957 

LCB 123.0000 123.2330 

 
 

Table 15.  Performance results. 

Results 

 CW CVP Wake Fraction

Framework 9.4800E-06 2.5912E-04 1.9786E-01 

SHIPFLOW 2.7867E-05 2.7300E-04 2.0004E-01 

 
 

Table 16.  Improvement of optimum design case. 

Improvement 
[(Base model – Optimization model)/Base model] 
CW CVP Wake Fraction 

23.8% decrease 1.2% increase 7.1% decrease 
 
 

Table 17.  Results for water plane area and efficiency power. 

 Original model Optimized model

Water plane area (m2) 7075.3770 7195.4950 

Effective power (Kw) 1.5539E+04 1.2089E+04 
 
 

weighting factor of 0.3333 for each objective function (CW, 
CVP, and wake fraction).  In Fig. 7, the red points represent the 
selected optimum design case. 

Table 14 shows design variables for the selected optimum 
design using the optimal design framework. 

Table 15 shows the performance analysis results of the 
obtained framework and SHIPFLOW calculation results.  The 
results of the framework are close to those of SHIPFLOW. 

5. Analysis of Optimum Design Case 

The improvement for standards of performance evaluation 
was analyzed using the selected optimum design case.  The 
performance of the optimum hull form is better than that of the 
original hull form except for the viscous pressure resistance 
coefficient  (Table 16). 

Table 17 presents the waterplane area, which affects sta-
bility, and the effective horse power (EHP), which is related to 
fuel consumption of the target hull form and optimal hull form. 
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Optimization
Original

(a) Original and optimized lines

(b) Pressure of original hull form

(c) Pressure of optimization hull form  
Fig. 8.  Results for original and optimized hull form. 

 
 

The optimized hull form shows a 1.7% increase in waterplane 
area and 22% decrease in EHP.  These results mean the opti-
mum hull form is better than the original hull form in terms of 
stability and fuel consumption. 

Fig. 8(a) presents a comparison between the target hull 
form and the optimized hull form.  The pressure of both the 
bow part and stern part (Figs. 8(b) and  (c)) and the wave 
height (Figs. 9 and 10) have been decreased with the opti-
mized hull form. 

IV. CONCLUSION 

Several conclusions were obtained from this study: 
 

1. The “optimization design framework based on neuro- 
response surface method (NRSM)” chooses the optimal 
hull form based on performance.  It was constructed using 
small CFD analysis data acquired in a limited time. 

2. An optimal hull form could be generated in limited time by 
applying the framework to hull form optimization with 
hydrodynamic performance consideration. 

3. Quantitative comparisons between the target hull form and 
the optimal hull form result are as follows: 

Optimized

Original

 
Fig. 9.  Free surface wave height. 
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Fig. 10.  A comparison between the initial and optimum lines wave cut. 
 
 
A. The wave resistance coefficient and wake fraction de-

creased by approximately 23.8% and 7.8%, and the 
viscous pressure resistance coefficient was increased 
approximately 1.7%. 

B. The waterplane area for evaluating stability was increased 
approximately 1.7% compared to the initial value, and 
EHP was decreased about 22%. 
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